我们从Python开源项目中,提取了以下9个代码示例,用于说明如何使用keras.layers.convolutional.MaxPooling3D()。
def test_maxpooling_3d(): pool_size = (3, 3, 3) for strides in [(1, 1, 1), (2, 2, 2)]: layer_test(convolutional.MaxPooling3D, kwargs={'strides': strides, 'border_mode': 'valid', 'pool_size': pool_size}, input_shape=(3, 4, 11, 12, 10))
def preds3d_baseline(width): learning_rate = 5e-5 #optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True) optimizer = Adam(lr=learning_rate) inputs = Input(shape=(1, 136, 168, 168)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3) output = GlobalAveragePooling3D()(pool3) output = Dense(2, activation='softmax', name = 'predictions')(output) model3d = Model(inputs, output) model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy']) return model3d
def preds3d_baseline(width): learning_rate = 5e-5 optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True) #optimizer = Adam(lr=learning_rate) inputs = Input(shape=(1, 136, 168, 168)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3) output = GlobalAveragePooling3D()(pool3) output = Dense(2, activation='softmax', name = 'predictions')(output) model3d = Model(inputs, output) model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy']) return model3d # 1398 stage1 original examples
def preds3d_globalavg(width): learning_rate = 5e-5 #optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True) optimizer = Adam(lr=learning_rate) inputs = Input(shape=(1, 136, 168, 168)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) pool4 = MaxPooling3D(pool_size=(8, 8, 8), border_mode='same')(conv4) output = GlobalAveragePooling3D()(conv4) output = Dense(2, activation='softmax', name = 'predictions')(output) model3d = Model(inputs, output) model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy']) return model3d
def unet_model(): inputs = Input(shape=(1, max_slices, img_size, img_size)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), strides = (2, 2, 2), border_mode='same')(conv3) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) up5 = merge([UpSampling3D(size=(2, 2, 2))(conv4), conv3], mode='concat', concat_axis=1) conv5 = SpatialDropout3D(dropout_rate)(up5) conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5) conv5 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv5) up6 = merge([UpSampling3D(size=(2, 2, 2))(conv5), conv2], mode='concat', concat_axis=1) conv6 = SpatialDropout3D(dropout_rate)(up6) conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6) conv6 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv6) up7 = merge([UpSampling3D(size=(2, 2, 2))(conv6), conv1], mode='concat', concat_axis=1) conv7 = SpatialDropout3D(dropout_rate)(up7) conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7) conv7 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv7) conv8 = Convolution3D(1, 1, 1, 1, activation='sigmoid')(conv7) model = Model(input=inputs, output=conv8) model.compile(optimizer=Adam(lr=1e-5), loss=dice_coef_loss, metrics=[dice_coef]) return model
def preds3d_dense(width): learning_rate = 5e-5 #optimizer = SGD(lr=learning_rate, momentum = 0.9, decay = 1e-3, nesterov = True) optimizer = Adam(lr=learning_rate) inputs = Input(shape=(1, 136, 168, 168)) conv1 = Convolution3D(width, 3, 3, 3, activation = 'relu', border_mode='same')(inputs) conv1 = BatchNormalization(axis = 1)(conv1) conv1 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(conv1) conv1 = BatchNormalization(axis = 1)(conv1) pool1 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv1) conv2 = Convolution3D(width*2, 3, 3, 3, activation = 'relu', border_mode='same')(pool1) conv2 = BatchNormalization(axis = 1)(conv2) conv2 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(conv2) conv2 = BatchNormalization(axis = 1)(conv2) pool2 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv2) conv3 = Convolution3D(width*4, 3, 3, 3, activation = 'relu', border_mode='same')(pool2) conv3 = BatchNormalization(axis = 1)(conv3) conv3 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(conv3) conv3 = BatchNormalization(axis = 1)(conv3) pool3 = MaxPooling3D(pool_size=(2, 2, 2), border_mode='same')(conv3) conv4 = Convolution3D(width*8, 3, 3, 3, activation = 'relu', border_mode='same')(pool3) conv4 = BatchNormalization(axis = 1)(conv4) conv4 = Convolution3D(width*16, 3, 3, 3, activation = 'relu', border_mode='same')(conv4) conv4 = BatchNormalization(axis = 1)(conv4) pool4 = MaxPooling3D(pool_size=(8, 8, 8), border_mode='same')(conv4) output = Flatten(name='flatten')(pool4) output = Dropout(0.2)(output) output = Dense(128)(output) output = PReLU()(output) output = BatchNormalization()(output) output = Dropout(0.2)(output) output = Dense(128)(output) output = PReLU()(output) output = BatchNormalization()(output) output = Dropout(0.3)(output) output = Dense(2, activation='softmax', name = 'predictions')(output) model3d = Model(inputs, output) model3d.compile(loss='categorical_crossentropy', optimizer = optimizer, metrics = ['accuracy']) return model3d
def get_model(summary=False, backend='tf'): """ Return the Keras model of the network """ model = Sequential() if backend == 'tf': input_shape=(16, 112, 112, 3) # l, h, w, c else: input_shape=(3, 16, 112, 112) # c, l, h, w model.add(Convolution3D(64, 3, 3, 3, activation='relu', border_mode='same', name='conv1', input_shape=input_shape)) model.add(MaxPooling3D(pool_size=(1, 2, 2), strides=(1, 2, 2), border_mode='valid', name='pool1')) # 2nd layer group model.add(Convolution3D(128, 3, 3, 3, activation='relu', border_mode='same', name='conv2')) model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool2')) # 3rd layer group model.add(Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3a')) model.add(Convolution3D(256, 3, 3, 3, activation='relu', border_mode='same', name='conv3b')) model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool3')) # 4th layer group model.add(Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4a')) model.add(Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv4b')) model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool4')) # 5th layer group model.add(Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv5a')) model.add(Convolution3D(512, 3, 3, 3, activation='relu', border_mode='same', name='conv5b')) model.add(ZeroPadding3D(padding=((0, 0), (0, 1), (0, 1)), name='zeropad5')) model.add(MaxPooling3D(pool_size=(2, 2, 2), strides=(2, 2, 2), border_mode='valid', name='pool5')) model.add(Flatten()) # FC layers group model.add(Dense(4096, activation='relu', name='fc6')) model.add(Dropout(.5)) model.add(Dense(4096, activation='relu', name='fc7')) model.add(Dropout(.5)) model.add(Dense(487, activation='softmax', name='fc8')) if summary: print(model.summary()) return model