Python keras.backend 模块,std() 实例源码

我们从Python开源项目中,提取了以下12个代码示例,用于说明如何使用keras.backend.std()

项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#may be wrong
    """structural similarity measurement system."""
    K1 = 0.04
    K2 = 0.06
    ## mean, std, correlation
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    ## L, number of pixels, C1, C2, two constants
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#may be wrong
    """structural similarity measurement system."""
    K1 = 0.04
    K2 = 0.06
    ## mean, std, correlation
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    ## L, number of pixels, C1, C2, two constants
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#may be wrong
    """structural similarity measurement system."""
    K1 = 0.04
    K2 = 0.06
    ## mean, std, correlation
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    ## L, number of pixels, C1, C2, two constants
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:srcnn    作者:qobilidop    | 项目源码 | 文件源码
def ssim(y_true, y_pred):
    """structural similarity measurement system."""
    ## K1, K2 are two constants, much smaller than 1
    K1 = 0.04
    K2 = 0.06

    ## mean, std, correlation
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)

    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5

    ## L, number of pixels, C1, C2, two constants
    L =  33
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2

    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#may be wrong
    K1 = 0.04
    K2 = 0.06
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#this fuction may be error!
    K1 = 0.04
    K2 = 0.06
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    ## L, number of pixels, C1, C2, two constants
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:Multi-views-fusion    作者:luogongning    | 项目源码 | 文件源码
def center_normalize(x):
    """
    Custom activation for online sample-wise center and std. normalization
    """
    return (x - K.mean(x)) / K.std(x)
项目:Multi-views-fusion    作者:luogongning    | 项目源码 | 文件源码
def center_normalize(x):
    """
    Custom activation for online sample-wise center and std. normalization
    """
    return (x - K.mean(x)) / K.std(x)
项目:New_Layers-Keras-Tensorflow    作者:WeidiXie    | 项目源码 | 文件源码
def call(self, x, mask=None):
        input_1, input_2 = x
        stride_row, stride_col = self.subsample
        inp_shape = input_1._keras_shape
        output_shape = self.get_output_shape_for([inp_shape, inp_shape])
        output_row = inp_shape[1] - self.kernel_size + 1
        output_col = inp_shape[2] - self.kernel_size + 1
        xc_1 = []
        xc_2 = []
        for i in range(output_row):
            for j in range(output_col):
                slice_row = slice(i, i + self.kernel_size)
                slice_col = slice(j, j + self.kernel_size)
                xc_2.append(K.reshape(input_2[:, slice_row, slice_col, :],
                                      (-1, 1, self.kernel_size**2*inp_shape[-1])))
                if i % stride_row == 0 and j % stride_col == 0:
                    xc_1.append(K.reshape(input_1[:, slice_row, slice_col, :],
                                          (-1, 1, self.kernel_size**2*inp_shape[-1])))

        xc_1_aggregate = K.concatenate(xc_1, axis=1) # batch_size x w'h' x (k**2*d), w': w/subsample-1
        xc_1_mean = K.mean(xc_1_aggregate, axis=-1, keepdims=True)
        xc_1_std = K.std(xc_1_aggregate, axis=-1, keepdims=True)
        xc_1_aggregate = (xc_1_aggregate - xc_1_mean) / xc_1_std

        xc_2_aggregate = K.concatenate(xc_2, axis=1) # batch_size x wh x (k**2*d), w: output_row
        xc_2_mean = K.mean(xc_2_aggregate, axis=-1, keepdims=True)
        xc_2_std = K.std(xc_2_aggregate, axis=-1, keepdims=True)
        xc_2_aggregate = (xc_2_aggregate - xc_2_mean) / xc_2_std
        xc_1_aggregate = K.permute_dimensions(xc_1_aggregate, (0, 2, 1))
        output = K.batch_dot(xc_2_aggregate, xc_1_aggregate)    # batch_size x wh x w'h'
        output = K.reshape(output, (-1, output_row, output_col, output_shape[-1]))
        output = self.activation(output)
        return output
项目:kapre    作者:keunwoochoi    | 项目源码 | 文件源码
def call(self, x, mask=None):
        if self.axis == -1:
            mean = K.mean(x, axis=[3, 2, 1, 0], keepdims=True)
            std = K.std(x, axis=[3, 2, 1, 0], keepdims=True)
        elif self.axis in (0, 1, 2, 3):
            all_dims = [0, 1, 2, 3]
            del all_dims[self.axis]
            mean = K.mean(x, axis=all_dims, keepdims=True)
            std = K.std(x, axis=all_dims, keepdims=True)
        return (x - mean) / (std + self.eps)
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def ssim(y_true, y_pred):#may be wrong
    K1 = 0.04
    K2 = 0.06
    mu_x = K.mean(y_pred)
    mu_y = K.mean(y_true)
    sig_x = K.std(y_pred)
    sig_y = K.std(y_true)
    sig_xy = (sig_x * sig_y) ** 0.5
    L =  255
    C1 = (K1 * L) ** 2
    C2 = (K2 * L) ** 2
    ssim = (2 * mu_x * mu_y + C1) * (2 * sig_xy * C2) * 1.0 / ((mu_x ** 2 + mu_y ** 2 + C1) * (sig_x ** 2 + sig_y ** 2 + C2))
    return ssim
项目:New_Layers-Keras-Tensorflow    作者:WeidiXie    | 项目源码 | 文件源码
def step(self, x, states):
        prev_output = states[0]
        B_U = states[1]
        B_W = states[2]

        if self.consume_less == 'gpu':
            h = K.dot(x * B_W, self.W) + self.b
        else:
            h = x
        out = h + K.dot(prev_output * B_U, self.U)
        mean = K.mean(out, axis=-1, keepdims=True)
        std = K.std(out, axis=-1, keepdims=True)
        output_normed = self.activation((out - mean) / (std + self.epsilon))
        output = self.gamma * output_normed + self.beta
        return output, [output]