Python keras.layers.advanced_activations 模块,LeakyReLU() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用keras.layers.advanced_activations.LeakyReLU()

项目:keras-contrib    作者:farizrahman4u    | 项目源码 | 文件源码
def make_generator():
    """Creates a generator model that takes a 100-dimensional noise vector as a "seed", and outputs images
    of size 28x28x1."""
    model = Sequential()
    model.add(Dense(1024, input_dim=100))
    model.add(LeakyReLU())
    model.add(Dense(128 * 7 * 7))
    model.add(BatchNormalization())
    model.add(LeakyReLU())
    if K.image_data_format() == 'channels_first':
        model.add(Reshape((128, 7, 7), input_shape=(128 * 7 * 7,)))
        bn_axis = 1
    else:
        model.add(Reshape((7, 7, 128), input_shape=(128 * 7 * 7,)))
        bn_axis = -1
    model.add(Conv2DTranspose(128, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Convolution2D(64, (5, 5), padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    model.add(Conv2DTranspose(64, (5, 5), strides=2, padding='same'))
    model.add(BatchNormalization(axis=bn_axis))
    model.add(LeakyReLU())
    # Because we normalized training inputs to lie in the range [-1, 1],
    # the tanh function should be used for the output of the generator to ensure its output
    # also lies in this range.
    model.add(Convolution2D(1, (5, 5), padding='same', activation='tanh'))
    return model
项目:GlottGAN    作者:bajibabu    | 项目源码 | 文件源码
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
    # Merge noise and auxilary inputs
    gen_input = Input(shape=(noise_dim,), name="noise_input")
    aux_input = Input(shape=(aux_dim,), name="auxilary_input")
    x = concatenate([gen_input, aux_input], axis=-1)

    # Dense Layer 1
    x = Dense(10 * 100)(x) 
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x) # output shape is 10*100

    # Reshape the tensors to support CNNs
    x = Reshape((100, 10))(x) # shape is 100 x 10

    # Conv Layer 1
    x = Conv1D(filters=250, kernel_size=13, padding='same')(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x) # output shape is 100 x 250
    x = UpSampling1D(size=2)(x) # output shape is 200 x 250

    # Conv Layer 2
    x = Conv1D(filters=100, kernel_size=13, padding='same')(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x) # output shape is 200 x 100
    x = UpSampling1D(size=2)(x) # output shape is 400 x 100

    # Conv Layer 3
    x = Conv1D(filters=1, kernel_size=13, padding='same')(x)
    x = BatchNormalization()(x)
    x = Activation('tanh')(x) # final output shape is 400 x 1

    generator_model = Model(
        outputs=[x], inputs=[gen_input, aux_input], name=model_name)

    return generator_model
项目:keras-contrib    作者:farizrahman4u    | 项目源码 | 文件源码
def make_discriminator():
    """Creates a discriminator model that takes an image as input and outputs a single value, representing whether
    the input is real or generated. Unlike normal GANs, the output is not sigmoid and does not represent a probability!
    Instead, the output should be as large and negative as possible for generated inputs and as large and positive
    as possible for real inputs.

    Note that the improved WGAN paper suggests that BatchNormalization should not be used in the discriminator."""
    model = Sequential()
    if K.image_data_format() == 'channels_first':
        model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(1, 28, 28)))
    else:
        model.add(Convolution2D(64, (5, 5), padding='same', input_shape=(28, 28, 1)))
    model.add(LeakyReLU())
    model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', strides=[2, 2]))
    model.add(LeakyReLU())
    model.add(Convolution2D(128, (5, 5), kernel_initializer='he_normal', padding='same', strides=[2, 2]))
    model.add(LeakyReLU())
    model.add(Flatten())
    model.add(Dense(1024, kernel_initializer='he_normal'))
    model.add(LeakyReLU())
    model.add(Dense(1, kernel_initializer='he_normal'))
    return model
项目:copper_price_forecast    作者:liyinwei    | 项目源码 | 文件源码
def build_model():
    """
    ????
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model
项目:copper_price_forecast    作者:liyinwei    | 项目源码 | 文件源码
def build_model():
    """
    ????
    """
    model = Sequential()

    model.add(LSTM(units=Conf.LAYERS[1], input_shape=(Conf.LAYERS[1], Conf.LAYERS[0]), return_sequences=True))
    model.add(Dropout(0.2))

    model.add(LSTM(Conf.LAYERS[2], return_sequences=False))
    model.add(Dropout(0.2))

    model.add(Dense(units=Conf.LAYERS[3]))
    # model.add(BatchNormalization(weights=None, epsilon=1e-06, momentum=0.9))
    model.add(Activation("tanh"))
    # act = PReLU(alpha_initializer='zeros', weights=None)
    # act = LeakyReLU(alpha=0.3)
    # model.add(act)

    start = time.time()
    model.compile(loss="mse", optimizer="rmsprop")
    print("> Compilation Time : ", time.time() - start)
    return model
项目:Fabrik    作者:Cloud-CV    | 项目源码 | 文件源码
def test_keras_export(self):
        tests = open(os.path.join(settings.BASE_DIR, 'tests', 'unit', 'keras_app',
                                  'keras_export_test.json'), 'r')
        response = json.load(tests)
        tests.close()
        net = yaml.safe_load(json.dumps(response['net']))
        net = {'l0': net['Input'], 'l1': net['ReLU']}
        # Test 1
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        temp = activation(net['l1'], [inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'Activation')
        # Test 2
        net['l1']['params']['negative_slope'] = 1
        net['l0']['connection']['output'].append('l1')
        inp = data(net['l0'], '', 'l0')['l0']
        temp = activation(net['l1'], [inp], 'l1')
        model = Model(inp, temp['l1'])
        self.assertEqual(model.layers[1].__class__.__name__, 'LeakyReLU')
项目:tf-wgan    作者:kuleshov    | 项目源码 | 文件源码
def make_dcgan_discriminator(Xk_d):
  x = Convolution2D(nb_filter=64, nb_row=5, nb_col=5, subsample=(2,2),
        activation=None, border_mode='same', init='glorot_uniform',
        dim_ordering='th')(Xk_d)
  x = BatchNormalization(mode=2, axis=1)(x)
  x = LeakyReLU(0.2)(x)

  x = Convolution2D(nb_filter=128, nb_row=5, nb_col=5, subsample=(2,2),
        activation=None, border_mode='same', init='glorot_uniform',
        dim_ordering='th')(x)
  x = BatchNormalization(mode=2, axis=1)(x)
  x = LeakyReLU(0.2)(x)

  x = Flatten()(x)
  x = Dense(1024)(x)
  x = BatchNormalization(mode=2)(x)
  x = LeakyReLU(0.2)(x)

  d = Dense(1, activation=None)(x)

  return d
项目:tf-wgan    作者:kuleshov    | 项目源码 | 文件源码
def make_dcgan_discriminator(Xk_d):
  x = Convolution2D(nb_filter=64, nb_row=4, nb_col=4, subsample=(2,2),
        activation=None, border_mode='same', init=conv2D_init,
        dim_ordering='th')(Xk_d)
  # x = BatchNormalization(mode=2, axis=1)(x) # <- makes things much worse!
  x = LeakyReLU(0.2)(x)

  x = Convolution2D(nb_filter=128, nb_row=4, nb_col=4, subsample=(2,2),
        activation=None, border_mode='same', init=conv2D_init,
        dim_ordering='th')(x)
  x = BatchNormalization(mode=2, axis=1)(x)
  x = LeakyReLU(0.2)(x)

  x = Flatten()(x)
  x = Dense(1024, init=conv2D_init)(x)
  x = BatchNormalization(mode=2)(x)
  x = LeakyReLU(0.2)(x)

  d = Dense(1, activation=None)(x)

  return d
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_discriminator(self):

        model = Sequential()

        model.add(Conv2D(64, kernel_size=3, strides=2, input_shape=self.missing_shape, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(128, kernel_size=3, strides=2, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Conv2D(256, kernel_size=3, padding="same"))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Flatten())
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=self.missing_shape)
        validity = model(img)

        return Model(img, validity)
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_discriminator(self):

        img_shape = (self.img_rows, self.img_cols, self.channels)

        model = Sequential()

        model.add(Flatten(input_shape=img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(256))
        model.add(LeakyReLU(alpha=0.2))
        model.add(Dense(1, activation='sigmoid'))
        model.summary()

        img = Input(shape=img_shape)
        validity = model(img)

        return Model(img, validity)
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_discriminator(self):

        model = Sequential()

        model.add(Dense(512, input_dim=self.encoded_dim))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(1, activation="sigmoid"))
        model.summary()

        encoded_repr = Input(shape=(self.encoded_dim, ))
        validity = model(encoded_repr)

        return Model(encoded_repr, validity)
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_encoder(self):
        model = Sequential()

        model.add(Flatten(input_shape=self.img_shape))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(512))
        model.add(LeakyReLU(alpha=0.2))
        model.add(BatchNormalization(momentum=0.8))
        model.add(Dense(self.latent_dim))

        model.summary()

        img = Input(shape=self.img_shape)
        z = model(img)

        return Model(img, z)
项目:Keras-GAN    作者:eriklindernoren    | 项目源码 | 文件源码
def build_discriminator(self):

        z = Input(shape=(self.latent_dim, ))
        img = Input(shape=self.img_shape)
        d_in = concatenate([z, Flatten()(img)])

        model = Dense(1024)(d_in)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        model = Dense(1024)(model)
        model = LeakyReLU(alpha=0.2)(model)
        model = Dropout(0.5)(model)
        validity = Dense(1, activation="sigmoid")(model)

        return Model([z, img], validity)
项目:unet-color    作者:4g    | 项目源码 | 文件源码
def _adversary():
        model = Sequential()
        model.add(Convolution2D(
                            64, 5, 5,
                            border_mode='same',
                            input_shape=(3, 32, 32),subsample=(2,2)))
        model.add(LeakyReLU(0.2))
        model.add(Convolution2D(128, 5, 5,subsample=(2,2)))
        model.add(BatchNormalization(mode=2))
        model.add(LeakyReLU(0.2))
        model.add(Flatten())
        model.add(Dense(1024))
        model.add(LeakyReLU())
        model.add(Dense(1))
        model.add(Activation('sigmoid'))

        return model
项目:keras-face-attribute-manipulation    作者:wkcw    | 项目源码 | 文件源码
def transform_model(weight_loss_pix=5e-4):
    inputs = Input(shape=( 128, 128, 3))
    x1 = Convolution2D(64, 5, 5, border_mode='same')(inputs)
    x2 = LeakyReLU(alpha=0.3, name='wkcw')(x1)
    x3 = BatchNormalization()(x2)
    x4 = Convolution2D(128, 4, 4, border_mode='same', subsample=(2,2))(x3)
    x5 = LeakyReLU(alpha=0.3)(x4)
    x6 = BatchNormalization()(x5)
    x7 = Convolution2D(256, 4, 4, border_mode='same', subsample=(2,2))(x6)
    x8 = LeakyReLU(alpha=0.3)(x7)
    x9 = BatchNormalization()(x8)
    x10 = Deconvolution2D(128, 3, 3, output_shape=(None, 64, 64, 128), border_mode='same', subsample=(2,2))(x9)
    x11 = BatchNormalization()(x10)
    x12 = Deconvolution2D(64, 3, 3, output_shape=(None, 128, 128, 64), border_mode='same', subsample=(2,2))(x11)
    x13 = BatchNormalization()(x12)
    x14 = Deconvolution2D(3, 4, 4, output_shape=(None, 128, 128, 3), border_mode='same', activity_regularizer=activity_l1(weight_loss_pix))(x13)
    output = merge([inputs, x14], mode='sum')
    model = Model(input=inputs, output=output)

    return model
项目:DeepST    作者:lucktroy    | 项目源码 | 文件源码
def seqCNN_BN(n_flow=4, seq_len=3, map_height=32, map_width=32):
    model=Sequential()
    model.add(Convolution2D(64, 3, 3, input_shape=(n_flow*seq_len, map_height, map_width), border_mode='same'))
    model.add(LeakyReLU(0.2))
    model.add(BatchNormalization())

    model.add(Convolution2D(128, 3, 3, border_mode='same'))
    model.add(LeakyReLU(0.2))
    model.add(BatchNormalization())

    model.add(Convolution2D(64, 3, 3, border_mode='same'))
    model.add(LeakyReLU(0.2))
    model.add(BatchNormalization())

    model.add(Convolution2D(n_flow, 3, 3, border_mode='same'))
    model.add(Activation('tanh'))
    return model
项目:DeepST    作者:lucktroy    | 项目源码 | 文件源码
def seqCNN_LReLU(n_flow=4, seq_len=3, map_height=32, map_width=32):
    model=Sequential()
    model.add(Convolution2D(64, 3, 3, input_shape=(n_flow*seq_len, map_height, map_width), border_mode='same'))
    model.add(LeakyReLU(0.2))
    # model.add(BatchNormalization())

    model.add(Convolution2D(128, 3, 3, border_mode='same'))
    model.add(LeakyReLU(0.2))
    # model.add(BatchNormalization())

    model.add(Convolution2D(64, 3, 3, border_mode='same'))
    model.add(LeakyReLU(0.2))
    # model.add(BatchNormalization())

    model.add(Convolution2D(n_flow, 3, 3, border_mode='same'))
    model.add(Activation('tanh'))
    return model
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def create_model(img_height,img_width,img_channel):
    ip = Input(shape=(img_height, img_width,img_channel))
    L_1 = Conv2D(64, (9, 9), padding='same', activation='linear', kernel_initializer='glorot_uniform')(ip)
    L_1 = LeakyReLU(alpha=0.25)(L_1)
    L_2=L_1
    for i in range(3):
        L_2 = residual_block(L_2, 64,3)

    L_3 = Conv2D(64, (3, 3), padding='same',kernel_initializer='glorot_uniform')(L_2)
    L_3 = BatchNormalization(axis=-1)(L_3)
    L_3 = add([L_1,L_3])
    L_4= Conv2D(128, (1, 1), padding='same',kernel_initializer='glorot_uniform')(L_3)
    op = Conv2D(img_channel, (9, 9),padding='same', activation='tanh', kernel_initializer='glorot_uniform')(L_4)

    deblocking =Model(inputs=ip,outputs= op)
    optimizer = optimizers.Adam(lr=1e-4)
    deblocking.compile(optimizer=optimizer,loss='mean_squared_error', metrics=[psnr,ssim])
    return deblocking
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def create_model(img_height,img_width,img_channel):
    ip = Input(shape=(img_height, img_width,img_channel))
    x_1 = Conv2D(64, (9, 9), padding='same', activation='linear', kernel_initializer='glorot_uniform')(ip)
    x_1 = LeakyReLU(alpha=0.25)(x_1)
    x=x_1
    for i in range(5):#or 15
        x = residual_block(x, 64,3)

    x = Conv2D(64, (3, 3), padding='same',kernel_initializer='glorot_uniform')(x)
    x = BatchNormalization(axis=-1)(x)
    x = add([x_1,x])

    x=upscale(x)
    op = Conv2D(img_channel, (9, 9),padding='same', activation='tanh', kernel_initializer='glorot_uniform')(x)

    deblocking =Model(inputs=ip,outputs= op)
    optimizer = optimizers.Adam(lr=1e-4)
    deblocking.compile(optimizer=optimizer,loss='mean_squared_error', metrics=[psnr,ssim])
    return deblocking
项目:deblocking    作者:yydlmzyz    | 项目源码 | 文件源码
def create_model(img_height,img_width,img_channel):
    ip = Input(shape=(img_height, img_width,img_channel))
    x = Conv2D(64, (9, 9), padding='same', activation='linear',  kernel_initializer='glorot_uniform')(ip)
    x = BatchNormalization(axis= -1)(x)
    x = LeakyReLU(alpha=0.25)(x)
    for i in range(5):
        x = residual_block(x, 64,3)
    x = Conv2D(64, (3, 3), padding='same',kernel_initializer='glorot_uniform')(x)
    x = BatchNormalization(axis=-1)(x)
    x=Conv2D(64,(3, 3),padding='same',activation='relu')(x)
    op=Conv2D(img_channel,(9,9),padding='same',activation='tanh',kernel_initializer='glorot_uniform')(x)

    deblocking =Model(inputs=ip,outputs= op)
    optimizer = optimizers.Adam(lr=1e-4)
    deblocking.compile(optimizer=optimizer,loss='mean_squared_error', metrics=[psnr,ssim])
    return deblocking


#plot_model(deblocking, to_file='model.png', show_shapes=True, show_layer_names=True)
项目:rl    作者:wingedsheep    | 项目源码 | 文件源码
def createModel(self, inputs, outputs, hiddenLayers, activationType):
        model = Sequential()
        if len(hiddenLayers) == 0: 
            model.add(Dense(self.output_size, input_shape=(self.input_size,), init='lecun_uniform'))
            model.add(Activation("linear"))
        else :
            model.add(Dense(hiddenLayers[0], input_shape=(self.input_size,), init='lecun_uniform'))
            if (activationType == "LeakyReLU") :
                model.add(LeakyReLU(alpha=0.01))
            else :
                model.add(Activation(activationType))

            for index in range(1, len(hiddenLayers)-1):
                layerSize = hiddenLayers[index]
                model.add(Dense(layerSize, init='lecun_uniform'))
                if (activationType == "LeakyReLU") :
                    model.add(LeakyReLU(alpha=0.01))
                else :
                    model.add(Activation(activationType))
            model.add(Dense(self.output_size, init='lecun_uniform'))
            model.add(Activation("linear"))
        optimizer = optimizers.RMSprop(lr=1, rho=0.9, epsilon=1e-06)
        model.compile(loss="mse", optimizer=optimizer)
        return model
项目:rl    作者:wingedsheep    | 项目源码 | 文件源码
def createModel(self, inputs, outputs, hiddenLayers, activationType):
        model = Sequential()
        if len(hiddenLayers) == 0: 
            model.add(Dense(self.output_size, input_shape=(self.input_size,), init='lecun_uniform'))
            model.add(Activation("linear"))
        else :
            model.add(Dense(hiddenLayers[0], input_shape=(self.input_size,), init='lecun_uniform'))
            if (activationType == "LeakyReLU") :
                model.add(LeakyReLU(alpha=0.01))
            else :
                model.add(Activation(activationType))

            for index in range(1, len(hiddenLayers)-1):
                layerSize = hiddenLayers[index]
                model.add(Dense(layerSize, init='lecun_uniform'))
                if (activationType == "LeakyReLU") :
                    model.add(LeakyReLU(alpha=0.01))
                else :
                    model.add(Activation(activationType))
            model.add(Dense(self.output_size, init='lecun_uniform'))
            model.add(Activation("linear"))
        optimizer = optimizers.RMSprop(lr=1, rho=0.9, epsilon=1e-06)
        model.compile(loss="mse", optimizer=optimizer)
        return model
项目:take6    作者:qfishpear    | 项目源码 | 文件源码
def get_model():
    model = Sequential()

    model.add(Dense(1024, init='normal', input_dim = 460))
    model.add(LeakyReLU(0.3))
    model.add(Dropout(0.5))

    model.add(Dense(1024, init='normal'))
    model.add(LeakyReLU(0.3))
    model.add(Dropout(0.5))

    model.add(Dense(512, init='normal'))
    model.add(LeakyReLU(0.3))
    model.add(Dropout(0.5))

    model.add(Dense(1, init='normal'))
    return model
项目:Reinforcement_Learning_Project    作者:AaronYALai    | 项目源码 | 文件源码
def initAgent(neurons=512, layers=1, lr=1e-3,
              moment=0.9, width=19, alpha=0.1):
    """Initialize agent: specify num of neurons and hidden layers"""
    model = Sequential()
    model.add(Dense(2 * width**2, init='lecun_uniform',
              input_shape=(2 * width**2,)))
    model.add(LeakyReLU(alpha=alpha))

    for i in range(layers):
        model.add(Dense(neurons, init='lecun_uniform'))
        model.add(LeakyReLU(alpha=alpha))
        model.add(Dropout(0.2))

    model.add(Dense(width**2, init='lecun_uniform'))
    # use linear output layer to generate real-valued outputs
    model.add(Activation('linear'))

    # opt = RMSprop(lr=lr)
    opt = SGD(lr=lr, momentum=moment, decay=1e-18, nesterov=False)
    model.compile(loss='mse', optimizer=opt)

    return model
项目:Keras-ResNeXt    作者:titu1994    | 项目源码 | 文件源码
def __initial_conv_block_imagenet(input, weight_decay=5e-4):
    ''' Adds an initial conv block, with batch norm and relu for the inception resnext
    Args:
        input: input tensor
        weight_decay: weight decay factor
    Returns: a keras tensor
    '''
    channel_axis = 1 if K.image_data_format() == 'channels_first' else -1

    x = Conv2D(64, (7, 7), padding='same', use_bias=False, kernel_initializer='he_normal',
               kernel_regularizer=l2(weight_decay), strides=(2, 2))(input)
    x = BatchNormalization(axis=channel_axis)(x)
    x = LeakyReLU()(x)

    x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)

    return x
项目:cyclegan_keras    作者:shadySource    | 项目源码 | 文件源码
def conv_block(x0, scale):
    x = Conv2D(int(64*scale), (1, 1))(x0)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)

    x = Conv2D(int(64*scale), (3, 3), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)

    x = Conv2D(int(256*scale), (1, 1))(x)
    x = InstanceNormalization()(x)

    x1 = Conv2D(int(256*scale), (1, 1))(x0)
    x1 = InstanceNormalization()(x1)

    x = Add()([x, x1])
    x = LeakyReLU()(x)
    return x
项目:cyclegan_keras    作者:shadySource    | 项目源码 | 文件源码
def mnist_generator(input_shape=(28, 28, 1), scale=1/4):
    x0 = Input(input_shape)
    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x0)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = Conv2D(int(64*scale), (3, 3), strides=(2, 2), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = residual_block(x, scale, num_id=2)
    x = residual_block(x, scale*2, num_id=3)
    x = UpSampling2D(size=(2, 2))(x)
    x = Conv2D(int(1024*scale), (1, 1))(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = UpSampling2D(size=(2, 2))(x)
    x = Conv2D(1, (1, 1), activation='sigmoid')(x)
    return Model(x0, x)
项目:cyclegan_keras    作者:shadySource    | 项目源码 | 文件源码
def mnist_discriminator(input_shape=(28, 28, 1), scale=1/4):
    x0 = Input(input_shape)
    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x0)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = Conv2D(int(64*scale), (3, 3), strides=(2, 2), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = residual_block(x, scale, num_id=2)
    x = residual_block(x, scale*2, num_id=3)
    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = Conv2D(int(128*scale), (3, 3), strides=(2, 2), padding='same')(x)
    x = InstanceNormalization()(x)
    x = LeakyReLU()(x)
    x = Conv2D(1, (3, 3), strides=(2, 2), padding='same')(x)
    x = GlobalAveragePooling2D()(x) # Flatten
    x = Activation('sigmoid')(x)
    return Model(x0, x)
项目:stock    作者:datablood    | 项目源码 | 文件源码
def create_network(**kwargs):
        defaults = {"timesteps": 128, "data_dim": 15}
        params = defaults
        params.update(**kwargs)

        network = Sequential()
        network.add(LSTM(output_dim=16,
                         activation='sigmoid',
                         inner_activation='hard_sigmoid',
                         input_shape=(params['timesteps'], params['data_dim']
                                      )))
        network.add(Dropout(0.15))
        network.add(Dense(1))
        # network.add(LeakyReLU(alpha=0.5))
        network.add(Activation('relu'))

        network.compile(optimizer='rmsprop',
                        loss='binary_crossentropy',
                        metrics=['accuracy'])
        return network
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.2, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=120, init='uniform'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=120,output_dim=280, init='uniform'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=280,output_dim=100, init='uniform', activation='relu'))
            model.add(BatchNormalization())
            model.add(Dropout(0.4))
            model.add(Dense(input_dim=100,output_dim=2, init='uniform', activation='softmax'))    
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.015, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=112, init='he_normal'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=112,output_dim=128, init='he_normal'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=128,output_dim=68, init='he_normal'))
            model.add(LeakyReLU(alpha=.00003))
            model.add(BatchNormalization())
            model.add(Dropout(0.3))
            model.add(Dense(input_dim=68,output_dim=2, init='he_normal'))
            model.add(Activation('softmax'))
            sgd = SGD(lr=0.01, decay=1e-10, momentum=0.99, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=310, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=310,output_dim=252, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=252,output_dim=128, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(BatchNormalization())
            model.add(Dropout(0.4))
            model.add(Dense(input_dim=128,output_dim=2, init='he_normal', activation='softmax'))
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.02, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.1, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=62, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(Dropout(0.3))
            model.add(Dense(input_dim=62,output_dim=158, init='he_normal'))
            model.add(LeakyReLU(alpha=.001))
            model.add(Dropout(0.25))
            model.add(Dense(input_dim=158,output_dim=20, init='he_normal'))
            model.add(PReLU(init='zero'))
            model.add(Dropout(0.2))
            model.add(Dense(input_dim=20,output_dim=2, init='he_normal', activation='softmax'))
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.05, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dropout(0.2, input_shape=(nn_input_dim_NN,)))
            model.add(Dense(input_dim=nn_input_dim_NN, output_dim=140, init='uniform'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.6))
            model.add(Dense(input_dim=140,output_dim=250, init='uniform'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(BatchNormalization())
            model.add(Dropout(0.5))
            model.add(Dense(input_dim=250,output_dim=90, init='uniform', activation='relu'))
            model.add(BatchNormalization())
            model.add(Dropout(0.4))
            model.add(Dense(input_dim=90,output_dim=2, init='uniform', activation='softmax'))    
            #model.add(Activation('softmax'))
            sgd = SGD(lr=0.013, decay=1e-6, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy',class_mode='binary')

            return KerasClassifier(nn=model,**self.params)
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dense(64, input_shape=nn_input_dim_NN, init='he_normal'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(Dropout(0.5))

            model.add(Dense(2, init='he_normal'))
            model.add(Activation('softmax'))
            sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='binary_crossentropy', metrics=["accuracy"])

            return KerasClassifier(nn=model,**self.params)

# ----- END first stage stacking model -----

# ----- Second stage stacking model -----
项目:stacking    作者:ikki407    | 项目源码 | 文件源码
def build_model(self):
            model = Sequential()
            model.add(Dense(64, input_shape=nn_input_dim_NN, init='he_normal'))
            model.add(LeakyReLU(alpha=.00001))
            model.add(Dropout(0.5))

            model.add(Dense(output_dim, init='he_normal'))
            model.add(Activation('softmax'))
            sgd = SGD(lr=0.1, decay=1e-5, momentum=0.9, nesterov=True)

            model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=["accuracy"])

            return KerasClassifier(nn=model,**self.params)

# ----- END first stage stacking model -----

# ----- Second stage stacking model -----
项目:visual_turing_test-tutorial    作者:mateuszmalinowski    | 项目源码 | 文件源码
def deep_mlp(self):
        """
        Deep Multilayer Perceptrop.
        """
        if self._config.num_mlp_layers == 0:
            self.add(Dropout(0.5))
        else:
            for j in xrange(self._config.num_mlp_layers):
                self.add(Dense(self._config.mlp_hidden_dim))
                if self._config.mlp_activation == 'elu':
                    self.add(ELU())
                elif self._config.mlp_activation == 'leaky_relu':
                    self.add(LeakyReLU())
                elif self._config.mlp_activation == 'prelu':
                    self.add(PReLU())
                else:
                    self.add(Activation(self._config.mlp_activation))
                self.add(Dropout(0.5))
项目:WGAN_GP    作者:daigo0927    | 项目源码 | 文件源码
def Discriminator(image_size = 64):

    L = int(image_size)

    images = Input(shape = (L, L, 3))
    x = Conv2D(64, (4, 4), strides = (2, 2),
               kernel_initializer = init, padding = 'same')(images) # shape(L/2, L/2, 32)
    x = LeakyReLU(0.2)(x)
    x = Conv2D(128, (4, 4), strides = (2, 2),
               kernel_initializer = init, padding = 'same')(x) # shape(L/4, L/4, 64)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)
    x = Conv2D(256, (4, 4), strides = (2, 2),
               kernel_initializer = init, padding = 'same')(x) # shape(L/8, L/8, 128)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)
    x = Conv2D(512, (4, 4), strides = (2, 2),
               kernel_initializer = init, padding = 'same')(x) # shape(L/16, L/16, 256)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)
    x = Flatten()(x)
    outputs = Dense(1)(x)

    model = Model(inputs = images, outputs = outputs)
    model.summary()
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def fc_block1(x, n=1000, d=0.5):
    x = Dense(n)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU()(x)
    x = Dropout(d)(x)
    return x
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def fc_identity(input_tensor, n=1000, d=0.5):
    x = fc_block1(input_tensor, n, d)
    x = Dense(int(input_tensor.shape[1]))(x)
    x = merge([x, input_tensor], mode='sum', concat_axis=1)
    x = LeakyReLU()(x)
    return x
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def fc_inception(input_tensor, n=3000, d=0.5):

    br1 = Dense(n)(input_tensor)
    br1 = LeakyReLU()(br1)
    br1 = BatchNormalization()(br1)
    br1 = Dropout(d)(br1)
    br1 = Dense(int(n/3.0))(br1)

    br2 = Dense(n)(input_tensor)
    br2 = BatchNormalization()(br2)
    br2 = ELU()(br2)
    br2 = Dropout(d)(br2)
    br2 = Dense(int(n/3.0))(br2)

    br3 = Dense(int(n/3.0))(input_tensor)
    br3 = BatchNormalization()(br3)
    br3 = PReLU()(br3)
    br3 = Dropout(d)(br3)
    br3 = Dense(int(n/3.0))(br3)
    br3 = BatchNormalization()(br3)
    br3 = PReLU()(br3)
    br3 = Dropout(d)(br3)
    br3 = Dense(int(n/3.0))(br3)
    br3 = BatchNormalization()(br3)
    br3 = PReLU()(br3)
    br3 = Dropout(d)(br3)

    x = merge([br1, br2, br3], mode='concat', concat_axis=1)
    return x
项目:Multi-Agent_SelfDriving    作者:MLJejuCamp2017    | 项目源码 | 文件源码
def create_critic_network(self, state_size,action_dim):
        print("Now we build the model")
        S = Input(shape=[state_size]) 
        A = Input(shape=[action_dim],name='action2')   

        ## Original Version
        w1 = Dense(HIDDEN1_UNITS)(S)
        w1 = LeakyReLU()(w1)
        h1 = Dense(HIDDEN2_UNITS)(w1)
        h1 = LeakyReLU()(h1)
        a1 = Dense(HIDDEN2_UNITS)(A) 
        a1 = LeakyReLU()(a1)

        h2 = layers.add([h1, a1])
        h3 = Dense(HIDDEN2_UNITS)(h2)
        h3 = LeakyReLU()(h3)
        h3 = Dense(HIDDEN2_UNITS)(h3)
        h3 = LeakyReLU()(h3)
        h3 = Dense(HIDDEN1_UNITS)(h3)
        h3 = LeakyReLU()(h3)
        V = Dense(action_dim,activation='linear')(h3)   

        model = Model(inputs=[S,A],outputs=V)
        adam = Adam(lr=self.LEARNING_RATE)
        model.compile(loss='mse', optimizer=adam)
        return model, A, S
项目:Kerasimo    作者:s-macke    | 项目源码 | 文件源码
def build_discriminator():
    # build a relatively standard conv net, with LeakyReLUs as suggested in
    # the reference paper
    cnn = Sequential()

    cnn.add(Conv2D(32, 3, padding='same', strides=2,
                   input_shape=(1, 28, 28)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(64, 3, padding='same', strides=1))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(128, 3, padding='same', strides=2))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(256, 3, padding='same', strides=1))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Flatten())

    image = Input(shape=(1, 28, 28))

    features = cnn(image)

    # first output (name=generation) is whether or not the discriminator
    # thinks the image that is being shown is fake, and the second output
    # (name=auxiliary) is the class that the discriminator thinks the image
    # belongs to.
    fake = Dense(1, activation='sigmoid', name='generation')(features)
    aux = Dense(10, activation='softmax', name='auxiliary')(features)

    return Model(image, [fake, aux])
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def build_discriminator():
    # build a relatively standard conv net, with LeakyReLUs as suggested in
    # the reference paper
    cnn = Sequential()

    cnn.add(Convolution2D(32, 3, 3, border_mode='same', subsample=(2, 2),
                          input_shape=(1, 28, 28)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Convolution2D(128, 3, 3, border_mode='same', subsample=(2, 2)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Convolution2D(256, 3, 3, border_mode='same', subsample=(1, 1)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Flatten())

    image = Input(shape=(1, 28, 28))

    features = cnn(image)

    # first output (name=generation) is whether or not the discriminator
    # thinks the image that is being shown is fake, and the second output
    # (name=auxiliary) is the class that the discriminator thinks the image
    # belongs to.
    fake = Dense(1, activation='sigmoid', name='generation')(features)
    aux = Dense(10, activation='softmax', name='auxiliary')(features)

    return Model(input=image, output=[fake, aux])
项目:keras    作者:GeekLiB    | 项目源码 | 文件源码
def test_leaky_relu():
    from keras.layers.advanced_activations import LeakyReLU
    for alpha in [0., .5, -1.]:
        layer_test(LeakyReLU, kwargs={'alpha': alpha},
                   input_shape=(2, 3, 4))
项目:pCVR    作者:xjtushilei    | 项目源码 | 文件源码
def build_discriminator():
    # build a relatively standard conv net, with LeakyReLUs as suggested in
    # the reference paper
    cnn = Sequential()

    cnn.add(Conv2D(32, 3, padding='same', strides=2,
                   input_shape=(1, 28, 28)))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(64, 3, padding='same', strides=1))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(128, 3, padding='same', strides=2))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Conv2D(256, 3, padding='same', strides=1))
    cnn.add(LeakyReLU())
    cnn.add(Dropout(0.3))

    cnn.add(Flatten())

    image = Input(shape=(1, 28, 28))

    features = cnn(image)

    # first output (name=generation) is whether or not the discriminator
    # thinks the image that is being shown is fake, and the second output
    # (name=auxiliary) is the class that the discriminator thinks the image
    # belongs to.
    fake = Dense(1, activation='sigmoid', name='generation')(features)
    aux = Dense(10, activation='softmax', name='auxiliary')(features)

    return Model(image, [fake, aux])
项目:GlottGAN    作者:bajibabu    | 项目源码 | 文件源码
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
    # Merge noise and auxilary inputs
    gen_input = Input(shape=(noise_dim,), name="noise_input")
    aux_input = Input(shape=(aux_dim,), name="auxilary_input")
    x = merge([gen_input, aux_input], mode="concat", concat_axis=-1)

    # Dense Layer 1
    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 2
    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 3
    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 4
    x = Dense(400)(x)
    x = BatchNormalization()(x)
    x = Activation("tanh")(x)

    generator_model = Model(input=[gen_input, aux_input], output=[x], name=model_name)

    return generator_model
项目:GlottGAN    作者:bajibabu    | 项目源码 | 文件源码
def discriminator_model(model_name="discriminator"):
    # Merge noise and auxilary inputs
    disc_input = Input(shape=(400,), name="discriminator_input")
    aux_input = Input(shape=(47,), name="auxilary_input")
    x =  merge([disc_input, aux_input], mode="concat", concat_axis=-1)

    # Dense Layer 1
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 2
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 3
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 4
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 5
    x = Dense(1)(x)
    x = Activation("sigmoid")(x)

    discriminator_model = Model(input=[disc_input, aux_input], output=[x], name=model_name)

    return discriminator_model


    return discriminator_model
项目:GlottGAN    作者:bajibabu    | 项目源码 | 文件源码
def generator_model(noise_dim=100, aux_dim=47, model_name="generator"):
    gen_input = Input(shape=(noise_dim,), name="noise_input")

    # Dense Layer 1
    x = Dense(1024)(gen_input)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 2
    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 3
    x = Dense(1024)(x)
    x = BatchNormalization()(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 4
    x = Dense(400)(x)
    x = BatchNormalization()(x)
    x = Activation("tanh")(x)

    generator_model = Model(input=gen_input, output=[x], name=model_name)

    return generator_model
项目:GlottGAN    作者:bajibabu    | 项目源码 | 文件源码
def discriminator_model(model_name="discriminator"):
    disc_input = Input(shape=(400,), name="discriminator_input")

    # Dense Layer 1
    x = Dense(1024)(disc_input)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 2
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 3
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 4
    x = Dense(1024)(x)
    x = LeakyReLU(0.2)(x)

    # Dense Layer 5
    x = Dense(1)(x)
    x = Activation("sigmoid")(x)

    discriminator_model = Model(input=disc_input, output=[x], name=model_name)

    return discriminator_model


    return discriminator_model