我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用keras.backend.reverse()。
def call(self, x,mask=None): import theano.tensor as T newx = T.sort(x) #response = K.reverse(newx, axes=1) #response = K.sum(x> 0.5, axis=1) / self.k return newx #response = K.reshape(newx,[-1,1]) #return K.concatenate([1-response, response], axis=self.label) #response = K.reshape(x[:,self.axis], (-1,1)) #return K.concatenate([1-response, response], axis=self.axis) #e = K.exp(x - K.max(x, axis=self.axis, keepdims=True)) #s = K.sum(e, axis=self.axis, keepdims=True) #return e / s
def call(self, x,mask=None): newx = K.sort(x) #response = K.reverse(newx, axes=1) #response = K.sum(x> 0.5, axis=1) / self.k return K.concatenate([newx[:,:self.softmink], newx[:,newx.shape[1]-self.softmaxk:]], axis=-1) #response = K.reshape(newx,[-1,1]) #return K.concatenate([1-response, response], axis=self.label) #response = K.reshape(x[:,self.axis], (-1,1)) #return K.concatenate([1-response, response], axis=self.axis) #e = K.exp(x - K.max(x, axis=self.axis, keepdims=True)) #s = K.sum(e, axis=self.axis, keepdims=True) #return e / s
def _backward(gamma, mask): '''Backward recurrence of the linear chain crf.''' gamma = K.cast(gamma, 'int32') def _backward_step(gamma_t, states): y_tm1 = K.squeeze(states[0], 0) y_t = batch_gather(gamma_t, y_tm1) return y_t, [K.expand_dims(y_t, 0)] initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)] _, y_rev, _ = K.rnn(_backward_step, gamma, initial_states, go_backwards=True) y = K.reverse(y_rev, 1) if mask is not None: mask = K.cast(mask, dtype='int32') # mask output y *= mask # set masked values to -1 y += -(1 - mask) return y
def _backward(gamma, mask): '''Backward recurrence of the linear chain crf.''' gamma = K.cast(gamma, 'int32') def _backward_step(gamma_t, states): y_tm1 = K.squeeze(states[0], 0) y_t = KC.batch_gather(gamma_t, y_tm1) return y_t, [K.expand_dims(y_t, 0)] initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)] _, y_rev, _ = K.rnn(_backward_step, gamma, initial_states, go_backwards=True) y = K.reverse(y_rev, 1) if mask is not None: mask = K.cast(mask, dtype='int32') # mask output y *= mask # set masked values to -1 y += -(1 - mask) return y
def _backward(gamma, mask): """Backward recurrence of the linear chain crf.""" gamma = K.cast(gamma, 'int32') def _backward_step(gamma_t, states): y_tm1 = K.squeeze(states[0], 0) y_t = batch_gather(gamma_t, y_tm1) return y_t, [K.expand_dims(y_t, 0)] initial_states = [K.expand_dims(K.zeros_like(gamma[:, 0, 0]), 0)] _, y_rev, _ = K.rnn(_backward_step, gamma, initial_states, go_backwards=True) y = K.reverse(y_rev, 1) if mask is not None: mask = K.cast(mask, dtype='int32') # mask output y *= mask # set masked values to -1 y += -(1 - mask) return y
def viterbi_decoding(self, X, mask=None): input_energy = self.activation(K.dot(X, self.kernel) + self.bias) if self.use_boundary: input_energy = self.add_boundary_energy(input_energy, mask, self.left_boundary, self.right_boundary) argmin_tables = self.recursion(input_energy, mask, return_logZ=False) argmin_tables = K.cast(argmin_tables, 'int32') # backward to find best path, `initial_best_idx` can be any, as all elements in the last argmin_table are the same argmin_tables = K.reverse(argmin_tables, 1) initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])] # matrix instead of vector is required by tf `K.rnn` if K.backend() == 'theano': initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)] def gather_each_row(params, indices): n = K.shape(indices)[0] if K.backend() == 'theano': return params[K.T.arange(n), indices] else: indices = K.transpose(K.stack([K.tf.range(n), indices])) return K.tf.gather_nd(params, indices) def find_path(argmin_table, best_idx): next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0]) next_best_idx = K.expand_dims(next_best_idx) if K.backend() == 'theano': next_best_idx = K.T.unbroadcast(next_best_idx, 1) return next_best_idx, [next_best_idx] _, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx, input_length=K.int_shape(X)[1], unroll=self.unroll) best_paths = K.reverse(best_paths, 1) best_paths = K.squeeze(best_paths, 2) return K.one_hot(best_paths, self.units)
def recursion(self, input_energy, mask=None, go_backwards=False, return_sequences=True, return_logZ=True, input_length=None): """Forward (alpha) or backward (beta) recursion If `return_logZ = True`, compute the logZ, the normalization constance: \[ Z = \sum_{y1, y2, y3} exp(-E) # energy = \sum_{y1, y2, y3} exp(-(u1' y1 + y1' W y2 + u2' y2 + y2' W y3 + u3' y3)) = sum_{y2, y3} (exp(-(u2' y2 + y2' W y3 + u3' y3)) sum_{y1} exp(-(u1' y1' + y1' W y2))) \] Denote: \[ S(y2) := sum_{y1} exp(-(u1' y1 + y1' W y2)), \] \[ Z = sum_{y2, y3} exp(log S(y2) - (u2' y2 + y2' W y3 + u3' y3)) \] \[ logS(y2) = log S(y2) = log_sum_exp(-(u1' y1' + y1' W y2)) \] Note that: yi's are one-hot vectors u1, u3: boundary energies have been merged If `return_logZ = False`, compute the Viterbi's best path lookup table. """ chain_energy = self.chain_kernel chain_energy = K.expand_dims(chain_energy, 0) # shape=(1, F, F): F=num of output features. 1st F is for t-1, 2nd F for t prev_target_val = K.zeros_like(input_energy[:, 0, :]) # shape=(B, F), dtype=float32 if go_backwards: input_energy = K.reverse(input_energy, 1) if mask is not None: mask = K.reverse(mask, 1) initial_states = [prev_target_val, K.zeros_like(prev_target_val[:, :1])] constants = [chain_energy] if mask is not None: mask2 = K.cast(K.concatenate([mask, K.zeros_like(mask[:, :1])], axis=1), K.floatx()) constants.append(mask2) def _step(input_energy_i, states): return self.step(input_energy_i, states, return_logZ) target_val_last, target_val_seq, _ = K.rnn(_step, input_energy, initial_states, constants=constants, input_length=input_length, unroll=self.unroll) if return_sequences: if go_backwards: target_val_seq = K.reverse(target_val_seq, 1) return target_val_seq else: return target_val_last