Python keras.backend 模块,is_keras_tensor() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用keras.backend.is_keras_tensor()

项目:keras-contrib    作者:farizrahman4u    | 项目源码 | 文件源码
def test_jaccard_distance():
    # all_right, almost_right, half_right, all_wrong
    y_true = np.array([[0, 0, 1, 0], [0, 0, 1, 0], [0, 0, 1, 0],
                       [0, 0, 1., 0.]])
    y_pred = np.array([[0, 0, 1, 0], [0, 0, 0.9, 0], [0, 0, 0.1, 0],
                       [1, 1, 0.1, 1.]])

    r = jaccard_distance(
        K.variable(y_true),
        K.variable(y_pred), )
    if K.is_keras_tensor(r):
        assert K.int_shape(r) == (4, )

    all_right, almost_right, half_right, all_wrong = K.eval(r)
    assert all_right == 0, 'should converge on zero'
    assert all_right < almost_right
    assert almost_right < half_right
    assert half_right < all_wrong
项目:AerialCrackDetection_Keras    作者:TTMRonald    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Block 1
    x = Convolution2D(96, (7, 7), strides=(2, 2), activation='relu', padding='valid', name='block1_conv1')(img_input)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Convolution2D(256, (5, 5), strides=(2, 2), activation='relu', padding='same', name='block2_conv1')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Convolution2D(384, (3, 3), strides=(1, 1), activation='relu', padding='same', name='block3_conv1')(x)
    x = Convolution2D(384, (3, 3), strides=(1, 1), activation='relu', padding='same', name='block3_conv2')(x)
    x = Convolution2D(384, (3, 3), strides=(1, 1), activation='relu', padding='same', name='block3_conv3')(x)

    return x
项目:AerialCrackDetection_Keras    作者:TTMRonald    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)

    x = Convolution2D(64, (7, 7), strides=(2, 2), name='conv1', trainable = trainable)(x)
    x = FixedBatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)

    return x
项目:AerialCrackDetection_Keras    作者:TTMRonald    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    # Block 1
    x = Convolution2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
    x = Convolution2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Convolution2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
    x = Convolution2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
    x = Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
    x = Convolution2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Convolution2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)

    return x
项目:keras-frcnn    作者:yhenon    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):


    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    # Block 1
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv1')(img_input)
    x = Conv2D(64, (3, 3), activation='relu', padding='same', name='block1_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block1_pool')(x)

    # Block 2
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv1')(x)
    x = Conv2D(128, (3, 3), activation='relu', padding='same', name='block2_conv2')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block2_pool')(x)

    # Block 3
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv1')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv2')(x)
    x = Conv2D(256, (3, 3), activation='relu', padding='same', name='block3_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block3_pool')(x)

    # Block 4
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block4_conv3')(x)
    x = MaxPooling2D((2, 2), strides=(2, 2), name='block4_pool')(x)

    # Block 5
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv1')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv2')(x)
    x = Conv2D(512, (3, 3), activation='relu', padding='same', name='block5_conv3')(x)
    # x = MaxPooling2D((2, 2), strides=(2, 2), name='block5_pool')(x)

    return x
项目:keras-frcnn    作者:yhenon    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)

    x = Convolution2D(64, (7, 7), strides=(2, 2), name='conv1', trainable = trainable)(x)
    x = FixedBatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)

    return x
项目:EvadeML-Zoo    作者:mzweilin    | 项目源码 | 文件源码
def densenet_cifar10_model(logits=False, input_range_type=1, pre_filter=lambda x:x):
    assert input_range_type == 1

    batch_size = 64
    nb_classes = 10

    img_rows, img_cols = 32, 32
    img_channels = 3

    img_dim = (img_channels, img_rows, img_cols) if K.image_dim_ordering() == "th" else (img_rows, img_cols, img_channels)
    depth = 40
    nb_dense_block = 3
    growth_rate = 12
    nb_filter = 16
    dropout_rate = 0.0 # 0.0 for data augmentation
    input_tensor = None
    include_top=True

    if logits is True:
        activation = None
    else:
        activation = "softmax"

    # Determine proper input shape
    input_shape = _obtain_input_shape(img_dim,
                                      default_size=32,
                                      min_size=8,
                                      data_format=K.image_data_format(),
                                      include_top=include_top)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = __create_dense_net(nb_classes, img_input, True, depth, nb_dense_block,
                           growth_rate, nb_filter, -1, False, 0.0,
                           dropout_rate, 1E-4, activation)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = Model(inputs, x, name='densenet')
    return model


# Source: https://github.com/titu1994/DenseNet
项目:FasterRCNN_KERAS    作者:akshaylamba    | 项目源码 | 文件源码
def nn_base(input_tensor=None, trainable=False):

    # Determine proper input shape
    if K.image_dim_ordering() == 'th':
        input_shape = (3, None, None)
    else:
        input_shape = (None, None, 3)

    if input_tensor is None:
        img_input = Input(shape=input_shape)
    else:
        if not K.is_keras_tensor(input_tensor):
            img_input = Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if K.image_dim_ordering() == 'tf':
        bn_axis = 3
    else:
        bn_axis = 1

    x = ZeroPadding2D((3, 3))(img_input)

    x = Convolution2D(64, (7, 7), strides=(2, 2), name='conv1', trainable = trainable)(x)
    x = FixedBatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = Activation('relu')(x)
    x = MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1), trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b', trainable = trainable)
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c', trainable = trainable)

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c', trainable = trainable)
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d', trainable = trainable)

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e', trainable = trainable)
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f', trainable = trainable)

    return x