Python keras.backend 模块,flatten() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.backend.flatten()

项目:segmentation_DLMI    作者:imatge-upc    | 项目源码 | 文件源码
def categorical_crossentropy_3d(y_true, y_predicted):
    """
    Computes categorical cross-entropy loss for a softmax distribution in a hot-encoded 3D array
    with shape (num_samples, num_classes, dim1, dim2, dim3)

    Parameters
    ----------
    y_true : keras.placeholder [batches, dim0,dim1,dim2]
        Placeholder for data holding the ground-truth labels encoded in a one-hot representation
    y_predicted : keras.placeholder [batches,channels,dim0,dim1,dim2]
        Placeholder for data holding the softmax distribution over classes

    Returns
    -------
    scalar
        Categorical cross-entropy loss value
    """
    y_true_flatten = K.flatten(y_true)
    y_pred_flatten = K.flatten(y_predicted)
    y_pred_flatten_log = -K.log(y_pred_flatten + K.epsilon())
    num_total_elements = K.sum(y_true_flatten)
    # cross_entropy = K.dot(y_true_flatten, K.transpose(y_pred_flatten_log))
    cross_entropy = tf.reduce_sum(tf.multiply(y_true_flatten, y_pred_flatten_log))
    mean_cross_entropy = cross_entropy / (num_total_elements + K.epsilon())
    return mean_cross_entropy
项目:keras-molecules    作者:maxhodak    | 项目源码 | 文件源码
def _buildEncoder(self, x, latent_rep_size, max_length, epsilon_std = 0.01):
        h = Convolution1D(9, 9, activation = 'relu', name='conv_1')(x)
        h = Convolution1D(9, 9, activation = 'relu', name='conv_2')(h)
        h = Convolution1D(10, 11, activation = 'relu', name='conv_3')(h)
        h = Flatten(name='flatten_1')(h)
        h = Dense(435, activation = 'relu', name='dense_1')(h)

        def sampling(args):
            z_mean_, z_log_var_ = args
            batch_size = K.shape(z_mean_)[0]
            epsilon = K.random_normal(shape=(batch_size, latent_rep_size), mean=0., std = epsilon_std)
            return z_mean_ + K.exp(z_log_var_ / 2) * epsilon

        z_mean = Dense(latent_rep_size, name='z_mean', activation = 'linear')(h)
        z_log_var = Dense(latent_rep_size, name='z_log_var', activation = 'linear')(h)

        def vae_loss(x, x_decoded_mean):
            x = K.flatten(x)
            x_decoded_mean = K.flatten(x_decoded_mean)
            xent_loss = max_length * objectives.binary_crossentropy(x, x_decoded_mean)
            kl_loss = - 0.5 * K.mean(1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis = -1)
            return xent_loss + kl_loss

        return (vae_loss, Lambda(sampling, output_shape=(latent_rep_size,), name='lambda')([z_mean, z_log_var]))
项目:keratin    作者:uw-biomedical-ml    | 项目源码 | 文件源码
def dice(y_true, y_pred, smooth=1.0):
    """
    The Dice coefficient, defined as ::

        \frac{2 |X \intersect Y|}{|X| + |Y|}

    Parameters
    ----------
    y_true, y_pred : tensors
        The predicted and binary classification in an image

    """
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return ((2. * intersection + smooth) /
            (K.sum(y_true_f) + K.sum(y_pred_f) + smooth))
项目:ppap    作者:unique-horn    | 项目源码 | 文件源码
def setup_output(self, x):
    """
    Setup output tensor

    """
    x_max = K.max(x, axis=1)

    x_max = K.flatten(x_max)
    z = K.dot(x_max, self.w_proj_to_z) #+ self.b_proj_to_z
    hidden = K.dot(z, self.weights[0]) + self.biases[0]
    hidden = K.reshape(hidden, shape=(self.input_channels,
                                      self.hidden_dim))

    output = K.dot(hidden, self.weights[1]) + self.biases[1]

    self.output = K.reshape(output, (self.num_filters, self.input_channels,
                                     *self.output_shape))
    return self.output
项目:head-segmentation    作者:szywind    | 项目源码 | 文件源码
def run_length_encode(mask):
    '''
    img: numpy array, 1 - mask, 0 - background
    Returns run length as string formated
    '''
    inds = mask.flatten()
    runs = np.where(inds[1:] != inds[:-1])[0] + 2
    runs[1::2] = runs[1::2] - runs[:-1:2]
    rle = ' '.join([str(r) for r in runs])
    return rle


# def dice(im1, im2, empty_score=1.0):
#     im1 = im1.astype(np.bool)
#     im2 = im2.astype(np.bool)
#
#     if im1.shape != im2.shape:
#         raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
#
#     im_sum = im1.sum() + im2.sum()
#     if im_sum == 0:
#         return empty_score
#
#     intersection = np.logical_and(im1, im2)
#     return 2. * intersection.sum() / im_sum
项目:Keras-FCN    作者:aurora95    | 项目源码 | 文件源码
def softmax_sparse_crossentropy_ignoring_last_label(y_true, y_pred):
    y_pred = K.reshape(y_pred, (-1, K.int_shape(y_pred)[-1]))
    log_softmax = tf.nn.log_softmax(y_pred)

    y_true = K.one_hot(tf.to_int32(K.flatten(y_true)), K.int_shape(y_pred)[-1]+1)
    unpacked = tf.unstack(y_true, axis=-1)
    y_true = tf.stack(unpacked[:-1], axis=-1)

    cross_entropy = -K.sum(y_true * log_softmax, axis=1)
    cross_entropy_mean = K.mean(cross_entropy)

    return cross_entropy_mean


# Softmax cross-entropy loss function for coco segmentation
# and models which expect but do not apply sigmoid on each entry
# tensorlow only
项目:Cat-Segmentation    作者:ardamavi    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    smooth = 1.
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_pos_np(y_true, y_pred, pos = 0):
    y_true_f = y_true[:,pos].flatten()
    y_pred_f = y_pred[:,pos].flatten()
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)
    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef(y_true, y_pred):
    y_true_f = K.flatten(y_true)
    y_pred_f = K.flatten(y_pred)

    intersection = K.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
项目:kaggle_dsb2017    作者:astoc    | 项目源码 | 文件源码
def dice_coef_np(y_true, y_pred):
    y_true_f = y_true.flatten()
    y_pred_f = y_pred.flatten()
    y_pred_f [y_pred_f < DICE_LOW_LIMIT] = 0.
    y_pred_f [y_pred_f > 1- DICE_LOW_LIMIT] = 1.
    intersection = np.sum(y_true_f * y_pred_f)
    return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth)