Python keras.optimizers 模块,adam() 实例源码

我们从Python开源项目中,提取了以下21个代码示例,用于说明如何使用keras.optimizers.adam()

项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def add_fit_args(train):
    train.add_argument('--ngpus', default=1, type=int, help='amount of gpus')
    train.add_argument('--versn', default='rn-21', type=str, help='version of net')
    train.add_argument('--begin', default=0, type=int, help='start epoch')

    train.add_argument('--batch', default=8000, type=int, help='the batch size')
    train.add_argument('--nepoh', default=30, type=int, help='amount of epoch')
    train.add_argument('--check', default=20, type=int, help='period of check in iteration')
    train.add_argument('--lrate', default=0.001, type=float, help='start learning rate')
    train.add_argument('--optim', default='adam', type=str, help='optimizer')
    train.add_argument('--patin', default=15, type=int, help='waiting for n iteration without improvement')

    train.add_argument('--losss', default='categorical_crossentropy', type=str, help='loss function')
    train.add_argument('--mtype', default=1, type=int, help='neurons on branch audio')

    train.add_argument('--wpath', default=WPATH, type=str, help='net symbol path')
    train.add_argument('--dpath', default=FAST, type=str, help='data_path')
    train.add_argument('--split', default=200000, type=int, help='data_path')
    return train
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod5(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)


    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model
项目:EEDS-keras    作者:MarkPrecursor    | 项目源码 | 文件源码
def EES_train():
    EES = model_EES16()
    EES.compile(optimizer=adam(lr=0.0003), loss='mse')
    print EES.summary()

    data, label = pd.read_training_data("./train.h5")
    val_data, val_label = pd.read_training_data("./val.h5")

    checkpoint = ModelCheckpoint("EES_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
                                 save_weights_only=False, mode='min')
    callbacks_list = [checkpoint]

    history_callback = EES.fit(data, label, batch_size=64, validation_data=(val_data, val_label),
                               callbacks=callbacks_list, shuffle=True, nb_epoch=200, verbose=1)
    pandas.DataFrame(history_callback.history).to_csv("history.csv")
    EES.save_weights("EES_final.h5")
项目:srcnn    作者:qobilidop    | 项目源码 | 文件源码
def __init__(self, scale=3, load_set=None, build_model=None,
                 optimizer='adam', save_dir='.'):
        self.scale = scale
        self.load_set = partial(load_set, scale=scale)
        self.build_model = partial(build_model, scale=scale)
        self.optimizer = optimizer
        self.save_dir = Path(save_dir)
        self.save_dir.mkdir(parents=True, exist_ok=True)

        self.config_file = self.save_dir / 'config.yaml'
        self.model_file = self.save_dir / 'model.hdf5'

        self.train_dir = self.save_dir / 'train'
        self.train_dir.mkdir(exist_ok=True)
        self.history_file = self.train_dir / 'history.csv'
        self.weights_dir = self.train_dir / 'weights'
        self.weights_dir.mkdir(exist_ok=True)

        self.test_dir = self.save_dir / 'test'
        self.test_dir.mkdir(exist_ok=True)
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod2(opt=adam()):
    n = 2 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    # x1 = fc_block1(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    # x2 = fc_block1(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    # x = fc_block1(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod3(opt=adam()):
    n = 2 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod7(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    # x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    # x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    # x = fc_identity(x, n)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod8(opt=adam()):
    n = 3 * 1024
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    # x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    # x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, 4000)
    # x = fc_identity(x, n)
    # x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod4(opt=adam()):
    n = 1500
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)
    x1 = fc_identity(x1, n)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)
    x2 = fc_identity(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_identity(x, n)
    x = fc_block1(x, 2*n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod9(opt=adam()):
    n = int(2.2 * 1024)
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n, d=0.3)
    x1 = fc_identity(x1, n, d=0.3)
    x1 = fc_identity(x1, n, d=0.3)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n, d=0.3)
    x2 = fc_identity(x2, n, d=0.3)
    x2 = fc_identity(x2, n, d=0.3)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n, d=0.3)
    x = fc_identity(x, n, d=0.3)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    # plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod10(opt=adam()):
    n = int(1800)
    in1 = Input((128,), name='x1')

    x1 = fc_block1(in1, n)
    x1 = fc_inception(x1, n)
    x1 = fc_inception(x1, n)

    in2 = Input((1024,), name='x2')

    x2 = fc_block1(in2, n)
    x2 = fc_inception(x2, n)
    x2 = fc_inception(x2, n)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_inception(x, n)
    x = fc_inception(x, n)
    x = fc_block1(x, 2000)

    out = Dense(4716, activation='sigmoid', name='output')(x)
    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    # model.summary()
    plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod12(opt=adam()):
    n = int(2 * 1024)
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n, d=0.2)
    x1 = fc_identity(x1, n, d=0.2)
    x1 = fc_identity(x1, n, d=0.2)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n, d=0.2)
    x2 = fc_identity(x2, n, d=0.2)
    x2 = fc_identity(x2, n, d=0.2)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n, d=0.2)
    x = fc_identity(x, n, d=0.2)
    x = fc_identity(x, n, d=0.2)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    model.summary()
    # plot(model=model, show_shapes=True)
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def build_mod13(opt=adam()):
    n = int(2 * 1024)
    in1 = Input((128,), name='x1')
    x1 = fc_block1(in1, n, d=0.2)
    x1 = fc_identity(x1, n, d=0.2)
    x1 = fc_identity(x1, n, d=0.2)
    x1 = fc_identity(x1, n, d=0.2)

    in2 = Input((1024,), name='x2')
    x2 = fc_block1(in2, n, d=0.2)
    x2 = fc_identity(x2, n, d=0.2)
    x2 = fc_identity(x2, n, d=0.2)
    x2 = fc_identity(x2, n, d=0.2)

    x = merge([x1, x2], mode='concat', concat_axis=1)

    x = fc_identity(x, n, d=0.2)
    x = fc_identity(x, n, d=0.2)
    x = fc_block1(x, n)

    out = Dense(4716, activation='sigmoid', name='output')(x)

    model = Model(input=[in1, in2], output=out)
    model.compile(optimizer=opt, loss='categorical_crossentropy')

    model.summary()
    # plot(model=model, show_shapes=True)
    return model
项目:cocktail-party    作者:avivga    | 项目源码 | 文件源码
def train(self, x, y, learning_rate=0.01, epochs=200):
        optimizer = optimizers.adam(lr=learning_rate, decay=1e-6)
        self._model.compile(loss="mean_squared_error", optimizer=optimizer)

        self._model.fit(x, y, batch_size=32, validation_split=0.05, epochs=epochs, verbose=1)
项目:cocktail-party    作者:avivga    | 项目源码 | 文件源码
def train(self, x, y, learning_rate=0.01, epochs=200):
        optimizer = optimizers.adam(lr=learning_rate, decay=1e-6)
        self._model.compile(loss="mean_squared_error", optimizer=optimizer)

        self._model.fit(x, y, batch_size=32, validation_split=0.05, epochs=epochs, verbose=1)
项目:EEDS-keras    作者:MarkPrecursor    | 项目源码 | 文件源码
def model_EES(input_col, input_row):
    _input = Input(shape=(input_col, input_row, 1), name='input')

    EES = Conv2D(nb_filter=8, nb_row=3, nb_col=3, init='he_normal',
                 activation='relu', border_mode='same', bias=True)(_input)
    EES = Deconvolution2D(nb_filter=16, nb_row=14, nb_col=14, output_shape=(None, input_col * 2, input_row * 2, 16),
                          subsample=(2, 2), border_mode='same', init='glorot_uniform', activation='relu')(EES)
    out = Conv2D(nb_filter=1, nb_row=5, nb_col=5, init='glorot_uniform', activation='relu', border_mode='same')(EES)

    model = Model(input=_input, output=out)
    # sgd = SGD(lr=0.0001, decay=0.005, momentum=0.9, nesterov=True)
    Adam = adam(lr=0.001)
    model.compile(optimizer=Adam, loss='mean_squared_error', metrics=['mean_squared_error'])
    return model
项目:EEDS-keras    作者:MarkPrecursor    | 项目源码 | 文件源码
def model_EEDS(input_col, input_row):
    _input = Input(shape=(input_col, input_row, 1), name='input')
    EES = model_EES(input_col, input_row)(_input)
    EED = model_EED(input_col, input_row)(_input)
    _EEDS = merge(inputs=[EED, EES], mode='sum')

    model = Model(input=_input, output=_EEDS)
    Adam = adam(lr=0.001)
    model.compile(optimizer=Adam, loss='mean_squared_error', metrics=['mean_squared_error'])
    return model
项目:EEDS-keras    作者:MarkPrecursor    | 项目源码 | 文件源码
def model_EEDS():
    _input = Input(shape=(None, None, 1), name='input')
    _EES = EES.model_EES()(_input)
    _EED = EED.model_EED()(_input)
    _EEDS = add(inputs=[_EED, _EES])

    model = Model(input=_input, output=_EEDS)
    Adam = adam(lr=0.0003)
    model.compile(optimizer=Adam, loss='mse')
    return model
项目:kaggle_yt8m    作者:N01Z3    | 项目源码 | 文件源码
def get_mod(ags):
    dst = os.path.join(ags.wpath, ags.versn)
    b_scr = -1

    if ags.optim == 'adam':
        opt = adam(ags.lrate)
    elif ags.optim == 'sgd':
        opt = sgd(ags.lrate)
    else:
        opt = adam()

    lst = [build_mod2(), build_mod3(), build_mod7(), build_mod9(), build_mod11(), build_mod12(), build_mod13()]

    model = lst[ags.mtype]
    if ags.mtype == 0:
        model = build_mod2(opt)
        logging.info('start with model 2')
    elif ags.mtype == 1:
        model = build_mod3(opt)
        logging.info('start with model 3')
    elif ags.mtype == 2:
        model = build_mod7(opt)
        logging.info('start with model 7')
    elif ags.mtype == 3:
        model = build_mod9(opt)
        logging.info('start with model 9')
    elif ags.mtype == 4:
        model = build_mod11(opt)
        logging.info('start with model 11')
    elif ags.mtype == 5:
        model = build_mod12(opt)
        logging.info('start with model 12')
    elif ags.mtype == 6:
        model = build_mod13(opt)
        logging.info('start with model 13')

    if ags.begin == -1:
        fls = sorted(glob.glob(dst + '/*h5'))
        if len(fls) > 0:
            logging.info('load weights: %s' % fls[-1])
            model.load_weights(fls[-1])
            b_scr = float(os.path.basename(fls[-1]).split('_')[0])

    return model, b_scr
项目:nesgym    作者:codescv    | 项目源码 | 文件源码
def __init__(self,
                 image_shape,
                 num_actions,
                 frame_history_len=4,
                 replay_buffer_size=1000000,
                 training_freq=4,
                 training_starts=5000,
                 training_batch_size=32,
                 target_update_freq=1000,
                 reward_decay=0.99,
                 exploration=LinearSchedule(5000, 0.1),
                 log_dir="logs/"):
        """
            Double Deep Q Network
            params:
            image_shape: (height, width, n_values)
            num_actions: how many different actions we can choose
            frame_history_len: feed this number of frame data as input to the deep-q Network
            replay_buffer_size: size limit of replay buffer
            training_freq: train base q network once per training_freq steps
            training_starts: only train q network after this number of steps
            training_batch_size: batch size for training base q network with gradient descent
            reward_decay: decay factor(called gamma in paper) of rewards that happen in the future
            exploration: used to generate an exploration factor(see 'epsilon-greedy' in paper).
                         when rand(0,1) < epsilon, take random action; otherwise take greedy action.
            log_dir: path to write tensorboard logs
        """
        super().__init__()
        self.num_actions = num_actions
        self.training_freq = training_freq
        self.training_starts = training_starts
        self.training_batch_size = training_batch_size
        self.target_update_freq = target_update_freq
        self.reward_decay = reward_decay
        self.exploration = exploration

        # use multiple frames as input to q network
        input_shape = image_shape[:-1] + (image_shape[-1] * frame_history_len,)
        # used to choose action
        self.base_model = q_model(input_shape, num_actions)
        self.base_model.compile(optimizer=optimizers.adam(clipnorm=10, lr=1e-4, decay=1e-6, epsilon=1e-4), loss='mse')
        # used to estimate q values
        self.target_model = q_model(input_shape, num_actions)

        self.replay_buffer = ReplayBuffer(size=replay_buffer_size, frame_history_len=frame_history_len)
        # current replay buffer offset
        self.replay_buffer_idx = 0

        self.tensorboard_callback = TensorBoard(log_dir=log_dir)
        self.latest_losses = deque(maxlen=100)
项目:EEDS-keras    作者:MarkPrecursor    | 项目源码 | 文件源码
def model_EED(input_col, input_row):
    _input = Input(shape=(input_col, input_row, 1), name='input')

    Feature = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                     activation='relu', border_mode='same', bias=True)(_input)
    Feature = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                     activation='relu', border_mode='same', bias=True)(Feature)
    Feature3 = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                      activation='relu', border_mode='same', bias=True)(Feature)
    Feature_out = merge(inputs=[Feature, Feature3], mode='sum')

    # Upsampling
    Upsampling1 = Conv2D(nb_filter=8, nb_row=1, nb_col=1, init='glorot_uniform',
                         activation='relu', border_mode='same', bias=True)(Feature_out)
    Upsampling2 = Deconvolution2D(nb_filter=8, nb_row=14, nb_col=14,
                                  output_shape=(None, input_col * 2, input_row * 2, 8),
                                  subsample=(2, 2), border_mode='same',
                                  init='glorot_uniform', activation='relu')(Upsampling1)
    Upsampling3 = Conv2D(nb_filter=64, nb_row=1, nb_col=1, init='glorot_uniform',
                         activation='relu', border_mode='same', bias=True)(Upsampling2)

    # Mulyi-scale Reconstruction
    Reslayer1 = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                       activation='relu', border_mode='same', bias=True)(Upsampling3)
    Reslayer2 = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                       activation='relu', border_mode='same', bias=True)(Reslayer1)
    Block1 = merge(inputs=[Reslayer1, Reslayer2], mode='sum')

    Reslayer3 = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                       activation='relu', border_mode='same', bias=True)(Block1)
    Reslayer4 = Conv2D(nb_filter=64, nb_row=3, nb_col=3, init='glorot_uniform',
                       activation='relu', border_mode='same', bias=True)(Reslayer3)
    Block2 = merge(inputs=[Reslayer3, Reslayer4], mode='sum')

    # ***************//
    Multi_scale1 = Conv2D(nb_filter=16, nb_row=1, nb_col=1, init='glorot_uniform',
                          activation='relu', border_mode='same', bias=True)(Block2)
    Multi_scale2a = Conv2D(nb_filter=16, nb_row=1, nb_col=1, init='glorot_uniform',
                           activation='relu', border_mode='same', bias=True)(Multi_scale1)
    Multi_scale2b = Conv2D(nb_filter=16, nb_row=3, nb_col=3, init='glorot_uniform',
                           activation='relu', border_mode='same', bias=True)(Multi_scale1)
    Multi_scale2c = Conv2D(nb_filter=16, nb_row=5, nb_col=5, init='glorot_uniform',
                           activation='relu', border_mode='same', bias=True)(Multi_scale1)
    Multi_scale2d = Conv2D(nb_filter=16, nb_row=7, nb_col=7, init='glorot_uniform',
                           activation='relu', border_mode='same', bias=True)(Multi_scale1)
    Multi_scale2 = merge(inputs=[Multi_scale2a, Multi_scale2b, Multi_scale2c, Multi_scale2d], mode='concat')

    out = Conv2D(nb_filter=1, nb_row=1, nb_col=1, init='glorot_uniform',
                 activation='relu', border_mode='same', bias=True)(Multi_scale2)
    model = Model(input=_input, output=out)

    Adam = adam(lr=0.001)
    model.compile(optimizer=Adam, loss='mean_squared_error', metrics=['mean_squared_error'])

    return model