Python keras.layers 模块,AveragePooling1D() 实例源码

我们从Python开源项目中,提取了以下7个代码示例,用于说明如何使用keras.layers.AveragePooling1D()

项目:youarespecial    作者:endgameinc    | 项目源码 | 文件源码
def ResidualBlock1D_helper(layers, kernel_size, filters, final_stride=1):
    def f(_input):
        basic = _input
        for ln in range(layers):
            #basic = BatchNormalization()( basic ) # triggers known keras bug w/ TimeDistributed: https://github.com/fchollet/keras/issues/5221
            basic = ELU()(basic)  
            basic = Conv1D(filters, kernel_size, kernel_initializer='he_normal',
                           kernel_regularizer=l2(1.e-4), padding='same')(basic)

        # note that this strides without averaging
        return AveragePooling1D(pool_size=1, strides=final_stride)(Add()([_input, basic]))

    return f
项目:keras-surgeon    作者:BenWhetton    | 项目源码 | 文件源码
def test_delete_channels_averagepooling1d(channel_index):
    layer = AveragePooling1D(3)
    layer_test_helper_flatten_1d(layer, channel_index)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_average_pooling_1d(self):
        np.random.seed(1988)
        input_dim = 2
        input_length = 10
        filter_length = 3
        nb_filters = 4
        model = Sequential()
        model.add(Conv1D(nb_filters, kernel_size = filter_length, padding='same',
            input_shape=(input_length, input_dim)))
        model.add(AveragePooling1D(pool_size=2))
        self._test_keras_model(model)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_conv1d_flatten(self):
        model = Sequential()
        model.add(AveragePooling1D(2,input_shape=(64,9)))
        model.add(Conv1D(16, 1, padding='same', activation='relu', use_bias=False))
        model.add(MaxPooling1D(2))
        model.add(Flatten())
        model.add(Dense(units=7, activation='softmax', use_bias=False))

        model.set_weights([np.random.rand(*w.shape) for w in model.get_weights()])
        self._test_keras_model(model)
项目:coremltools    作者:apple    | 项目源码 | 文件源码
def test_imdb_fasttext_first_2(self):

        max_features = 10
        max_len = 6
        embedding_dims = 4
        pool_length = 2

        model = Sequential()
        model.add(Embedding(max_features, embedding_dims, input_length=max_len))
        # we add a AveragePooling1D, which will average the embeddings
        # of all words in the document
        model.add(AveragePooling1D(pool_size=pool_length))

        self._test_keras_model(model, one_dim_seq_flags=[True])
项目:Keras_note    作者:LibCorner    | 项目源码 | 文件源码
def __init__(self,samples=1000):

        #??Model
        input_1=Input(shape=(20,200))
        x=Convolution1D(400,3,border_mode='same',input_shape=(20,200))(input_1)
        #x=Dropout(0.5)(x)
        x=AveragePooling1D(20)(x)
        x=Dropout(0.25)(x)
        x=Flatten()(x)
        output_1=Dense(128,activation="tanh")(x)
        self.model_1=Model(input=input_1,output=output_1)
        self.model_1.compile(optimizer="sgd",loss="mse",metrics=['accuracy'])


        #????Model
        input_2=Input(shape=(1000,))
        x=Dense(400,activation="tanh")(input_2)
        x=Dropout(0.25)(x)
        output_2=Dense(128,activation="tanh")(x)
        #output_2=Lambda(lambda x:x*(-1))(output_2)
        self.model_2=Model(input=input_2,output=output_2)
        self.model_2.compile(optimizer="sgd",loss="mse",metrics=['accuracy'])

        #??????????????
        input_2_a=Input(shape=(1000,))
        input_2_b=Input(shape=(1000,))
        input_2_c=Input(shape=(1000,))
        input_2_d=Input(shape=(1000,))
        input_2_e=Input(shape=(1000,))
        input_2_f=Input(shape=(1000,))
        output_2_a=self.model_2(input_2_a)
        output_2_b=self.model_2(input_2_b)
        output_2_c=self.model_2(input_2_c)
        output_2_d=self.model_2(input_2_d)
        output_2_e=self.model_2(input_2_e)
        output_2_f=self.model_2(input_2_f)

        #??,??
        output=merge(inputs=[output_1,output_2_a,output_2_b,output_2_c,output_2_d,output_2_e,output_2_f],mode=cosine_error,output_shape=(None,1))

        #????    
        self.model=Model([input_1,input_2_a,input_2_b,input_2_c,input_2_d,input_2_e,input_2_f],output=output)
        self.model.compile(optimizer="sgd",loss='mse',metrics=['accuracy'])


        #????
        #rand=np.random
        self.X_train_1=load_data(samples=samples)  #question
        self.X_train_2_a=load_predicate_data(samples=samples) #???
        #self.X_train_2_b=np.array([self.X_train_2_a[rand.randint(999)] for i in range(1000)]) #???
        #self.X_train_2_c=np.array([self.X_train_2_a[rand.randint(999)] for i in range(1000)]) #???
项目:Fabrik    作者:Cloud-CV    | 项目源码 | 文件源码
def pooling(layer, layer_in, layerId):
    poolMap = {
        ('1D', 'MAX'): MaxPooling1D,
        ('2D', 'MAX'): MaxPooling2D,
        ('3D', 'MAX'): MaxPooling3D,
        ('1D', 'AVE'): AveragePooling1D,
        ('2D', 'AVE'): AveragePooling2D,
        ('3D', 'AVE'): AveragePooling3D,
    }
    out = {}
    layer_type = layer['params']['layer_type']
    pool_type = layer['params']['pool']
    padding = get_padding(layer)
    if (layer_type == '1D'):
        strides = layer['params']['stride_w']
        kernel = layer['params']['kernel_w']
        if (padding == 'custom'):
            p_w = layer['params']['pad_w']
            out[layerId + 'Pad'] = ZeroPadding1D(padding=p_w)(*layer_in)
            padding = 'valid'
            layer_in = [out[layerId + 'Pad']]
    elif (layer_type == '2D'):
        strides = (layer['params']['stride_h'], layer['params']['stride_w'])
        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'])
        if (padding == 'custom'):
            p_h, p_w = layer['params']['pad_h'], layer['params']['pad_w']
            out[layerId + 'Pad'] = ZeroPadding2D(padding=(p_h, p_w))(*layer_in)
            padding = 'valid'
            layer_in = [out[layerId + 'Pad']]
    else:
        strides = (layer['params']['stride_h'], layer['params']['stride_w'],
                   layer['params']['stride_d'])
        kernel = (layer['params']['kernel_h'], layer['params']['kernel_w'],
                  layer['params']['kernel_d'])
        if (padding == 'custom'):
            p_h, p_w, p_d = layer['params']['pad_h'], layer['params']['pad_w'],\
                            layer['params']['pad_d']
            out[layerId + 'Pad'] = ZeroPadding3D(padding=(p_h, p_w, p_d))(*layer_in)
            padding = 'valid'
            layer_in = [out[layerId + 'Pad']]
    out[layerId] = poolMap[(layer_type, pool_type)](pool_size=kernel, strides=strides, padding=padding)(
                                                    *layer_in)
    return out


# ********** Locally-connected Layers **********