Python keras.backend 模块,cast_to_floatx() 实例源码

我们从Python开源项目中,提取了以下38个代码示例,用于说明如何使用keras.backend.cast_to_floatx()

项目:yoctol-keras-layer-zoo    作者:Yoctol    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = self.recurrent_layer.get_constants(
            inputs=inputs,
            training=training
        )

        if 0 < self.dense_dropout < 1:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.recurrent_layer.units))

            def dropped_inputs():
                return K.dropout(ones, self.dense_dropout)
            out_dp_mask = [K.in_train_phase(dropped_inputs,
                                            ones,
                                            training=training)]
            constants.append(out_dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.)])

        return constants
项目:recurrent-attention-for-QA-SQUAD-based-on-keras    作者:wentaozhu    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:recurrent-attention-for-QA-SQUAD-based-on-keras    作者:wentaozhu    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:recurrent-attention-for-QA-SQUAD-based-on-keras    作者:wentaozhu    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        '''if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:'''
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:recurrent-attention-for-QA-SQUAD-based-on-keras    作者:wentaozhu    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:State-Frequency-Memory-stock-prediction    作者:z331565360    | 项目源码 | 文件源码
def get_initial_states(self, x):

        init_state_h = K.zeros_like(x)
        init_state_h = K.sum(init_state_h, axis = 1)
        reducer_s = K.zeros((self.input_dim, self.hidden_dim))
        reducer_f = K.zeros((self.hidden_dim, self.freq_dim))
        reducer_p = K.zeros((self.hidden_dim, self.output_dim))
        init_state_h = K.dot(init_state_h, reducer_s)

        init_state_p = K.dot(init_state_h, reducer_p)

        init_state = K.zeros_like(init_state_h)
        init_freq = K.dot(init_state_h, reducer_f)

        init_state = K.reshape(init_state, (-1, self.hidden_dim, 1))
        init_freq = K.reshape(init_freq, (-1, 1, self.freq_dim))

        init_state_S_re = init_state * init_freq
        init_state_S_im = init_state * init_freq

        init_state_time = K.cast_to_floatx(0.)

        initial_states = [init_state_p, init_state_h, init_state_S_re, init_state_S_im, init_state_time]
        return initial_states
项目:State-Frequency-Memory-stock-prediction    作者:z331565360    | 项目源码 | 文件源码
def get_initial_states(self, x):

        init_state_h = K.zeros_like(x)
        init_state_h = K.sum(init_state_h, axis = 1)
        reducer_s = K.zeros((self.input_dim, self.hidden_dim))
        reducer_f = K.zeros((self.hidden_dim, self.freq_dim))
        reducer_p = K.zeros((self.hidden_dim, self.output_dim))
        init_state_h = K.dot(init_state_h, reducer_s)

        init_state_p = K.dot(init_state_h, reducer_p)

        init_state = K.zeros_like(init_state_h)
        init_freq = K.dot(init_state_h, reducer_f)

        init_state = K.reshape(init_state, (-1, self.hidden_dim, 1))
        init_freq = K.reshape(init_freq, (-1, 1, self.freq_dim))

        init_state_S_re = init_state * init_freq
        init_state_S_im = init_state * init_freq

        init_state_time = K.cast_to_floatx(0.)

        initial_states = [init_state_p, init_state_h, init_state_S_re, init_state_S_im, init_state_time]
        return initial_states
项目:NTM-Keras    作者:SigmaQuan    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
项目:EUNN-theano    作者:iguanaus    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
项目:keras-prednet    作者:kunimasa-kawasaki    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
项目:deep-models    作者:LaurentMazare    | 项目源码 | 文件源码
def get_constants(self, x):
    constants = []
    if 0 < self.dropout_U < 1:
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, self.output_dim))
      B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
      constants.append(B_U)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])

    if 0 < self.dropout_W < 1:
      input_shape = self.input_spec[0].shape
      input_dim = input_shape[-1]
      ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
      ones = K.tile(ones, (1, input_dim))
      B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
      constants.append(B_W)
    else:
      constants.append([K.cast_to_floatx(1.) for _ in range(3)])
    return constants
项目:KerasCog    作者:ABAtanasov    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.0))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.0))
        return constants
项目:urnn    作者:stwisdom    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
项目:New_Layers-Keras-Tensorflow    作者:WeidiXie    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
项目:New_Layers-Keras-Tensorflow    作者:WeidiXie    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))
        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants
项目:ikelos    作者:braingineer    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
项目:ikelos    作者:braingineer    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * self.output_dim, 1)
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(3)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.concatenate([ones] * input_dim, 1)
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(3)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:text_classification    作者:senochow    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(2)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(2)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(2)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(2)])
        return constants
项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.hidden_recurrent_dim))
            B_U = K.in_train_phase(K.dropout(ones, self.dropout_U), ones)
            constants.append(B_U)
        else:
            constants.append(K.cast_to_floatx(1.))

        if self.consume_less == 'cpu' and 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, input_dim))
            B_W = K.in_train_phase(K.dropout(ones, self.dropout_W), ones)
            constants.append(B_W)
        else:
            constants.append(K.cast_to_floatx(1.))

        return constants
项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.input_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = K.int_shape(x)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
项目:recurrent-attention-for-QA-SQUAD-based-on-keras    作者:wentaozhu    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        constants.append([K.cast_to_floatx(1.) for _ in range(3)])
        return constants
项目:nn_playground    作者:DingKe    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        if 0 < self.dropout < 1:
            input_shape = K.int_shape(inputs)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))

            def dropped_inputs():
                return K.dropout(ones, self.dropout)

            dp_mask = K.in_train_phase(dropped_inputs,
                                       ones,
                                       training=training)
            constants.append(dp_mask)
        else:
            constants.append(K.cast_to_floatx(1.))

        if 0 < self.recurrent_dropout < 1:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))

            def dropped_inputs():
                return K.dropout(ones, self.recurrent_dropout)
            rec_dp_mask = K.in_train_phase(dropped_inputs,
                                           ones,
                                           training=training)
            constants.append(rec_dp_mask)
        else:
            constants.append(K.cast_to_floatx(1.))
        return constants

# Aliases
项目:Keras-Multiplicative-LSTM    作者:titu1994    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        if self.implementation != 0 and 0 < self.dropout < 1:
            input_shape = K.int_shape(inputs)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))

            def dropped_inputs():
                return K.dropout(ones, self.dropout)

            dp_mask = [K.in_train_phase(dropped_inputs,
                                        ones,
                                        training=training) for _ in range(5)]
            constants.append(dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(5)])

        if 0 < self.recurrent_dropout < 1:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))

            def dropped_inputs():
                return K.dropout(ones, self.recurrent_dropout)
            rec_dp_mask = [K.in_train_phase(dropped_inputs,
                                            ones,
                                            training=training) for _ in range(5)]
            constants.append(rec_dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(5)])
        return constants
项目:deep-mil-for-whole-mammogram-classification    作者:wentaozhu    | 项目源码 | 文件源码
def __init__(self, l1=0., l2=0.,**kwargs):
        self.l1 = K.cast_to_floatx(l1)
        self.l2 = K.cast_to_floatx(l2)
        self.uses_learning_phase = True
        super(ActivityRegularizerOneDim, self).__init__(**kwargs)
        #self.layer = None
项目:deep-mil-for-whole-mammogram-classification    作者:wentaozhu    | 项目源码 | 文件源码
def __init__(self, l1=0., l2=0.,**kwargs):
        self.l1 = K.cast_to_floatx(l1)
        self.l2 = K.cast_to_floatx(l2)
        self.uses_learning_phase = True
        super(ActivityRegularizerOneDim, self).__init__(**kwargs)
        #self.layer = None
项目:State-Frequency-Memory-stock-prediction    作者:z331565360    | 项目源码 | 文件源码
def get_constants(self, x):
        constants = []
        constants.append([K.cast_to_floatx(1.) for _ in range(6)])
        constants.append([K.cast_to_floatx(1.) for _ in range(7)])
        array = np.array([float(ii)/self.freq_dim for ii in range(self.freq_dim)])
        constants.append([K.cast_to_floatx(array)])

        return constants
项目:keras-contrib    作者:farizrahman4u    | 项目源码 | 文件源码
def test_clip():
    clip_instance = constraints.clip()
    clipped = clip_instance(K.variable(example_array))
    assert(np.max(np.abs(K.eval(clipped))) <= K.cast_to_floatx(0.01))
    clip_instance = constraints.clip(0.1)
    clipped = clip_instance(K.variable(example_array))
    assert(np.max(np.abs(K.eval(clipped))) <= K.cast_to_floatx(0.1))
项目:NTM-Keras    作者:SigmaQuan    | 项目源码 | 文件源码
def get_constants(self, x):
        print("begin get_constants(self, x)")
        constants = []
        if 0 < self.dropout_U < 1:
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.controller_output_dim))
            B_U = [K.in_train_phase(K.dropout(ones, self.dropout_U), ones) for _ in range(4)]
            constants.append(B_U)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.dropout_W < 1:
            input_shape = self.input_spec[0].shape
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))
            B_W = [K.in_train_phase(K.dropout(ones, self.dropout_W), ones) for _ in range(4)]
            constants.append(B_W)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        # if 0 < self.dropout_R < 1:
        #     input_shape = self.input_spec[0].shape
        #     input_dim = input_shape[-1]
        #     ones = K.ones_like(K.reshape(x[:, 0, 0], (-1, 1)))
        #     ones = K.tile(ones, (1, int(input_dim)))
        #     B_R = [K.in_train_phase(K.dropout(ones, self.dropout_R), ones) for _ in range(4)]
        #     constants.append(B_R)
        # else:
        #     constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        print("end get_constants(self, x)")
        return constants
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def __init__(self, gamma=0., axis=1, division_idx=None):
        self.gamma = K.cast_to_floatx(gamma)
        self.axis = []
        self.axis.append(axis)
        self.division_idx = division_idx
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def __init__(self, gamma=1., lam=10., axis='last'):
        self.gamma = K.cast_to_floatx(gamma)
        self.lam = K.cast_to_floatx(lam)
        self.axis = axis
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def __init__(self, l1=0., l2=0., axis=0):
        self.l1 = K.cast_to_floatx(l1)
        self.l2 = K.cast_to_floatx(l2)
        self.axis = axis
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def __init__(self, l1=0., l2=0., axis=0):
        self.l1 = K.cast_to_floatx(l1)
        self.l2 = K.cast_to_floatx(l2)
        self.axis = []
        self.axis.append(axis)
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def __init__(self, TV=0., TV2=0., axes=[0, 1]):

        self.TV = K.cast_to_floatx(TV)
        self.TV2 = K.cast_to_floatx(TV2)
        self.axes = list(axes)
项目:rna_protein_binding    作者:wentaozhu    | 项目源码 | 文件源码
def __init__(self, l1=0., l2=0.,**kwargs):
        self.l1 = K.cast_to_floatx(l1)
        self.l2 = K.cast_to_floatx(l2)
        self.uses_learning_phase = True
        super(ActivityRegularizerOneDim, self).__init__(**kwargs)
        #self.layer = None
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def iou(x_true,y_true,w_true,h_true,x_pred,y_pred,w_pred,h_pred,t):
    xoffset = K.cast_to_floatx((np.tile(np.arange(side),side)))
    yoffset = K.cast_to_floatx((np.repeat(np.arange(side),side)))
    x = tf.select(t, K.sigmoid(x_pred), K.zeros_like(x_pred)) 
    y = tf.select(t, K.sigmoid(y_pred), K.zeros_like(y_pred))
    w = tf.select(t, K.sigmoid(w_pred), K.zeros_like(w_pred))
    h = tf.select(t, K.sigmoid(h_pred), K.zeros_like(h_pred))

    ow = overlap(x+xoffset, w*side, x_true+xoffset, w_true*side)
    oh = overlap(y+yoffset, h*side, y_true+yoffset, h_true*side)
    ow = tf.select(K.greater(ow,0), ow, K.zeros_like(ow))
    oh = tf.select(K.greater(oh,0), oh, K.zeros_like(oh))
    intersection = ow*oh
    union = w*h*(side**2) + w_true*h_true*(side**2) - intersection + K.epsilon()  # prevent div 0
    #
    recall_iou = intersection / union
    recall_t = K.greater(recall_iou, 0.5)
    recall_count = K.sum(tf.select(recall_t, K.ones_like(recall_iou), K.zeros_like(recall_iou)))
    #
    iou = K.sum(intersection / union, axis=1)
    obj_count = K.sum(tf.select(t, K.ones_like(x_true), K.zeros_like(x_true)) )
    ave_iou = K.sum(iou) / (obj_count)
    recall = recall_count / (obj_count)
    return ave_iou, recall, obj_count, intersection, union,ow,oh,x,y,w,h

# shape is (gridcells*(5+classes), )
项目:PhasedLSTM-Keras    作者:fferroni    | 项目源码 | 文件源码
def get_constants(self, inputs, training=None):
        constants = []
        if self.implementation == 0 and 0 < self.dropout < 1:
            input_shape = K.int_shape(inputs)
            input_dim = input_shape[-1]
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, int(input_dim)))

            def dropped_inputs():
                return K.dropout(ones, self.dropout)

            dp_mask = [K.in_train_phase(dropped_inputs,
                                        ones,
                                        training=training) for _ in range(4)]
            constants.append(dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])

        if 0 < self.recurrent_dropout < 1:
            ones = K.ones_like(K.reshape(inputs[:, 0, 0], (-1, 1)))
            ones = K.tile(ones, (1, self.units))

            def dropped_inputs():
                return K.dropout(ones, self.recurrent_dropout)
            rec_dp_mask = [K.in_train_phase(dropped_inputs,
                                            ones,
                                            training=training) for _ in range(4)]
            constants.append(rec_dp_mask)
        else:
            constants.append([K.cast_to_floatx(1.) for _ in range(4)])
        return constants
项目:State-Frequency-Memory-stock-prediction    作者:z331565360    | 项目源码 | 文件源码
def step(self, x, states):
        p_tm1 = states[0]
        h_tm1 = states[1]
        S_re_tm1 = states[2]
        S_im_tm1 = states[3]
        time_tm1 = states[4]
        B_U = states[5]
        B_W = states[6]
        frequency = states[7]

        x_i = K.dot(x * B_W[0], self.W_i) + self.b_i
        x_ste = K.dot(x * B_W[0], self.W_ste) + self.b_ste
        x_fre = K.dot(x * B_W[0], self.W_fre) + self.b_fre
        x_c = K.dot(x * B_W[0], self.W_c) + self.b_c
        x_o = K.dot(x * B_W[0], self.W_o) + self.b_o

        i = self.inner_activation(x_i + K.dot(h_tm1 * B_U[0], self.U_i))

        ste = self.inner_activation(x_ste + K.dot(h_tm1 * B_U[0], self.U_ste))
        fre = self.inner_activation(x_fre + K.dot(h_tm1 * B_U[0], self.U_fre))

        ste = K.reshape(ste, (-1, self.hidden_dim, 1))
        fre = K.reshape(fre, (-1, 1, self.freq_dim))
        f = ste * fre

        c = i * self.activation(x_c + K.dot(h_tm1 * B_U[0], self.U_c))

        time = time_tm1 + 1

        omega = K.cast_to_floatx(2*np.pi)* time * frequency
        re = T.cos(omega)
        im = T.sin(omega)

        c = K.reshape(c, (-1, self.hidden_dim, 1))

        S_re = f * S_re_tm1 + c * re
        S_im = f * S_im_tm1 + c * im

        A = K.square(S_re) + K.square(S_im)

        A = K.reshape(A, (-1, self.freq_dim))
        A_a = K.dot(A * B_U[0], self.U_a)
        A_a = K.reshape(A_a, (-1, self.hidden_dim))
        a = self.activation(A_a + self.b_a)

        o = self.inner_activation(x_o + K.dot(h_tm1 * B_U[0], self.U_o))

        h = o * a
        p = K.dot(h, self.W_p) + self.b_p

        return p, [p, h, S_re, S_im, time]
项目:State-Frequency-Memory-stock-prediction    作者:z331565360    | 项目源码 | 文件源码
def step(self, x, states):
        p_tm1 = states[0]
        h_tm1 = states[1]
        S_re_tm1 = states[2]
        S_im_tm1 = states[3]
        time_tm1 = states[4]
        B_U = states[5]
        B_W = states[6]
        frequency = states[7]

        x_i = K.dot(x * B_W[0], self.W_i) + self.b_i
        x_ste = K.dot(x * B_W[0], self.W_ste) + self.b_ste
        x_fre = K.dot(x * B_W[0], self.W_fre) + self.b_fre
        x_c = K.dot(x * B_W[0], self.W_c) + self.b_c
        x_o = K.dot(x * B_W[0], self.W_o) + self.b_o

        i = self.inner_activation(x_i + K.dot(h_tm1 * B_U[0], self.U_i))

        ste = self.inner_activation(x_ste + K.dot(h_tm1 * B_U[0], self.U_ste))
        fre = self.inner_activation(x_fre + K.dot(h_tm1 * B_U[0], self.U_fre))

        ste = K.reshape(ste, (-1, self.hidden_dim, 1))
        fre = K.reshape(fre, (-1, 1, self.freq_dim))
        f = ste * fre

        c = i * self.activation(x_c + K.dot(h_tm1 * B_U[0], self.U_c))

        time = time_tm1 + 1

        omega = K.cast_to_floatx(2*np.pi)* time * frequency
        re = T.cos(omega)
        im = T.sin(omega)

        c = K.reshape(c, (-1, self.hidden_dim, 1))

        S_re = f * S_re_tm1 + c * re
        S_im = f * S_im_tm1 + c * im

        A = K.square(S_re) + K.square(S_im)

        A = K.reshape(A, (-1, self.freq_dim))
        A_a = K.dot(A * B_U[0], self.U_a)
        A_a = K.reshape(A_a, (-1, self.hidden_dim))
        a = self.activation(A_a + self.b_a)

        o = self.inner_activation(x_o + K.dot(h_tm1 * B_U[0], self.U_o))

        h = o * a
        p = K.dot(h, self.W_p) + self.b_p

        return p, [p, h, S_re, S_im, time]