Python keras.backend 模块,update() 实例源码
我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用keras.backend.update()。
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
vs = [K.zeros(K.get_variable_shape(p)) for p in params]
self.weights = [self.iterations]+ vs
for p, g, v in zip(params, grads, vs):
v_t = v + K.square(g)
p_t = p - self.lr * g / (v_t + self.xi_2*K.exp(-self.xi_1*v_t) )
self.updates.append(K.update(v, v_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
t = self.iterations + 1
vs = [K.zeros(K.get_variable_shape(p)) for p in params]
self.weights = [self.iterations]+ vs
for p, g, v in zip(params, grads, vs):
v_t = (1-(self.gamma/t))*v + (self.gamma/t)*K.square(g)
p_t = p - self.lr * g / (t*v_t + self.xi_2*K.exp(-self.xi_1*t*v_t) )
self.updates.append(K.update(v, v_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
t = self.iterations + 1
vs = [K.zeros(K.get_variable_shape(p)) for p in params]
self.weights = [self.iterations]+ vs
for p, g, v in zip(params, grads, vs):
v_t = (1-(self.gamma/t))*v + (self.gamma/t)*K.square(g)
p_t = p - self.lr * g / (K.sqrt(t*v_t) + self.delta )
self.updates.append(K.update(v, v_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def __init__(self, lr=0.001, epsilon=1e-16, decay=0., **kwargs):
super(SMORMS3, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable(0)
self.lr = K.variable(lr)
self.decay = K.variable(decay)
self.initial_decay = decay
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.initial_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
shapes = [K.get_variable_shape(p) for p in params]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
mems = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs + mems
for p, g, m, v, mem in zip(params, grads, ms, vs, mems):
r = 1. / (1. + mem)
m_t = (1. - r) * m + r * g
v_t = (1. - r) * v + r * K.square(g)
denoise = K.square(m_t) / (v_t + self.epsilon)
p_t = p - g * K.minimum(lr, denoise) / (K.sqrt(v_t) + self.epsilon)
mem_t = 1. + mem * (1. - denoise)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
self.updates.append(K.update(mem, mem_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def __init__(self, epsilon=1e-8, **kwargs):
super(SSMORMS3, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable(0)
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
shapes = [K.get_variable_shape(p) for p in params]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
mems = [K.zeros(shape) for shape in shapes]
denoises = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs + mems + denoises
for p, g, m, v, mem, denoise in zip(params, grads, ms, vs, mems, denoises):
r = K.minimum(0.2, K.maximum(0.005, 1. / (1. + mem)))
mem_t = 1. / r - 1.
m_t = (1. - r) * m + r * g
v_t = (1. - r) * v + r * K.square(g)
denoise_t = 0.99 * denoise + 0.01 * K.square(m_t) / (v_t + self.epsilon)
p_t = p - g * denoise_t / (K.sqrt(v_t) + self.epsilon)
mem_t = K.maximum(0., 1. + mem_t * (1. - denoise_t))
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
self.updates.append(K.update(mem, mem_t))
self.updates.append(K.update(denoise, denoise_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def __init__(self, lr=0.001, beta_1=0.9, beta_2=0.999,
beta_3=0.999, small_k=0.1, big_K=10,
epsilon=1e-8, decay=0., **kwargs):
super(Eve, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable(0)
self.lr = K.variable(lr)
self.beta_1 = K.variable(beta_1)
self.beta_2 = K.variable(beta_2)
self.beta_3 = K.variable(beta_3)
self.small_k = K.variable(small_k)
self.big_K = K.variable(big_K)
self.decay = K.variable(decay)
self.inital_decay = decay
def __init__(self, lr=0.002, beta_1=0.9, beta_2=0.999,
epsilon=1e-8, schedule_decay=0.004, accum_iters=1, **kwargs):
super(NadamAccum, self).__init__(**kwargs)
self.__dict__.update(locals())
self.iterations = K.variable(0., name='iterations')
self.m_schedule = K.variable(1., name='m_schedule')
self.lr = K.variable(lr, name='lr')
self.beta_1 = K.variable(beta_1, name='beta_1')
self.beta_2 = K.variable(beta_2, name='beta_2')
self.schedule_decay = schedule_decay
self.epsilon = epsilon
self.accum_iters = K.variable(accum_iters, name='accum_iters')
def __init__(self, lr=0.001, rho=0.9, epsilon=1e-8, decay=0., lr_natGrad=None,
**kwargs):
super(RMSprop_and_natGrad, self).__init__(**kwargs)
self.__dict__.update(locals())
self.lr = K.variable(lr)
if lr_natGrad is None:
self.lr_natGrad = K.variable(lr)
else:
self.lr_natGrad = K.variable(lr_natGrad)
self.rho = K.variable(rho)
self.decay = K.variable(decay)
self.inital_decay = decay
self.iterations = K.variable(0.)
def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler):
ps = K.get_variable_shape(new_V_param)
norm_axes = [i for i in range(len(ps) - 1)]
# update W and V_scaler
new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes))
new_V_scaler = new_g_param / new_V_norm
new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param
updates.append(K.update(W, new_W))
updates.append(K.update(V_scaler, new_V_scaler))
# data based initialization for a given Keras model
def data_based_init(model, input):
# input can be dict, numpy array, or list of numpy arrays
if type(input) is dict:
feed_dict = input
elif type(input) is list:
feed_dict = {tf_inp: np_inp for tf_inp,np_inp in zip(model.inputs,input)}
else:
feed_dict = {model.inputs[0]: input}
# add learning phase if required
if model.uses_learning_phase and K.learning_phase() not in feed_dict:
feed_dict.update({K.learning_phase(): 1})
# get all layer name, output, weight, bias tuples
layer_output_weight_bias = []
for l in model.layers:
if hasattr(l, 'W') and hasattr(l, 'b'):
assert(l.built)
layer_output_weight_bias.append( (l.name,l.get_output_at(0),l.W,l.b) ) # if more than one node, only use the first
# iterate over our list and do data dependent init
sess = K.get_session()
for l,o,W,b in layer_output_weight_bias:
print('Performing data dependent initialization for layer ' + l)
m,v = tf.nn.moments(o, [i for i in range(len(o.get_shape())-1)])
s = tf.sqrt(v + 1e-10)
updates = tf.group(W.assign(W/tf.reshape(s,[1]*(len(W.get_shape())-1)+[-1])), b.assign((b-m)/s))
sess.run(updates, feed_dict)
def add_weightnorm_param_updates(updates, new_V_param, new_g_param, W, V_scaler):
ps = K.get_variable_shape(new_V_param)
norm_axes = [i for i in range(len(ps) - 1)]
# update W and V_scaler
new_V_norm = tf.sqrt(tf.reduce_sum(tf.square(new_V_param), norm_axes))
new_V_scaler = new_g_param / new_V_norm
new_W = tf.reshape(new_V_scaler, [1] * len(norm_axes) + [-1]) * new_V_param
updates.append(K.update(W, new_W))
updates.append(K.update(V_scaler, new_V_scaler))
# data based initialization for a given Keras model
def data_based_init(model, input):
# input can be dict, numpy array, or list of numpy arrays
if type(input) is dict:
feed_dict = input
elif type(input) is list:
feed_dict = {tf_inp: np_inp for tf_inp,np_inp in zip(model.inputs,input)}
else:
feed_dict = {model.inputs[0]: input}
# add learning phase if required
if model.uses_learning_phase and K.learning_phase() not in feed_dict:
feed_dict.update({K.learning_phase(): 1})
# get all layer name, output, weight, bias tuples
layer_output_weight_bias = []
for l in model.layers:
if hasattr(l, 'W') and hasattr(l, 'b'):
assert(l.built)
layer_output_weight_bias.append( (l.name,l.get_output_at(0),l.W,l.b) ) # if more than one node, only use the first
# iterate over our list and do data dependent init
sess = K.get_session()
for l,o,W,b in layer_output_weight_bias:
print('Performing data dependent initialization for layer ' + l)
m,v = tf.nn.moments(o, [i for i in range(len(o.get_shape())-1)])
s = tf.sqrt(v + 1e-10)
updates = tf.group(W.assign(W/tf.reshape(s,[1]*(len(W.get_shape())-1)+[-1])), b.assign((b-m)/s))
sess.run(updates, feed_dict)
def __init__(self, lr=0.001, rho=0.9, epsilon=1e-8, decay=0., lr_natGrad=None,
**kwargs):
super(RMSprop_and_natGrad, self).__init__(**kwargs)
self.__dict__.update(locals())
self.lr = K.variable(lr)
if lr_natGrad is None:
self.lr_natGrad = K.variable(lr)
else:
self.lr_natGrad = K.variable(lr_natGrad)
self.rho = K.variable(rho)
self.decay = K.variable(decay)
self.inital_decay = decay
self.iterations = K.variable(0.)
def build(self):
model = self.net.model
pi_model = self.net.pi_model
q_model = self.net.q_model
target_model = self.net.target_model
target_pi_model = self.net.target_pi_model
target_q_model = self.net.target_q_model
self.states = tf.placeholder(tf.float32, shape=(None, self.in_dim), name='states')
self.actions = tf.placeholder(tf.float32, shape=[None, self.action_dim], name='actions')
self.rewards = tf.placeholder(tf.float32, shape=[None], name='rewards')
self.next_states = tf.placeholder(tf.float32, shape=[None, self.in_dim], name='next_states')
# terminal contain only 0 or 1 it will work as masking
#self.terminals = tf.placeholder(tf.bool, shape=[None], name='terminals')
self.ys = tf.placeholder(tf.float32, shape=[None])
#y = tf.where(self.terminals, self.rewards, self.rewards + self.gamma * K.stop_gradient(K.sum(target_q_model(Concatenate()([target_model(self.next_states),
# target_pi_model(self.next_states)])), axis=-1)))
self.target_q = K.sum(target_q_model(Concatenate()([target_model(self.states), target_pi_model(self.states)])), axis=-1)
self.q = K.sum(q_model(Concatenate()([model(self.states), self.actions])), axis=-1)
self.q_loss = K.mean(K.square(self.ys-self.q))
self.mu = pi_model(self.states)
self.pi_loss = - K.mean(q_model(Concatenate()([model(self.states), self.mu])))
self.q_updater = self.q_optimizer.minimize(self.q_loss, var_list=self.net.var_q)
self.pi_updater = self.pi_opimizer.minimize(self.pi_loss, var_list=self.net.var_pi)
self.soft_updater = [K.update(t_p, t_p*(1-self.tau)+p*self.tau) for p, t_p in zip(self.net.var_all, self.net.var_target_all)]
self.sync = [K.update(t_p, p) for p, t_p in zip(self.net.var_all, self.net.var_target_all)]
self.sess.run(tf.global_variables_initializer())
self.built = True
def build(self):
model = self.net.model
mu_model = self.net.mu_model
log_std_model = self.net.log_std_model
q_model = self.net.q_model
target_model = self.net.target_model
target_mu_model = self.net.target_mu_model
target_log_std_model = self.net.target_log_std_model
target_q_model = self.net.target_q_model
self.states = tf.placeholder(tf.float32, shape=(None, self.in_dim), name='states')
self.actions = tf.placeholder(tf.float32, shape=[None, self.action_dim], name='actions')
self.rewards = tf.placeholder(tf.float32, shape=[None], name='rewards')
self.next_states = tf.placeholder(tf.float32, shape=[None, self.in_dim], name='next_states')
self.ys = tf.placeholder(tf.float32, shape=[None])
# There are other implementations about how can we take aciton.
# Taking next action version or using only mu version or searching action which maximize Q.
target_mu = target_mu_model(self.states)
target_log_std = target_log_std_model(self.states)
target_action = target_mu + K.random_normal(K.shape(target_mu), dtype=tf.float32) * K.exp(target_log_std)
self.target_q = K.sum(target_q_model(Concatenate()([target_model(self.states), target_action])), axis=-1)
self.q = K.sum(q_model(Concatenate()([model(self.states), self.actions])), axis=-1)
self.q_loss = K.mean(K.square(self.ys-self.q))
self.mu = mu_model(self.states)
self.log_std = log_std_model(self.states)
self.eta = (self.actions - self.mu) / K.exp(self.log_std)
inferred_action = self.mu + K.stop_gradient(self.eta) * K.exp(self.log_std)
self.pi_loss = - K.mean(q_model(Concatenate()([model(self.states), inferred_action])))
self.q_updater = self.q_optimizer.minimize(self.q_loss, var_list=self.net.var_q)
self.pi_updater = self.pi_opimizer.minimize(self.pi_loss, var_list=self.net.var_pi)
self.soft_updater = [K.update(t_p, t_p*(1-self.tau)+p*self.tau) for p, t_p in zip(self.net.var_all, self.net.var_target_all)]
self.sync = [K.update(t_p, p) for p, t_p in zip(self.net.var_all, self.net.var_target_all)]
self.sess.run(tf.global_variables_initializer())
self.built = True
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
lr = self.lr
if self.inital_decay > 0:
lr *= (1. / (1. + self.decay * self.iterations))
t = self.iterations + 1
lr_t = lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))
shapes = [K.get_variable_shape(p) for p in params]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
f = K.variable(0)
d = K.variable(1)
self.weights = [self.iterations] + ms + vs + [f, d]
cond = K.greater(t, K.variable(1))
small_delta_t = K.switch(K.greater(loss, f), self.small_k + 1, 1. / (self.big_K + 1))
big_delta_t = K.switch(K.greater(loss, f), self.big_K + 1, 1. / (self.small_k + 1))
c_t = K.minimum(K.maximum(small_delta_t, loss / (f + self.epsilon)), big_delta_t)
f_t = c_t * f
r_t = K.abs(f_t - f) / (K.minimum(f_t, f))
d_t = self.beta_3 * d + (1 - self.beta_3) * r_t
f_t = K.switch(cond, f_t, loss)
d_t = K.switch(cond, d_t, K.variable(1.))
self.updates.append(K.update(f, f_t))
self.updates.append(K.update(d, d_t))
for p, g, m, v in zip(params, grads, ms, vs):
m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
p_t = p - lr_t * m_t / (d_t * K.sqrt(v_t) + self.epsilon)
self.updates.append(K.update(m, m_t))
self.updates.append(K.update(v, v_t))
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, new_p))
return self.updates
def get_updates(self, params, constraints, loss):
grads = self.get_gradients(loss, params)
self.updates = [K.update_add(self.iterations, 1)]
t = (self.iterations + 1.)/self.accum_iters
accum_switch = K.cast(K.equal((self.iterations + 1.) % self.accum_iters, 0), dtype=K.floatx())
# Due to the recommendations in [2], i.e. warming momentum schedule
momentum_cache_t = self.beta_1 * (1. - 0.5 * (K.pow(0.96, t * self.schedule_decay)))
momentum_cache_t_1 = self.beta_1 * (1. - 0.5 * (K.pow(0.96, (t + 1) * self.schedule_decay)))
m_schedule_new = self.m_schedule * momentum_cache_t
m_schedule_next = self.m_schedule * momentum_cache_t * momentum_cache_t_1
self.updates.append((self.m_schedule, accum_switch*m_schedule_new + (1. - accum_switch)*self.m_schedule))
shapes = [x.shape for x in K.batch_get_value(params)]
ms = [K.zeros(shape) for shape in shapes]
vs = [K.zeros(shape) for shape in shapes]
gs = [K.zeros(shape) for shape in shapes]
self.weights = [self.iterations] + ms + vs
for p, gp, m, v, ga in zip(params, grads, ms, vs, gs):
g = (ga + gp)/self.accum_iters
# the following equations given in [1]
g_prime = g / (1. - m_schedule_new)
m_t = self.beta_1 * m + (1. - self.beta_1) * g
m_t_prime = m_t / (1. - m_schedule_next)
v_t = self.beta_2 * v + (1. - self.beta_2) * K.square(g)
v_t_prime = v_t / (1. - K.pow(self.beta_2, t))
m_t_bar = (1. - momentum_cache_t) * g_prime + momentum_cache_t_1 * m_t_prime
self.updates.append(K.update(m, (1. - accum_switch)*m + accum_switch*m_t))
self.updates.append(K.update(v, (1. - accum_switch)*v + accum_switch*v_t))
self.updates.append(K.update(ga, (1. - accum_switch)*(ga + gp)))
p_t = p - self.lr * m_t_bar / (K.sqrt(v_t_prime) + self.epsilon)
new_p = p_t
# apply constraints
if p in constraints:
c = constraints[p]
new_p = c(new_p)
self.updates.append(K.update(p, (1-accum_switch)*p + accum_switch*new_p))
return self.updates