我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pylab.ylabel()。
def hrd_key(self, key_str): """ plot an HR diagram Parameters ---------- key_str : string A label string """ pyl.plot(self.data[:,self.cols['log_Teff']-1],\ self.data[:,self.cols['log_L']-1],label = key_str) pyl.legend() pyl.xlabel('log Teff') pyl.ylabel('log L') x1,x2=pl.xlim() if x2 > x1: self._xlimrev()
def compare_images(path = '.'): S_limit = 10. file_list = glob.glob(os.path.join(path, 'Abu*')) file_list_master = glob.glob(os.path.join(path, 'MasterAbu*')) file_list.sort() file_list_master.sort() S=[] print("Identifying images with rmq > "+'%3.1f'%S_limit) ierr_count = 0 for i in range(len(file_list)): this_S,fimg1,fimg2 = compare_entropy(file_list[i],file_list_master[i]) if this_S > S_limit: warnings.warn(file_list[i]+" and "+file_list_master[i]+" differ by "+'%6.3f'%this_S) ierr_count += 1 S.append(this_S) if ierr_count > 0: print("Error: at least one image differs by more than S_limit") sys.exit(1) #print ("S: ",S) #plb.plot(S,'o') #plb.xlabel("image number") #plb.ylabel("modified log KL-divergence to previous image") #plb.show()
def plot_volcano(logFC,p_val,sample_name,saveName,logFC_thresh): fig=pl.figure() ## To plot and save pl.scatter(logFC[(p_val>0.05)|(abs(logFC)<logFC_thresh)],-np.log10(p_val[(p_val>0.05)|(abs(logFC)<logFC_thresh)]),color='blue',alpha=0.5); pl.scatter(logFC[(p_val<0.05)&(abs(logFC)>logFC_thresh)],-np.log10(p_val[(p_val<0.05)&(abs(logFC)>logFC_thresh)]),color='red'); pl.hlines(-np.log10(0.05),min(logFC),max(logFC)) pl.vlines(-logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val))) pl.vlines(logFC_thresh,min(-np.log10(p_val)),max(-np.log10(p_val))) pl.xlim(-3,3) pl.xlabel('Log Fold Change') pl.ylabel('-log10(p-value)') pl.savefig(saveName) pl.close(fig) # def plot_histograms(df_peaks,pntr_list): # # for pntr in pntr_list: # colName =pntr[2]+'_Intragenic_position' # pl.hist(df_peaks[colName]) # pl.xlabel(colName) # pl.ylabel() # pl.show()
def plot(traj, x, y, **kwargs): """ Create a matplotlib plot of property x against property y Args: x,y (str): names of the properties **kwargs (dict): kwargs for :meth:`matplotlib.pylab.plot` Returns: List[matplotlib.lines.Lines2D]: the lines that were plotted """ from matplotlib import pylab xl = yl = None if type(x) is str: strx = x x = getattr(traj, x) xl = '%s / %s' % (strx, getattr(x, 'units', 'dimensionless')) if type(y) is str: stry = y y = getattr(traj, y) yl = '%s / %s' % (stry, getattr(y, 'units', 'dimensionless')) plt = pylab.plot(x, y, **kwargs) pylab.xlabel(xl); pylab.ylabel(yl); pylab.grid() return plt
def plot_confusion_matrix(cm, label_list, title='Confusion matrix', cmap=None): from matplotlib import pylab cm = np.asarray(cm, dtype=np.float32) for i, row in enumerate(cm): cm[i] = cm[i] / np.sum(cm[i]) #import matplotlib.pyplot as plt #plt.ion() pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0) ax = pylab.axes() ax.set_xticks(range(len(label_list))) ax.set_xticklabels(label_list, rotation='vertical') ax.xaxis.set_ticks_position('bottom') ax.set_yticks(range(len(label_list))) ax.set_yticklabels(label_list) pylab.title(title) pylab.colorbar() pylab.grid(False) pylab.xlabel('Predicted class') pylab.ylabel('True class') pylab.grid(False) pylab.savefig('test.jpg') pylab.show()
def plot_position(self, pos_true, pos_est): N = pos_est.shape[1] pos_true = pos_true[:, :N] pos_est = pos_est[:, :N] # Figure plt.figure() plt.suptitle("Position") # Ground truth plt.plot(pos_true[0, :], pos_true[1, :], color="red", marker="o", label="Grouth truth") # Estimated plt.plot(pos_est[0, :], pos_est[1, :], color="blue", marker="o", label="Estimated") # Plot labels and legends plt.xlabel("East (m)") plt.ylabel("North (m)") plt.axis("equal") plt.legend(loc=0)
def plot_1d(dataset, nbins, data): with sns.axes_style('white'): plt.rc('font', weight='bold') plt.rc('grid', lw=2) plt.rc('lines', lw=3) plt.figure(1) plt.hist(data, bins=np.arange(nbins+1), color='blue') plt.ylabel('Count', weight='bold', fontsize=24) xticks = list(plt.gca().get_xticks()) while (nbins-1) / float(xticks[-1]) < 1.1: xticks = xticks[:-1] while xticks[0] < 0: xticks = xticks[1:] xticks.append(nbins-1) xticks = list(sorted(xticks)) plt.gca().set_xticks(xticks) plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))]) plt.legend(loc='upper right') plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight') plt.clf() plt.close()
def plot_1d(dataset, nbins): data = np.loadtxt('experiments/uci/data/splits/{0}_all.csv'.format(dataset), skiprows=1, delimiter=',')[:,-1] with sns.axes_style('white'): plt.rc('font', weight='bold') plt.rc('grid', lw=2) plt.rc('lines', lw=3) plt.figure(1) plt.hist(data, bins=np.arange(nbins+1), color='blue') plt.ylabel('Count', weight='bold', fontsize=24) xticks = list(plt.gca().get_xticks()) while (nbins-1) / float(xticks[-1]) < 1.1: xticks = xticks[:-1] while xticks[0] < 0: xticks = xticks[1:] xticks.append(nbins-1) xticks = list(sorted(xticks)) plt.gca().set_xticks(xticks) plt.xlim([int(np.ceil(-0.05*nbins)),int(np.ceil(nbins*1.05))]) plt.legend(loc='upper right') plt.savefig('plots/marginals-{0}.pdf'.format(dataset.replace('_','-')), bbox_inches='tight') plt.clf() plt.close()
def plotLine(self, x_vals, y_vals, x_label, y_label, title, filename=None): plt.clf() plt.xlabel(x_label) plt.xlim(((min(x_vals) - 0.5), (max(x_vals) + 0.5))) plt.ylabel(y_label) plt.ylim(((min(y_vals) - 0.5), (max(y_vals) + 0.5))) plt.title(title) plt.plot(x_vals, y_vals, c='k', lw=2) #plt.plot(x_vals, len(x_vals) * y_vals[0], c='r', lw=2) if filename == None: plt.show() else: plt.savefig(self.outputPath + filename)
def plot_entropy(): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) title = "Entropy $H(X)$" pylab.title(title) pylab.xlabel("$P(X=$coin will show heads up$)$") pylab.ylabel("$H(X)$") pylab.xlim(xmin=0, xmax=1.1) x = np.arange(0.001, 1, 0.001) y = -x * np.log2(x) - (1 - x) * np.log2(1 - x) pylab.plot(x, y) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]]) pylab.autoscale(tight=True) pylab.grid(True) filename = "entropy_demo.png" pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
def plot_clustering(x, y, title, mx=None, ymax=None, xmin=None, km=None): pylab.figure(num=None, figsize=(8, 6)) if km: pylab.scatter(x, y, s=50, c=km.predict(list(zip(x, y)))) else: pylab.scatter(x, y, s=50) pylab.title(title) pylab.xlabel("Occurrence word 1") pylab.ylabel("Occurrence word 2") pylab.autoscale(tight=True) pylab.ylim(ymin=0, ymax=1) pylab.xlim(xmin=0, xmax=1) pylab.grid(True, linestyle='-', color='0.75') return pylab
def plot_confusion_matrix(cm, genre_list, name, title): pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=1.0) ax = pylab.axes() ax.set_xticks(range(len(genre_list))) ax.set_xticklabels(genre_list) ax.xaxis.set_ticks_position("bottom") ax.set_yticks(range(len(genre_list))) ax.set_yticklabels(genre_list) pylab.title(title) pylab.colorbar() pylab.grid(False) pylab.show() pylab.xlabel('Predicted class') pylab.ylabel('True class') pylab.grid(False) pylab.savefig( os.path.join(CHART_DIR, "confusion_matrix_%s.png" % name), bbox_inches="tight")
def plot_roc(auc_score, name, tpr, fpr, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.plot([0, 1], [0, 1], 'k--') pylab.plot(fpr, tpr) pylab.fill_between(fpr, tpr, alpha=0.5) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('False Positive Rate') pylab.ylabel('True Positive Rate') pylab.title('ROC curve (AUC = %0.2f) / %s' % (auc_score, label), verticalalignment="bottom") pylab.legend(loc="lower right") filename = name.replace(" ", "_") pylab.savefig( os.path.join(CHART_DIR, "roc_" + filename + ".png"), bbox_inches="tight")
def plotKChart(self, misClassDict, saveFigPath): kList = [] misRateList = [] for k, misClassNum in misClassDict.iteritems(): kList.append(k) misRateList.append(1.0 - 1.0/k*misClassNum) fig = plt.figure(saveFigPath) plt.plot(kList, misRateList, 'r--') plt.title(saveFigPath) plt.xlabel('k Num.') plt.ylabel('Misclassified Rate') plt.legend(saveFigPath) plt.grid(True) plt.savefig(saveFigPath) plt.show() ################################### PART3 TEST ######################################## # ??
def backtest(config_file, day_trade): cfg = config.Config(config_file) cfg.day_trade = day_trade dfs = load_data(config_file) trender = strategies[cfg.strategy](**cfg.strategy_parameters) res = [] for df in dfs: res.append(trender.backtest(data_frame=df)) final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in zip(cfg.data_path, res)}) profit_series = final_panel.sum(axis=0)['total_profit'].cumsum() final_panel.to_excel(cfg.output_file) if cfg.show: profit_series.plot() plt.xlabel('Time') plt.ylabel('Profit') plt.legend('Profit') plt.show()
def fit_data(): data=np.loadtxt('data.dat') print(data) params = dict() params["c"] = {"min" : -np.inf,"max" : np.inf} result = qudi_fitting.make_lorentzian_fit(axis=data[:,0], data=data[:,3], add_parameters=params) print(result.fit_report()) plt.plot(data[:,0],-data[:,3]+2,"b-o",label="data mean") # plt.plot(data[:,0],data[:,1],label="data") # plt.plot(data[:,0],data[:,2],label="data") plt.plot(data[:,0],-result.best_fit+2,"r-",linewidth=2.,label="fit") # plt.plot(data[:,0],result.init_fit,label="init") plt.xlabel("time (ns)") plt.ylabel("polarization transfer (arb. u.)") plt.legend(loc=1) # plt.savefig("pol20_24repetition_pol.pdf") # plt.savefig("pol20_24repetition_pol.png") plt.show() savedata=[[data[ii,0],-data[ii,3]+2,-result.best_fit[ii]+2] for ii in range(len(data[:,0]))] np.savetxt("pol_data_fit.csv",savedata) # print(result.params) print(result.params)
def plot_penalty_vl(debug, tag, fold_exp): plt.close("all") vl = np.array(debug["penalty"]) fig = plt.figure(figsize=(15, 10.8), dpi=300) names = debug["names"] for i in range(vl.shape[1]): if vl.shape[1] > 1: plt.plot(vl[:, i], label="layer_"+str(names[i])) else: plt.plot(vl[:], label="layer_"+str(names[i])) plt.xlabel("mini-batchs") plt.ylabel("value of penlaty") plt.title( "Penalty value over layers:" + "_".join([str(k) for k in names]) + ". tag:" + tag) plt.legend(loc='upper right', fancybox=True, shadow=True, prop={'size': 8}) plt.grid(True) fig.savefig(fold_exp+"/penalty.png", bbox_inches='tight') plt.close('all') del fig
def plot_roc(y_test, y_pred, label=''): """Compute ROC curve and ROC area""" fpr, tpr, _ = roc_curve(y_test, y_pred) roc_auc = auc(fpr, tpr) # Plot of a ROC curve for a specific class plt.figure() plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic' + label) plt.legend(loc="lower right") plt.show()
def modelfit(alg, dtrain, predictors, useTrainCV=True, cv_folds=5, early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(dtrain[predictors].values, label=dtrain['label'].values) cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds, metrics='auc', early_stopping_rounds=early_stopping_rounds, show_progress=False) alg.set_params(n_estimators=cvresult.shape[0]) # Fit the algorithm on the data alg.fit(dtrain[predictors], dtrain['label'], eval_metric='auc') # Predict training set: dtrain_predictions = alg.predict(dtrain[predictors]) dtrain_predprob = alg.predict_proba(dtrain[predictors])[:, 1] # Print model report: print "\nModel Report" print "Accuracy : %.4g" % metrics.accuracy_score(dtrain['Disbursed'].values, dtrain_predictions) print "AUC Score (Train): %f" % metrics.roc_auc_score(dtrain['Disbursed'], dtrain_predprob) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score')
def plot_confusion_matrix(cm, plot_title, filename, genres=None): if not genres: genres = GENRES pylab.clf() pylab.matshow(cm, fignum=False, cmap='Blues', vmin=0, vmax=100.0) axes = pylab.axes() axes.set_xticks(range(len(genres))) axes.set_xticklabels(genres, rotation=45) axes.set_yticks(range(len(genres))) axes.set_yticklabels(genres) axes.xaxis.set_ticks_position("bottom") pylab.title(plot_title, fontsize=14) pylab.colorbar() pylab.xlabel('Predicted class', fontsize=12) pylab.ylabel('Correct class', fontsize=12) pylab.grid(False) #pylab.show() pylab.savefig(os.path.join(PLOTS_DIR, "cm_%s.eps" % filename), bbox_inches="tight")
def plotSpeedupFigure(AllInfo, maxWorker=1, **kwargs): pylab.figure(2) xs = AllInfo['nWorker'] ts_mono = AllInfo['t_monolithic'] xgrid = np.linspace(0, maxWorker + 0.1, 100) pylab.plot(xgrid, xgrid, 'y--', label='ideal parallel') for method in getMethodNames(**kwargs): speedupRatio = ts_mono / AllInfo['t_' + method] pylab.plot(xs, speedupRatio, 'o-', label=method, color=ColorMap[method], markeredgecolor=ColorMap[method]) pylab.xlim([-0.2, maxWorker + 0.5]) pylab.ylim([0, maxWorker + 0.5]) pylab.legend(loc='upper left') pylab.xlabel('Number of Workers') pylab.ylabel('Speedup over Monolithic')
def plotBoundVsAlph(alphaVals=np.linspace(.001, 3, 1000), beta1=0.5): exactVals = cD_exact(alphaVals, beta1) boundVals = cD_bound(alphaVals, beta1) assert np.all(exactVals >= boundVals) pylab.plot(alphaVals, exactVals, 'k-', linewidth=LINEWIDTH) pylab.plot(alphaVals, boundVals, 'r--', linewidth=LINEWIDTH) pylab.xlabel("alpha", fontsize=FONTSIZE) pylab.ylabel(" ", fontsize=FONTSIZE) pylab.xlim([np.min(alphaVals) - 0.1, np.max(alphaVals) + 0.1]) pylab.ylim([np.min(exactVals) - 0.05, np.max(exactVals) + 0.05]) pylab.xticks(np.arange(np.max(alphaVals) + 1)) pylab.legend(['c_D exact', 'c_D surrogate'], fontsize=LEGENDSIZE, loc='lower right') pylab.tick_params(axis='both', which='major', labelsize=TICKSIZE)
def nmf(fdoc, fvocab): T = 100 nmf = NMF(fdoc, fvocab) nmf.train(T) nmf.get_words() # print(mf.R) plt.figure() plt.plot(range(1,T+1),nmf.objective) plt.xticks(np.linspace(1,T,10)) plt.xlabel('Iterations') plt.ylabel('Objective') plt.title('Variation of objective with iterations') plt.savefig('hw5_2a.png') plt.show()
def gp_partd(Xtrain,ytrain,Xtest,ytest): gp = gaussian_process(Xtrain[:,3],ytrain,Xtrain[:,3],ytrain) gp.init_kernel_matrices(b=5,var=2) gp.predict_test() x = np.asarray(Xtrain[:,3]).flatten() xsortind = np.argsort(x) y1 = np.asarray(ytrain).flatten() y2 = np.asarray(gp.test_predictions).flatten() plt.figure() plt.scatter(x[xsortind],y1[xsortind]) plt.plot(x[xsortind],y2[xsortind],'b-') plt.xlabel('Car Weight (Dimension 4)') plt.ylabel('Outcome') plt.title('Visualizing model through single dimension') plt.savefig('hw3_gaussian_dim4_viz') plt.show()
def energy_profile(self,ixaxis): """ Plot radial profile of key energy generations eps_nuc, eps_neu etc. Parameters ---------- ixaxis : 'mass' or 'radius' """ mass = self.get('mass') radius = self.get('radius') * ast.rsun_cm eps_nuc = self.get('eps_nuc') eps_neu = self.get('non_nuc_neu') if ixaxis == 'mass': xaxis = mass xlab = 'Mass / M$_\odot$' else: xaxis = old_div(radius, 1.e8) # Mm xlab = 'radius / Mm' pl.plot(xaxis, np.log10(eps_nuc), 'k-', label='$\epsilon_\mathrm{nuc}>0$') pl.plot(xaxis, np.log10(-eps_nuc), 'k--', label='$\epsilon_\mathrm{nuc}<0$') pl.plot(xaxis, np.log10(eps_neu), 'r-', label='$\epsilon_\\nu$') pl.xlabel(xlab) pl.ylabel('$\log(\epsilon_\mathrm{nuc},\epsilon_\\nu)$') pl.legend(loc='best').draw_frame(False)
def hrd_new(self, input_label="", skip=0): """ plot an HR diagram with options to skip the first N lines and add a label string Parameters ---------- input_label : string, optional Diagram label. The default is "". skip : integer, optional Skip the first n lines. The default is 0. """ xl_old=pyl.gca().get_xlim() if input_label == "": my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z']) else: my_label="M="+str(self.header_attr['initial_mass'])+", Z="+str(self.header_attr['initial_z'])+"; "+str(input_label) pyl.plot(self.data[skip:,self.cols['log_Teff']-1],self.data[skip:,self.cols['log_L']-1],label = my_label) pyl.legend(loc=0) xl_new=pyl.gca().get_xlim() pyl.xlabel('log Teff') pyl.ylabel('log L') if any(array(xl_old)==0): pyl.gca().set_xlim(max(xl_new),min(xl_new)) elif any(array(xl_new)==0): pyl.gca().set_xlim(max(xl_old),min(xl_old)) else: pyl.gca().set_xlim([max(xl_old+xl_new),min(xl_old+xl_new)])
def t_lumi(self,num_frame,xax): """ Luminosity evolution as a function of time or model. Parameters ---------- num_frame : integer Number of frame to plot this plot into. xax : string Either model or time to indicate what is to be used on the x-axis """ pyl.figure(num_frame) if xax == 'time': xaxisarray = self.get('star_age') elif xax == 'model': xaxisarray = self.get('model_number') else: print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"') logLH = self.get('log_LH') logLHe = self.get('log_LHe') pyl.plot(xaxisarray,logLH,label='L_(H)') pyl.plot(xaxisarray,logLHe,label='L(He)') pyl.ylabel('log L') pyl.legend(loc=2) if xax == 'time': pyl.xlabel('t / yrs') elif xax == 'model': pyl.xlabel('model number')
def t_surf_parameter(self, num_frame, xax): """ Surface parameter evolution as a function of time or model. Parameters ---------- num_frame : integer Number of frame to plot this plot into. xax : string Either model or time to indicate what is to be used on the x-axis """ pyl.figure(num_frame) if xax == 'time': xaxisarray = self.get('star_age') elif xax == 'model': xaxisarray = self.get('model_number') else: print('kippenhahn_error: invalid string for x-axis selction. needs to be "time" or "model"') logL = self.get('log_L') logTeff = self.get('log_Teff') pyl.plot(xaxisarray,logL,'-k',label='log L') pyl.plot(xaxisarray,logTeff,'-k',label='log Teff') pyl.ylabel('log L, log Teff') pyl.legend(loc=2) if xax == 'time': pyl.xlabel('t / yrs') elif xax == 'model': pyl.xlabel('model number')
def test_abu_evolution(self): from nugridpy import ppn, utils import matplotlib matplotlib.use('agg') import matplotlib.pylab as mpy import os # Perform tests within temporary directory with TemporaryDirectory() as tdir: # wget the data for a ppn run from the CADC VOspace os.system("wget -q --content-disposition --directory '" + tdir + "' "\ + "'http://www.canfar.phys.uvic.ca/vospace/synctrans?TARGET="\ + "vos%3A%2F%2Fcadc.nrc.ca%21vospace%2Fnugrid%2Fdata%2Fprojects%2Fppn%2Fexamples%2F"\ + "ppn_Hburn_simple%2Fx-time.dat&DIRECTION=pullFromVoSpace&PROTOCOL"\ + "=ivo%3A%2F%2Fivoa.net%2Fvospace%2Fcore%23httpget'") #nugrid_dir= os.path.dirname(os.path.dirname(ppn.__file__)) #NuPPN_dir= nugrid_dir + "/NuPPN" #test_data_dir= NuPPN_dir + "/examples/ppn_Hburn_simple/RUN_MASTER" symbs=utils.symbol_list('lines2') x=ppn.xtime(tdir) specs=['PROT','HE 4','C 12','N 14','O 16'] i=0 for spec in specs: x.plot('time',spec,logy=True,logx=True,shape=utils.linestyle(i)[0],show=False,title='') i += 1 mpy.ylim(-5,0.2) mpy.legend(loc=0) mpy.xlabel('$\log t / \mathrm{min}$') mpy.ylabel('$\log X \mathrm{[mass fraction]}$') abu_evol_file = 'abu_evolution.png' mpy.savefig(abu_evol_file) self.assertTrue(os.path.exists(abu_evol_file))
def modelfit(alg, predictors, target, useTrainCV=True, cv_folds=5, early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(predictors.values, label=target.values) cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,\ metrics=['auc'], early_stopping_rounds=early_stopping_rounds, show_progress=False) alg.set_params(n_estimators=cvresult.shape[0]) #Fit the algorithm on the data alg.fit(predictors, target, eval_metric='auc') #Predict training set: dtrain_predictions = alg.predict(predictors) dtrain_predprob = alg.predict_proba(predictors)[:, 1] #Print model report: print("\nModel Report") print("Accuracy : %.4g" % metrics.accuracy_score(target.values, dtrain_predictions)) print("AUC Score (Train): %f" % metrics.roc_auc_score(target, dtrain_predprob)) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score') # examples of usage # 1
def hackathon_GBC_model(clf, train, features): clf.fit(train[features], train["Class"]) probab_of_predict = clf.predict_proba(train[features])[:,1] predict_train = clf.predict(train[features]) cv_score = cross_val_score(clf, train[features], train["Class"], cv=5, scoring="roc_auc") print("----------------------Model performance-----------------------") print("Accuracy score: ", accuracy_score(train["Class"].values, predict_train)) print("AUC: ", roc_auc_score(train["Class"],probab_of_predict) ) print("CV score: Mean - {}, Max - {}, Min - {}, Std - {}".format(np.mean(cv_score), np.max(cv_score), np.min(cv_score), np.std(cv_score))) Relative_Feature_importance = pd.Series(clf.feature_importances_, features).sort_values(ascending=False) Relative_Feature_importance.plot(kind='bar', title='Order of Feature Importance') plt.ylabel('Feature Importance') plt.show()
def onehist(x,xlabel='',fontsize=12): """ Script that plots the histogram of x with the corresponding xlabel. """ pylab.clf() pylab.rcParams.update({'font.size': fontsize}) pylab.hist(x,histtype='stepfilled') pylab.legend() #### Change the X-axis appropriately #### pylab.xlabel(xlabel) pylab.ylabel('Number') pylab.draw() pylab.show()
def plot_graphs(df, trending_daily, day_from, day_to, limit, country_code, folder_out=None): days = pd.DatetimeIndex(start=day_from, end=day_to, freq='D') for day in days: fig = plt.figure() ax = fig.add_subplot(111) plt.rc('lines', linewidth=2) data = trending_daily.get_group(str(day.date())) places, clusters = top_trending(data, limit) for cluster in clusters: places.add(max_from_cluster(cluster, data)) ax.set_prop_cycle(plt.cycler('color', ['r', 'b', 'yellow'] + [plt.cm.Accent(i) for i in np.linspace(0, 1, limit-3)] ) + plt.cycler('linestyle', ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--'])) frame = export(places, clusters, data) frame.sort_values('trending_rank', ascending=False, inplace=True) for i in range(len(frame)): item = frame.index[i] lat, lon, country = item result_items = ReverseGeoCode().get_address_attributes(lat, lon, 10, 'city', 'country_code') if 'city' not in result_items.keys(): mark = "%s (%s)" % (manipulate_display_name(result_items['display_name']), result_items['country_code'].upper() if 'country_code' in result_items.keys() else country) else: if check_eng(result_items['city']): mark = "%s (%s)" % (result_items['city'], result_items['country_code'].upper()) else: mark = "%.2f %.2f (%s)" % (lat, lon, result_items['country_code'].upper()) gp = df.loc[item].plot(ax=ax, x='date', y='count', label=mark) ax.tick_params(axis='both', which='major', labelsize=10) ax.set_yscale("log", nonposy='clip') plt.xlabel('Date', fontsize='small', verticalalignment='baseline', horizontalalignment='right') plt.ylabel('Total number of views (log)', fontsize='small', verticalalignment='center', horizontalalignment='center', labelpad=6) gp.legend(loc='best', fontsize='xx-small', ncol=2) gp.set_title('Top 10 OSM trending places on ' + str(day.date()), {'fontsize': 'large', 'verticalalignment': 'bottom'}) plt.tight_layout() db = TrendingDb() db.update_table_img(plt, str(day.date()), region=country_code) plt.close()
def plot_word_freq_dist(text): fd = text.vocab() samples = [item for item, _ in fd.most_common(50)] values = [fd[sample] for sample in samples] values = [sum(values[:i+1]) * 100.0/fd.N() for i in range(len(values))] pylab.title(text.name) pylab.xlabel("Samples") pylab.ylabel("Cumulative Percentage") pylab.plot(values) pylab.xticks(range(len(samples)), [str(s) for s in samples], rotation=90) pylab.show()
def demo(text=None): from nltk.corpus import brown from matplotlib import pylab tt = TextTilingTokenizer(demo_mode=True) if text is None: text = brown.raw()[:10000] s, ss, d, b = tt.tokenize(text) pylab.xlabel("Sentence Gap index") pylab.ylabel("Gap Scores") pylab.plot(range(len(s)), s, label="Gap Scores") pylab.plot(range(len(ss)), ss, label="Smoothed Gap scores") pylab.plot(range(len(d)), d, label="Depth scores") pylab.stem(range(len(b)), b) pylab.legend() pylab.show()
def plot_position(self, pos_true, pos_est, cam_states): N = pos_est.shape[1] pos_true = pos_true[:, :N] pos_est = pos_est[:, :N] # Figure plt.figure() plt.suptitle("Position") # Ground truth plt.plot(pos_true[0, :], pos_true[1, :], color="red", label="Grouth truth") # color="red", marker="x", label="Grouth truth") # Estimated plt.plot(pos_est[0, :], pos_est[1, :], color="blue", label="Estimated") # color="blue", marker="o", label="Estimated") # Sliding window cam_pos = [] for cam_state in cam_states: cam_pos.append(cam_state.p_G) cam_pos = np.array(cam_pos).reshape((len(cam_pos), 3)).T plt.plot(cam_pos[0, :], cam_pos[1, :], color="green", label="Camera Poses") # color="green", marker="o", label="Camera Poses") # Plot labels and legends plt.xlabel("East (m)") plt.ylabel("North (m)") plt.axis("equal") plt.legend(loc=0)
def plot_velocity(self, timestamps, vel_true, vel_est): N = vel_est.shape[1] t = timestamps[:N] vel_true = vel_true[:, :N] vel_est = vel_est[:, :N] # Figure plt.figure() plt.suptitle("Velocity") # X axis plt.subplot(311) plt.plot(t, vel_true[0, :], color="red", label="Ground_truth") plt.plot(t, vel_est[0, :], color="blue", label="Estimate") plt.title("x-axis") plt.xlabel("Date Time") plt.ylabel("ms^-1") plt.legend(loc=0) # Y axis plt.subplot(312) plt.plot(t, vel_true[1, :], color="red", label="Ground_truth") plt.plot(t, vel_est[1, :], color="blue", label="Estimate") plt.title("y-axis") plt.xlabel("Date Time") plt.ylabel("ms^-1") plt.legend(loc=0) # Z axis plt.subplot(313) plt.plot(t, vel_true[2, :], color="red", label="Ground_truth") plt.plot(t, vel_est[2, :], color="blue", label="Estimate") plt.title("z-axis") plt.xlabel("Date Time") plt.ylabel("ms^-1") plt.legend(loc=0)
def plot_attitude(self, timestamps, att_true, att_est): # Setup N = att_est.shape[1] t = timestamps[:N] att_true = att_true[:, :N] att_est = att_est[:, :N] # Figure plt.figure() plt.suptitle("Attitude") # X axis plt.subplot(311) plt.plot(t, att_true[0, :], color="red", label="Ground_truth") plt.plot(t, att_est[0, :], color="blue", label="Estimate") plt.title("x-axis") plt.legend(loc=0) plt.xlabel("Date Time") plt.ylabel("rad s^-1") # Y axis plt.subplot(312) plt.plot(t, att_true[1, :], color="red", label="Ground_truth") plt.plot(t, att_est[1, :], color="blue", label="Estimate") plt.title("y-axis") plt.legend(loc=0) plt.xlabel("Date Time") plt.ylabel("rad s^-1") # Z axis plt.subplot(313) plt.plot(t, att_true[2, :], color="red", label="Ground_truth") plt.plot(t, att_est[2, :], color="blue", label="Estimate") plt.title("z-axis") plt.legend(loc=0) plt.xlabel("Date Time") plt.ylabel("rad s^-1")
def plot_storage(self, storage): plt.figure() plt.plot(range(len(storage)), storage) plt.title("Num of tracks over time") plt.xlabel("Frame No.") plt.ylabel("Num of Tracks")
def plot_tracked(self, tracked): plt.figure() plt.plot(range(len(tracked)), tracked) plt.title("Matches per Frame") plt.xlabel("Frame No.") plt.ylabel("Num of Tracks")
def plot_1d_model(self): plt.subplot(131) plt.plot(self.rho_bg,self.radius) plt.xlabel('density (kg/m3)') plt.ylabel('radius (km)') plt.subplot(132) plt.plot(self.vp_bg,self.radius) plt.xlabel('Vp (km/s)') plt.ylabel('radius (km)') plt.subplot(133) plt.plot(self.vs_bg,self.radius) plt.xlabel('Vs (km/s)') plt.ylabel('radius (km)') plt.show()
def plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0): """ Plot a radiallysymmetric Q model. plot_q(model='cem', r_min=0.0, r_max=6371.0, dr=1.0): r_min=minimum radius [km], r_max=maximum radius [km], dr=radius increment [km] Currently available models (model): cem, prem, ql6 """ r = np.arange(r_min, r_max+dr, dr) q = np.zeros(len(r)) for k in range(len(r)): if model=='cem': q[k]=q_cem(r[k]) elif model=='ql6': q[k]=q_ql6(r[k]) elif model=='prem': q[k]=q_prem(r[k]) plt.plot(r,q,'k') plt.xlim((0.0,r_max)) plt.xlabel('radius [km]') plt.ylabel('Q') plt.show() ################################################################################################### #- CEM, EUMOD ###################################################################################################
def ylabel(s, *args, **kwargs): print "Warning! Failed to import matplotlib so no axes will be labeled"
def _plot_mi_func(x, y): mi = mutual_info(x, y) title = "NI($X_1$, $X_2$) = %.3f" % mi pylab.scatter(x, y) pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$")
def _plot_correlation_func(x, y): r, p = pearsonr(x, y) title = "Cor($X_1$, $X_2$) = %.3f" % r pylab.scatter(x, y) pylab.title(title) pylab.xlabel("$X_1$") pylab.ylabel("$X_2$") f1 = scipy.poly1d(scipy.polyfit(x, y, 1)) pylab.plot(x, f1(x), "r--", linewidth=2) # pylab.xticks([w*7*24 for w in [0,1,2,3,4]], ['week %i'%(w+1) for w in # [0,1,2,3,4]])
def plot_pr(auc_score, name, phase, precision, recall, label=None): pylab.clf() pylab.figure(num=None, figsize=(5, 4)) pylab.grid(True) pylab.fill_between(recall, precision, alpha=0.5) pylab.plot(recall, precision, lw=1) pylab.xlim([0.0, 1.0]) pylab.ylim([0.0, 1.0]) pylab.xlabel('Recall') pylab.ylabel('Precision') pylab.title('P/R curve (AUC=%0.2f) / %s' % (auc_score, label)) filename = name.replace(" ", "_") pylab.savefig(os.path.join(CHART_DIR, "pr_%s_%s.png" % (filename, phase)), bbox_inches="tight")
def plot_log(): pylab.clf() pylab.figure(num=None, figsize=(6, 5)) x = np.arange(0.001, 1, 0.001) y = np.log(x) pylab.title('Relationship between probabilities and their logarithm') pylab.plot(x, y) pylab.grid(True) pylab.xlabel('P') pylab.ylabel('log(P)') filename = 'log_probs.png' pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")
def plot_feat_hist(data_name_list, filename=None): pylab.clf() num_rows = 1 + (len(data_name_list) - 1) / 2 num_cols = 1 if len(data_name_list) == 1 else 2 pylab.figure(figsize=(5 * num_cols, 4 * num_rows)) for i in range(num_rows): for j in range(num_cols): pylab.subplot(num_rows, num_cols, 1 + i * num_cols + j) x, name = data_name_list[i * num_cols + j] pylab.title(name) pylab.xlabel('Value') pylab.ylabel('Density') # the histogram of the data max_val = np.max(x) if max_val <= 1.0: bins = 50 elif max_val > 50: bins = 50 else: bins = max_val n, bins, patches = pylab.hist( x, bins=bins, normed=1, facecolor='green', alpha=0.75) pylab.grid(True) if not filename: filename = "feat_hist_%s.png" % name pylab.savefig(os.path.join(CHART_DIR, filename), bbox_inches="tight")