Python keras.backend 模块,greater() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用keras.backend.greater()

项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def yoloclassloss(y_true, y_pred, t):
        lo = K.square(y_true-y_pred)
        value_if_true = lamda_class*(lo)
        value_if_false = K.zeros_like(y_true)
        loss1 = tf.select(t, value_if_true, value_if_false)
    # only extract predicted class value at obj location
    cat = K.sum(tf.select(t, y_pred, K.zeros_like(y_pred)), axis=1)
    # check valid class value
    objsum = K.sum(y_true, axis=1)
    # if objsum > 0.5 , means it contain some valid obj(may be 1,2.. objs)
    isobj = K.greater(objsum, 0.5)
    # only extract class value at obj location
    valid_cat = tf.select(isobj, cat, K.zeros_like(cat))
    # prevent div 0
    ave_cat = tf.select(K.greater(K.sum(objsum),0.5), K.sum(valid_cat) / K.sum(objsum) , -1)
    return K.mean(loss1), ave_cat
项目:onto-lstm    作者:pdasigi    | 项目源码 | 文件源码
def get_split_averages(input_tensor, input_mask, indices):
        # Splits input tensor into three parts based on the indices and
        # returns average of values prior to index, values at the index and
        # average of values after the index.
        # input_tensor: (batch_size, input_length, input_dim)
        # input_mask: (batch_size, input_length)
        # indices: (batch_size, 1)
        # (1, input_length)
        length_range = K.expand_dims(K.arange(K.shape(input_tensor)[1]), dim=0)
        # (batch_size, input_length)
        batched_range = K.repeat_elements(length_range, K.shape(input_tensor)[0], 0)
        tiled_indices = K.repeat_elements(indices, K.shape(input_tensor)[1], 1)  # (batch_size, input_length)
        greater_mask = K.greater(batched_range, tiled_indices)  # (batch_size, input_length)
        lesser_mask = K.lesser(batched_range, tiled_indices)  # (batch_size, input_length)
        equal_mask = K.equal(batched_range, tiled_indices)  # (batch_size, input_length)

        # We also need to mask these masks using the input mask.
        # (batch_size, input_length)
        if input_mask is not None:
            greater_mask = switch(input_mask, greater_mask, K.zeros_like(greater_mask))
            lesser_mask = switch(input_mask, lesser_mask, K.zeros_like(lesser_mask))

        post_sum = K.sum(switch(K.expand_dims(greater_mask), input_tensor, K.zeros_like(input_tensor)), axis=1)  # (batch_size, input_dim)
        pre_sum = K.sum(switch(K.expand_dims(lesser_mask), input_tensor, K.zeros_like(input_tensor)), axis=1)  # (batch_size, input_dim)
        values_at_indices = K.sum(switch(K.expand_dims(equal_mask), input_tensor, K.zeros_like(input_tensor)), axis=1)  # (batch_size, input_dim)

        post_normalizer = K.expand_dims(K.sum(greater_mask, axis=1) + K.epsilon(), dim=1)  # (batch_size, 1)
        pre_normalizer = K.expand_dims(K.sum(lesser_mask, axis=1) + K.epsilon(), dim=1)  # (batch_size, 1)

        return K.cast(pre_sum / pre_normalizer, 'float32'), values_at_indices, K.cast(post_sum / post_normalizer, 'float32')
项目:neural-segmentation    作者:melsner    | 项目源码 | 文件源码
def masked_categorical_accuracy(y_true, y_pred):
    mask = K.cast(K.expand_dims(K.greater(K.argmax(y_true, axis=-1), 0), axis=-1), 'float32')
    accuracy = K.cast(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)), 'float32')
    accuracy *= K.squeeze(mask, -1)
    ## Normalize by number of real segments, using a small non-zero denominator in cases of padding characters
    ## in order to avoid division by zero
    #accuracy /= (K.mean(mask) + (1e-10*(1-K.mean(mask))))
    return accuracy
项目:cyclegan_keras    作者:shadySource    | 项目源码 | 文件源码
def discriminator_loss(y_true, y_pred):
    loss = mean_squared_error(y_true, y_pred)
    is_large = k.greater(loss, k.constant(_disc_train_thresh)) # threshold
    is_large = k.cast(is_large, k.floatx())
    return loss * is_large # binary threshold the loss to prevent overtraining the discriminator
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def yoloclassloss(y_true, y_pred, t):
    #real_y_true = tf.select(t, y_true, K.zeros_like(y_true))
        lo = K.square(y_true-y_pred)
        value_if_true = lamda_class*(lo)
        value_if_false = K.zeros_like(y_true)
    tlist =[]
    for i in range(classes):
        tlist.append(t)
    tt = K.concatenate(tlist,1)
        loss1 = tf.select(tt, value_if_true, value_if_false)


    ## only extract predicted class value at obj location
    #nouse_cat = K.sum(tf.select(t, y_pred, K.zeros_like(y_pred)), axis=1)
    ## check valid class value
    #nouse_objsum = K.sum(y_true, axis=1)
    ## if objsum > 0.5 , means it contain some valid obj(may be 1,2.. objs)
    #nouse_isobj = K.greater(objsum, 0.5)
    ## only extract class value at obj location
    #nouse_valid_cat = tf.select(isobj, cat, K.zeros_like(cat))
    ## prevent div 0
    #nouse_ave_cat = tf.select(K.greater(K.sum(objsum),0.5), K.sum(valid_cat) / K.sum(objsum) , -1)

    t_y_true = K.greater(y_true, 0.5)
    cat = K.sum(tf.select(t_y_true, y_pred, K.zeros_like(y_pred)))
    objsum = K.sum(y_true)
    return K.sum(loss1)/(objsum+0.0000001), cat/(objsum+0.0000001), loss1, lo
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def overlap(x1, w1, x2, w2):
        l1 = (x1) - w1/2
        l2 = (x2) - w2/2
        left = tf.select(K.greater(l1,l2), l1, l2)
        r1 = (x1) + w1/2
        r2 = (x2) + w2/2
        right = tf.select(K.greater(r1,r2), r2, r1)
        result = right - left
    return result
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def limit(x):
    y = tf.select(K.greater(x,100000), 1000000.*K.ones_like(x), x)
    z = tf.select(K.lesser(y,-100000), -1000000.*K.ones_like(x), y)
    return z
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def overlap(x1, w1, x2, w2):
        l1 = (x1) - w1/2
        l2 = (x2) - w2/2
        left = tf.select(K.greater(l1,l2), l1, l2)
        r1 = (x1) + w1/2
        r2 = (x2) + w2/2
        right = tf.select(K.greater(r1,r2), r2, r1)
        result = right - left
    return result
项目:VGG    作者:jackfan00    | 项目源码 | 文件源码
def limit(x):
    y = tf.select(K.greater(x,100000), 1000000.*K.ones_like(x), x)
    z = tf.select(K.lesser(y,-100000), -1000000.*K.ones_like(x), y)
    return z
项目:kfs    作者:the-moliver    | 项目源码 | 文件源码
def get_updates(self, params, constraints, loss):
        grads = self.get_gradients(loss, params)
        self.updates = [K.update_add(self.iterations, 1)]

        lr = self.lr
        if self.inital_decay > 0:
            lr *= (1. / (1. + self.decay * self.iterations))

        t = self.iterations + 1
        lr_t = lr * K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))

        shapes = [K.get_variable_shape(p) for p in params]
        ms = [K.zeros(shape) for shape in shapes]
        vs = [K.zeros(shape) for shape in shapes]
        f = K.variable(0)
        d = K.variable(1)
        self.weights = [self.iterations] + ms + vs + [f, d]

        cond = K.greater(t, K.variable(1))
        small_delta_t = K.switch(K.greater(loss, f), self.small_k + 1, 1. / (self.big_K + 1))
        big_delta_t = K.switch(K.greater(loss, f), self.big_K + 1, 1. / (self.small_k + 1))

        c_t = K.minimum(K.maximum(small_delta_t, loss / (f + self.epsilon)), big_delta_t)
        f_t = c_t * f
        r_t = K.abs(f_t - f) / (K.minimum(f_t, f))
        d_t = self.beta_3 * d + (1 - self.beta_3) * r_t

        f_t = K.switch(cond, f_t, loss)
        d_t = K.switch(cond, d_t, K.variable(1.))

        self.updates.append(K.update(f, f_t))
        self.updates.append(K.update(d, d_t))

        for p, g, m, v in zip(params, grads, ms, vs):
            m_t = (self.beta_1 * m) + (1. - self.beta_1) * g
            v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g)
            p_t = p - lr_t * m_t / (d_t * K.sqrt(v_t) + self.epsilon)

            self.updates.append(K.update(m, m_t))
            self.updates.append(K.update(v, v_t))

            new_p = p_t
            # apply constraints
            if p in constraints:
                c = constraints[p]
                new_p = c(new_p)
            self.updates.append(K.update(p, new_p))
        return self.updates