Python keras.backend 模块,random_binomial() 实例源码

我们从Python开源项目中,提取了以下8个代码示例,用于说明如何使用keras.backend.random_binomial()

项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def call(self, x, mask=None):
        if self.mode == 'maximum_likelihood':
            # draw maximum likelihood sample from Bernoulli distribution
            #    x* = argmax_x p(x) = 1         if p(x=1) >= 0.5
            #                         0         otherwise
            return K.round(x)
        elif self.mode == 'random':
            # draw random sample from Bernoulli distribution
            #    x* = x ~ p(x) = 1              if p(x=1) > uniform(0, 1)
            #                    0              otherwise
            #return self.srng.binomial(size=x.shape, n=1, p=x, dtype=K.floatx())
            return K.random_binomial(x.shape, p=x, dtype=K.floatx())
        elif self.mode == 'mean_field':
            # draw mean-field approximation sample from Bernoulli distribution
            #    x* = E[p(x)] = E[Bern(x; p)] = p
            return x
        elif self.mode == 'nrlu':
            return nrlu(x)
        else:
            raise NotImplementedError('Unknown sample mode!')
项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def sample_h_given_x(self, x):
        h_pre = K.dot(x, self.Wrbm) + self.bh   
        h_sigm = self.activation(self.scaling_h_given_x * h_pre)

        # drop out noise
        #if(0.0 < self.p < 1.0):
        #   noise_shape = self._get_noise_shape(h_sigm)
        #   h_sigm = K.in_train_phase(K.dropout(h_sigm, self.p, noise_shape), h_sigm)

        if(self.hidden_unit_type == 'binary'):
            h_samp = K.random_binomial(shape=h_sigm.shape, p=h_sigm)
            # random sample
            #   \hat{h} = 1,      if p(h=1|x) > uniform(0, 1)
            #             0,      otherwise
        elif(self.hidden_unit_type == 'nrlu'):
            h_samp = nrlu(h_pre)
        else:
            h_samp = h_sigm

        if(0.0 < self.p < 1.0):
            noise_shape = self._get_noise_shape(h_samp)
            h_samp = K.in_train_phase(K.dropout(h_samp, self.p, noise_shape), h_samp)

        return h_samp, h_pre, h_sigm
项目:keras-fractalnet    作者:snf    | 项目源码 | 文件源码
def _random_arr(self, count, p):
        return K.random_binomial((count,), p=p)
项目:keras-fractalnet    作者:snf    | 项目源码 | 文件源码
def _build_global_switch(self):
        # A randomly sampled tensor that will signal if the batch
        # should use global or local droppath
        return K.equal(K.random_binomial((), p=self.global_p, seed=self.switch_seed), 1.)
项目:VASC    作者:wang-research    | 项目源码 | 文件源码
def call(self, inputs, training=None):
        def noised():
            return inputs * K.random_binomial(shape=K.shape(inputs),
                                              p=self.ratio
                                              )
        return K.in_train_phase(noised, inputs, training=training)
项目:keras_bn_library    作者:bnsnapper    | 项目源码 | 文件源码
def sample_x_given_h(self, h):
        x_pre = K.dot(h, self.Wrbm.T) + self.bx 

        if(self.visible_unit_type == 'gaussian'):
            x_samp = self.scaling_x_given_h  * x_pre
            return x_samp, x_samp, x_samp
        else:       
            x_sigm = K.sigmoid(self.scaling_x_given_h  * x_pre)             
            x_samp = K.random_binomial(shape=x_sigm.shape, p=x_sigm)
            return x_samp, x_pre, x_sigm
项目:DeepIV    作者:jhartford    | 项目源码 | 文件源码
def _get_sampler_by_string(self, loss):
        output = self.outputs[0]
        inputs = self.inputs

        if loss in ["MSE", "mse", "mean_squared_error"]:
            output += samplers.random_normal(K.shape(output), mean=0.0, std=1.0)
            draw_sample = K.function(inputs + [K.learning_phase()], [output])

            def sample_gaussian(inputs, use_dropout=False):
                '''
                Helper to draw samples from a gaussian distribution
                '''
                return draw_sample(inputs + [int(use_dropout)])[0]

            return sample_gaussian

        elif loss == "binary_crossentropy":
            output = K.random_binomial(K.shape(output), p=output)
            draw_sample = K.function(inputs + [K.learning_phase()], [output])

            def sample_binomial(inputs, use_dropout=False):
                '''
                Helper to draw samples from a binomial distribution
                '''
                return draw_sample(inputs + [int(use_dropout)])[0]

            return sample_binomial

        elif loss in ["mean_absolute_error", "mae", "MAE"]:
            output += samplers.random_laplace(K.shape(output), mu=0.0, b=1.0)
            draw_sample = K.function(inputs + [K.learning_phase()], [output])
            def sample_laplace(inputs, use_dropout=False):
                '''
                Helper to draw samples from a Laplacian distribution
                '''
                return draw_sample(inputs + [int(use_dropout)])[0]

            return sample_laplace

        elif loss == "mixture_of_gaussians":
            pi, mu, log_sig = densities.split_mixture_of_gaussians(output, self.n_components)
            samples = samplers.random_gmm(pi, mu, K.exp(log_sig))
            draw_sample = K.function(inputs + [K.learning_phase()], [samples])
            return lambda inputs, use_dropout: draw_sample(inputs + [int(use_dropout)])[0]

        else:
            raise NotImplementedError("Unrecognised loss: %s.\
                                       Cannot build a generic sampler" % loss)
项目:ikelos    作者:braingineer    | 项目源码 | 文件源码
def call(self, x, mask=None):
        if isinstance(x, list): 
            x,_ = x
        if mask is not None and isinstance(mask, list):
            mask,_ = mask
        if 0. < self.dropout < 1.:
            retain_p = 1. - self.dropout
            dims = self.W._keras_shape[:-1]
            B = K.random_binomial(dims, p=retain_p) * (1. / retain_p)
            B = K.expand_dims(B)
            W = K.in_train_phase(self.W * B, self.W)
        else:
            W = self.W

        if self.mode == 'matrix':
            return K.gather(W,x)
        elif self.mode == 'tensor':
            # quick and dirty: only allowing for 3dim inputs when it's tensor mode
            assert K.ndim(x) == 3
            # put sequence on first; gather; take diagonal across shared batch dimension
            # in other words, W is (B, S, F)
            # incoming x is (B, S, A)
            inds = K.arange(self.W._keras_shape[0])
            #out = K.gather(K.permute_dimensions(W, (1,0,2)), x).diagonal(axis1=0, axis2=3)
            #return K.permute_dimensions(out, (3,0,1,2))
            ### method above doesn't do grads =.=
            # tensor abc goes to bac, indexed onto with xyz, goes to xyzac, 
            # x == a, so shape to xayzc == xxyzc
            # take diagonal on first two: xyzc 
            #out = K.colgather()
            out = K.gather(K.permute_dimensions(W, (1,0,2)), x) 
            out = K.permute_dimensions(out, (0,3,1,2,4))
            out = K.gather(out, (inds, inds))
            return out
        else:
            raise Exception('sanity check. should not be here.')

        #all_dims = T.arange(len(self.W._keras_shape))
        #first_shuffle = [all_dims[self.embed_dim]] + all_dims[:self.embed_dim] + all_dims[self.embed_dim+1:]
        ## 1. take diagonal from 0th to
        ## chang eof tactics
        ## embed on time or embed on batch. that's all I'm supporting.  
        ## if it's embed on time, then, x.ndim+1 is where batch will be, and is what
        ## i need to take the diagonal over. 
        ## now dim shuffle the xdims + 1 to the front.
        #todo: get second shuffle or maybe find diagonal calculations
        #out = K.gather(W, x)
        #return out

        ### reference
        #A = S(np.arange(60).reshape(3,4,5))
        #x = S(np.random.randint(0, 4, (3,4,10)))
        #x_emb = A.dimshuffle(1,0,2)[x].dimshuffle(0,3,1,2,4)[T.arange(A.shape[0]), T.arange(A.shape[0])]