Python matplotlib.pyplot 模块,subplot() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.subplot()

项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot_pts(points, values, colorbar=True, subplot_loc=None, mytitle=None, show_axis='on', vmin=None, vmax=None, xlim=(0,1), ylim=(0,1)):
    if subplot_loc is not None:
        plt.subplot(subplot_loc)

    pp = plt.scatter(points[:,0], points[:,1], c=values.get_local(), marker=",", s=20, vmin=vmin, vmax=vmax)

    plt.axis(show_axis)

    if colorbar:
        plt.colorbar(pp, fraction=.1, pad=0.2)
    else:
        plt.gca().set_aspect('equal')

    if mytitle is not None:
        plt.title(mytitle, fontsize=20)

    if xlim is not None:
        plt.xlim(xlim)

    if ylim is not None:
        plt.ylim(ylim)

    return pp
项目:cube_browser    作者:SciTools    | 项目源码 | 文件源码
def test_without_bounds(self):
        for coord in self.coords:
            coord = self.cube.coord(coord)
            coord.bounds = None
        ax = plt.subplot(111, projection=self.projection)
        plot = Pcolormesh(self.cube, ax, coords=self.coords)
        for index in range(self.cube.shape[0]):
            element = plot(time=index)
            self.assertIsInstance(element, QuadMesh)
            self.assertEqual(element, plot.element)
            self.assertIsInstance(plot.axes, GeoAxesSubplot)
            self.assertEqual(ax, plot.axes)
            for coord in self.coords:
                self.assertTrue(plot.subcube.coord(coord).has_bounds())
            subcube = self.cube[index]
            for coord in self.coords:
                subcube.coord(coord).guess_bounds()
            self.assertEqual(subcube, plot.subcube)
项目:cube_browser    作者:SciTools    | 项目源码 | 文件源码
def test_with_bounds(self):
        for coord in self.coords:
            coord = self.cube.coord(coord)
            if not coord.has_bounds():
                coord.guess_bounds()
        ax = plt.subplot(111, projection=self.projection)
        plot = Pcolormesh(self.cube, ax, coords=self.coords)
        for index in range(self.cube.shape[0]):
            element = plot(time=index)
            self.assertIsInstance(element, QuadMesh)
            self.assertEqual(element, plot.element)
            self.assertIsInstance(plot.axes, GeoAxesSubplot)
            self.assertEqual(ax, plot.axes)
            for coord in self.coords:
                self.assertTrue(plot.subcube.coord(coord).has_bounds())
            self.assertEqual(self.cube[index], plot.subcube)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def analyze(context=None, results=None):
    import matplotlib.pyplot as plt

    # Plot the portfolio and asset data.
    ax1 = plt.subplot(211)
    results.algorithm_period_return.plot(ax=ax1,color='blue',legend=u'????')
    ax1.set_ylabel(u'??')
    results.benchmark_period_return.plot(ax=ax1,color='red',legend=u'????')

    # Show the plot.
    plt.gcf().set_size_inches(18, 8)
    plt.show()



# loading the data
项目:Google-QuickDraw    作者:ankonzoid    | 项目源码 | 文件源码
def plot_labeled_images_random(image_list, label_list, categories, n, title_str, ypixels, xpixels, seed, filename):
    random.seed(seed)
    index_sample = random.sample(range(len(image_list)), n)
    plt.figure(figsize=(2*n, 2))
    #plt.suptitle(title_str)
    for i, ind in enumerate(index_sample):
        ax = plt.subplot(1, n, i + 1)
        plt.imshow(image_list[ind].reshape(ypixels, xpixels))
        plt.gray()
        ax.set_title(categories[label_list[ind]], fontsize=20)
        ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False)
    if 1:
        pylab.savefig(filename, bbox_inches='tight')
    else:
        plt.show()

# plot_unlabeled_images_random: plots unlabeled images at random
项目:Google-QuickDraw    作者:ankonzoid    | 项目源码 | 文件源码
def plot_unlabeled_images_random(image_list, n, title_str, ypixels, xpixels, seed, filename):
    random.seed(seed)
    index_sample = random.sample(range(len(image_list)), n)
    plt.figure(figsize=(2*n, 2))
    plt.suptitle(title_str)
    for i, ind in enumerate(index_sample):
        ax = plt.subplot(1, n, i + 1)
        plt.imshow(image_list[ind].reshape(ypixels, xpixels))
        plt.gray()
        ax.get_xaxis().set_visible(False); ax.get_yaxis().set_visible(False)
    if 1:
        pylab.savefig(filename, bbox_inches='tight')
    else:
        plt.show()

# plot_compare: given test images and their reconstruction, we plot them for visual comparison
项目:Google-QuickDraw    作者:ankonzoid    | 项目源码 | 文件源码
def plot_compare(x_test, decoded_imgs, filename):
    n = 10
    plt.figure(figsize=(2*n, 4))
    for i in range(n):
        # display original
        ax = plt.subplot(2, n, i + 1)
        plt.imshow(x_test[i].reshape(28, 28))
        plt.gray()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

        # display reconstruction
        ax = plt.subplot(2, n, i + 1 + n)
        plt.imshow(decoded_imgs[i].reshape(28, 28))
        plt.gray()
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)

    if 1:
        pylab.savefig(filename, bbox_inches='tight')
    else:
        plt.show()

# plot_img: plots greyscale image
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)):
    noise = np.random.normal(0,1,size=(example,randomDim))
    generatedImage = generator.predict(noise)
    generatedImage = generatedImage.reshape(example,28,28)

    plt.figure(figsize=figsize)

    for i in range(example):
        plt.subplot(dim[0],dim[1],i+1)
        plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray')
        '''drop the x and y axis'''
        plt.axis('off')
    plt.tight_layout()

    if not os.path.exists('generated_image'):
        os.mkdir('generated_image')
    plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
项目:machine-learning    作者:zzw0929    | 项目源码 | 文件源码
def createPlot(inTree):
    fig = plt.figure(1, facecolor='white')
    fig.clf()
    axprops = dict(xticks=[], yticks=[])
    createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)    #no ticks
    #createPlot.ax1 = plt.subplot(111, frameon=False) #ticks for demo puropses 
    plotTree.totalW = float(getNumLeafs(inTree))
    plotTree.totalD = float(getTreeDepth(inTree))
    plotTree.xOff = -0.5/plotTree.totalW; plotTree.yOff = 1.0;
    plotTree(inTree, (0.5,1.0), '')
    plt.show()

# def createPlot():
#   fig = plt.figure(1, facecolor='white')
#   fig.clf()
#   createPlot.ax1 = plt.subplot(111, frameon=True)
#   plotNode(U'a decision node',(0.5,0.1), (0.1,0.5), decisionNode)
#   plotNode(U'a leaf node',(0.8,0.1), (0.3,0.8), leafNode)
#   plt.show()
项目:kmeans-service    作者:MAYHEM-Lab    | 项目源码 | 文件源码
def plot_spatial_cluster_fig(data, covar_type_tied_labels_k):
    """ Creates a 3x2 plot spatial plot using labels as the color """
    sns.set(context='talk', style='white')
    data.columns = [c.lower() for c in data.columns]
    fig = plt.figure()
    placement = {'full': {True: 1, False: 4}, 'diag': {True: 2, False: 5}, 'spher': {True: 3, False: 6}}

    lim_left = data['longitude'].min()
    lim_right = data['longitude'].max()
    lim_bottom = data['latitude'].min()
    lim_top = data['latitude'].max()
    for covar_type, covar_tied, labels, k in covar_type_tied_labels_k:
        plt.subplot(2, 3, placement[covar_type][covar_tied])
        plt.scatter(data['longitude'], data['latitude'], c=labels, cmap=plt.cm.rainbow, s=10)
        plt.xlim(left=lim_left, right=lim_right)
        plt.ylim(bottom=lim_bottom, top=lim_top)
        plt.xticks([])
        plt.yticks([])
        plt.xlabel('Longitude')
        plt.ylabel('Latitude')
        plt.title('{}-{}, K={}'.format(covar_type.capitalize(), ['Untied', 'Tied'][covar_tied], k))
    plt.tight_layout()
    return fig
项目:matplotlib-hep    作者:ibab    | 项目源码 | 文件源码
def make_split(ratio, gap=0.12):
    import matplotlib.pyplot as plt
    from matplotlib.gridspec import GridSpec
    from matplotlib.ticker import MaxNLocator
    cax = plt.gca()
    box = cax.get_position()
    xmin, ymin = box.xmin, box.ymin
    xmax, ymax = box.xmax, box.ymax
    gs = GridSpec(2, 1, height_ratios=[ratio, 1 - ratio], left=xmin, right=xmax, bottom=ymin, top=ymax)
    gs.update(hspace=gap)

    ax = plt.subplot(gs[0])
    plt.setp(ax.get_xticklabels(), visible=False)
    bx = plt.subplot(gs[1], sharex=ax)

    return ax, bx
项目:LinearCorex    作者:gregversteeg    | 项目源码 | 文件源码
def plot_convergence(history, prefix='', prefix2=''):
    plt.figure(figsize=(8, 5))
    ax = plt.subplot(111)

    ax.get_xaxis().tick_bottom()
    ax.get_yaxis().tick_left()

    plt.plot(history["TC"], '-', lw=2.5, color=tableau20[0])
    x = len(history["TC"])
    y = np.max(history["TC"])
    plt.text(0.5 * x, 0.8 * y, "TC", fontsize=18, fontweight='bold', color=tableau20[0])

    if history.has_key("additivity"):
        plt.plot(history["additivity"], '-', lw=2.5, color=tableau20[1])
        plt.text(0.5 * x, 0.3 * y, "additivity", fontsize=18, fontweight='bold', color=tableau20[1])

    plt.ylabel('TC', fontsize=12, fontweight='bold')
    plt.xlabel('# Iterations', fontsize=12, fontweight='bold')
    plt.suptitle('Convergence', fontsize=12)
    filename = '{}/summary/convergence{}.pdf'.format(prefix, prefix2)
    if not os.path.exists(os.path.dirname(filename)):
        os.makedirs(os.path.dirname(filename))
    plt.savefig(filename, bbox_inches="tight")
    plt.close('all')
    return True
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def plot_grid(images,w=10,path="plan.png",verbose=False):
    import matplotlib.pyplot as plt
    l = 0
    images = fix_images(images)
    l = len(images)
    h = int(math.ceil(l/w))
    plt.figure(figsize=(w*1.5, h*1.5))
    for i,image in enumerate(images):
        ax = plt.subplot(h,w,i+1)
        try:
            plt.imshow(image,interpolation='nearest',cmap='gray',)
        except TypeError:
            TypeError("Invalid dimensions for image data: image={}".format(np.array(image).shape))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    print(path) if verbose else None
    plt.tight_layout()
    plt.savefig(path)
    plt.close()

# contiguous image
项目:Supply-demand-forecasting    作者:LevinJ    | 项目源码 | 文件源码
def traffic_districution(self):
        data_dir = g_singletonDataFilePath.getTrainDir()
        df = self.load_trafficdf(data_dir)
        print df['traffic'].describe()
#         sns.distplot(self.gapdf['gap'],kde=False, bins=100);
        df['traffic'].plot(kind='hist', bins=100)
        plt.xlabel('Traffic')
        plt.title('Histogram of Traffic')

        return
#     def disp_gap_bydistrict(self, disp_ids = np.arange(34,67,1), cls1 = 'start_district_id', cls2 = 'time_id'):
# #         disp_ids = np.arange(1,34,1)
#         plt.figure()
#         by_district = self.gapdf.groupby(cls1)
#         size = len(disp_ids)
# #         size = len(by_district)
#         col_len = row_len = math.ceil(math.sqrt(size))
#         count = 1
#         for name, group in by_district:
#             if not name in disp_ids:
#                 continue
#             plt.subplot(row_len, col_len, count)
#             group.groupby(cls2)['gap'].mean().plot()
#             count += 1   
#         return
项目:discretize    作者:simpeg    | 项目源码 | 文件源码
def __init__(self):
        pass

    # def components(self):

    #     plotAll = len(imageType) == 1
    #     options = {"direction":direction, "numbering":numbering, "annotationColor":annotationColor, "showIt":False}
    #     fig = plt.figure(figNum)
    #     # Determine the subplot number: 131, 121
    #     numPlots = 130 if plotAll else len(imageType)//2*10+100
    #     pltNum = 1
    #     fxyz = self.r(I, 'F', 'F', 'M')
    #     if plotAll or 'Fx' in imageType:
    #         ax_x = plt.subplot(numPlots+pltNum)
    #         self.plotImage(fxyz[0], imageType='Fx', ax=ax_x, **options)
    #         pltNum +=1
    #     if plotAll or 'Fy' in imageType:
    #         ax_y = plt.subplot(numPlots+pltNum)
    #         self.plotImage(fxyz[1], imageType='Fy', ax=ax_y, **options)
    #         pltNum +=1
    #     if plotAll or 'Fz' in imageType:
    #         ax_z = plt.subplot(numPlots+pltNum)
    #         self.plotImage(fxyz[2], imageType='Fz', ax=ax_z, **options)
    #         pltNum +=1
    #     if showIt: plt.show()
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def display_classes(png, images, classes, ncol=4):
  """
  Draw a number of images and their predictions

  Example:
  images = data[1][:12]
  classes = model.predict_classes('classes.png', images)
  """
  fig = plt.figure()
  nrow = len(images) / ncol
  if len(images) % ncol > 0: nrow = nrow + 1

  def draw(i):
    plt.subplot(nrow,ncol,i)
    plt.imshow(images[i].reshape(28,28), cmap='gray', interpolation='none')
    plt.title('Predicted: %s' % classes[i])
  [ draw(i) for i in range(0,len(images)) ]
  plt.tight_layout()
  plt.savefig(png)
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def display_classes(png, images, classes, ncol=4):
  """
  Draw a number of images and their predictions

  Example:
  images = data[1][:12]
  classes = model.predict_classes('classes.png', images)
  """
  fig = plt.figure()
  nrow = len(images) / ncol
  if len(images) % ncol > 0: nrow = nrow + 1

  def draw(i):
    plt.subplot(nrow,ncol,i)
    plt.imshow(images[i].reshape(28,28), cmap='gray', interpolation='none')
    plt.title('Predicted: %s' % classes[i])
  [ draw(i) for i in range(0,len(images)) ]
  plt.tight_layout()
  plt.savefig(png)
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
#       edges = cv2.Canny(img,obj.minVal,obj.maxVal)
#       color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
#       edges=color
#

        kernel = np.ones((obj.xsize,obj.ysize),np.uint8)

        opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel, iterations = obj.iterations)


        if True:
            print "zeige"
            cv2.imshow(obj.Label,opening)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=opening
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
        edges = cv2.Canny(img,obj.minVal,obj.maxVal)
        color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
        edges=color

        if True:
            print "zeige"
            cv2.imshow(obj.Label,edges)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=edges
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        obj=self.Object
        img=None
        if not obj.imageFromNode:
            img = cv2.imread(obj.imageFile)
        else:
            print "copy image ..."
            img = obj.imageNode.ViewObject.Proxy.img.copy()
            print "cpied"

        print " loaded"

        # print (obj.blockSize,obj.ksize,obj.k)
#       edges = cv2.Canny(img,obj.minVal,obj.maxVal)
#       color = cv2.cvtColor(edges, cv2.COLOR_GRAY2RGB)
#       edges=color
#

        kernel = np.ones((obj.xsize,obj.ysize),np.uint8)

        closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel, iterations = obj.iterations)


        if True:
            print "zeige"
            cv2.imshow(obj.Label,closing)
            print "gezeigt"
        else:
            from matplotlib import pyplot as plt
            plt.subplot(121),plt.imshow(img,cmap = 'gray')
            plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
            plt.subplot(122),plt.imshow(dst,cmap = 'gray')
            plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
            plt.show()
        print "fertig"
        self.img=closing
项目:reconstruction    作者:microelly2    | 项目源码 | 文件源码
def animpingpong(self):
        print self
        print self.Object
        print self.Object.Name
        obj=self.Object
        img = cv2.imread(obj.imageFile)
        gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
        gray = np.float32(gray)
        dst = cv2.cornerHarris(gray,3,3,0.00001)
        dst = cv2.dilate(dst,None)
        img[dst>0.01*dst.max()]=[0,0,255]

        from matplotlib import pyplot as plt
        plt.subplot(121),plt.imshow(img,cmap = 'gray')
        plt.title('Edge Image'), plt.xticks([]), plt.yticks([])
        plt.subplot(122),plt.imshow(dst,cmap = 'gray')
        plt.title('Corner Image'), plt.xticks([]), plt.yticks([])
        plt.show()
项目:SelfDrivingCar    作者:aguijarro    | 项目源码 | 文件源码
def main():

    rh, gh, bh, bincen, feature_vec = color_hist(image,
                                                 nbins=32,
                                                 bins_range=(0, 256))

    # Plot a figure with all three bar charts
    if rh is not None:
        fig = plt.figure(figsize=(12, 3))
        plt.subplot(131)
        plt.bar(bincen, rh[0])
        plt.xlim(0, 256)
        plt.title('R Histogram')
        plt.subplot(132)
        plt.bar(bincen, gh[0])
        plt.xlim(0, 256)
        plt.title('G Histogram')
        plt.subplot(133)
        plt.bar(bincen, bh[0])
        plt.xlim(0, 256)
        plt.title('B Histogram')
        fig.tight_layout()
        plt.show()
    else:
        print('Your function is returning None for at least one variable...')
项目:deep-time-reading    作者:felixduvallet    | 项目源码 | 文件源码
def _setup_axes():
    plt.rcParams['toolbar'] = 'None'
    fig = plt.figure(figsize=(fig_size, fig_size), facecolor='w')
    ax = plt.subplot(111, polar=True)
    ax.get_yaxis().set_visible(False)

    # 12 labels, clockwise
    marks = np.linspace(360. / 12, 360, 12, endpoint=True)
    ax.set_thetagrids(marks, map(lambda m: int(m / 30), marks), frac=.85,
                      size='x-large')
    ax.set_theta_direction(-1)
    ax.set_theta_offset(np.pi / 2)
    ax.grid(None)

    # These are the clock hands. We update the coordinates later.
    bars = ax.bar([0.0, 0.0, 0.0], lengths,
                  width=widths, bottom=0.0, color=colors, linewidth=0)

    return fig, ax, bars
项目:HTM_experiments    作者:ctrl-z-9000-times    | 项目源码 | 文件源码
def preprocess_edges(self):
        # Calculate the sobel edge features
        denom   = 3 * 255.
        grey    = np.sum(self.image/denom, axis=2, keepdims=False, dtype=np.float32)
        sobel_x = scipy.ndimage.sobel(grey, axis=0)
        sobel_y = scipy.ndimage.sobel(grey, axis=1)
        self.edge_angles    = np.arctan2(sobel_y, sobel_x)  # Counterclockwise
        self.edge_magnitues = (sobel_x ** 2 + sobel_y ** 2) ** .5
        assert(self.edge_angles.dtype == np.float32)
        assert(self.edge_magnitues.dtype == np.float32)
        if False:
            plt.figure("EDGES")
            plt.subplot(1,2,1)
            plt.imshow(self.edge_magnitues, interpolation='nearest')
            plt.title("MAG")
            plt.subplot(1,2,2)
            plt.imshow(self.edge_angles, interpolation='nearest')
            plt.title("ANG")
            plt.show()
项目:HTM_experiments    作者:ctrl-z-9000-times    | 项目源码 | 文件源码
def view_samples(self, show=True):
        """Displays the samples."""
        if not self.samples:
            return  # Nothing to show...
        plt.figure("Sample views")
        num = len(self.samples)
        rows = math.floor(num ** .5)
        cols = math.ceil(num / rows)
        for idx, img in enumerate(self.samples):
            plt.subplot(rows, cols, idx+1)
            plt.imshow(img, interpolation='nearest')
        if show:
            plt.show()


# EXPERIMENT: Try breaking out each output encoder by type instead of
# concatenating them all together.  Each type of sensors would then get its own
# HTM.  Maybe keep the derivatives with their source?
#
项目:learning-to-see-by-moving    作者:pulkitag    | 项目源码 | 文件源码
def plot_triplets(data, fig=None, colors=['r','g','b'], labels=None, linewidth=2.0, isDashed=False):
    '''
        data: N * 3 - N samples, each being 3 Dimensional
    '''
    if fig is None:
        fig = plt.figure()
    else:
        plt.figure(fig.number)

    N,ch = data.shape
    assert ch==3, 'The data is assumed to consist of 3D points'

    if isDashed:
        colors = [c + '--' for c in colors]

    for (i,c) in enumerate(range(ch)):
        plt.subplot(3,1,i+1)
        if labels is None:
            plt.plot(range(N), data[:,c], colors[c], linewidth=linewidth)
        else:
            plt.plot(range(N), data[:,c], colors[c], linewidth=linewidth, label=labels[c])
        plt.legend(fontsize='large')
    return fig
项目:learning-to-see-by-moving    作者:pulkitag    | 项目源码 | 文件源码
def vis_lmdb(prms, setName='train'):
    db  = mpio.DbReader(prms['paths']['lmdb'][setName])
    plt.ion()
    fig = plt.figure() 
    ax  = plt.subplot(1,1,1)
    clNames = get_classnames(prms)
    N = 100
    for i in range(N):
        im,lb = db.read_next()
        im    = im.transpose((1,2,0))
        im    = im[:,:,[2,1,0]]
        ax.imshow(im)
        ax.axis('off')
        plt.title('Class: %s' % clNames[lb])        
        raw_input() 

##
# Make all the lmdbs
项目:SlidingWindowVideoTDA    作者:ctralie    | 项目源码 | 文件源码
def getSSM(X, DPixels, doPlot = False):
    """
    Compute a Euclidean self-similarity image between a set of points
    :param X: An Nxd matrix holding the d coordinates of N points
    :param DPixels: The image will be resized to this dimensions
    :param doPlot: If true, show a plot comparing the original/resized images
    :return: A tuple (D, DResized)
    """
    D = np.sum(X**2, 1)[:, None]
    D = D + D.T - 2*X.dot(X.T)
    D[D < 0] = 0
    D = 0.5*(D + D.T)
    D = np.sqrt(D)
    if doPlot:
        plt.subplot(121)
        plt.imshow(D, interpolation = 'nearest', cmap = 'afmhot')
        plt.subplot(122)
        plt.imshow(scipy.misc.imresize(D, (DPixels, DPixels)), interpolation = 'nearest', cmap = 'afmhot')
        plt.show()
    if not (D.shape[0] == DPixels):
        return (D, scipy.misc.imresize(D, (DPixels, DPixels)))
    return (D, D)
项目:FGVC2017    作者:lijiancheng0614    | 项目源码 | 文件源码
def plot(file_path, iterations):
    im = Image.open(file_path)
    im = np.array(im, dtype=np.uint8)

    plt.figure(figsize=(20, 16))
    plt.subplot(121)
    plt.imshow(im)
    plt.axis('off')

    plt.subplot(122)
    plt.imshow(np.zeros((640, 300, 3)))
    height = 14
    for i in range(len(labels)):
        plt.text(0, height * i + height / 2, labels[i], family='Times New Roman', size=14, color='#ffffff')
    plt.axis('off')

    # plt.savefig(idx)
    plt.show()
项目:slitSpectrographBlind    作者:aasensio    | 项目源码 | 文件源码
def cellplot(fs, csf):
    """
    Plots PSF kernels

    --------------------------------------------------------------------------
    Usage:

    Call:  cellplot(fs, csf)

    Input: fs   PSF kernels, i.e. 3d array with kernels indexed by 0th index
           csf  size of kernels in x and y direction

    Output: Shows stack of PSF kernels arranged according to csf
    --------------------------------------------------------------------------

    Copyright (C) 2011 Michael Hirsch
    """    

    mp.clf()
    for i in range(np.prod(csf)):
        mp.subplot(csf[0],csf[1],i+1)
        mp.imshow(fs[i])
        mp.axis('off')
    mp.draw()
项目:bmcmc    作者:sanjibs    | 项目源码 | 文件源码
def info(self,burn=1000,plot=False):
        """
        Print the summary statistics and optionally plot the results
        """
        rows=len(self.varnames)
        cols=2
        chain=np.array(self.chain[burn:])
        nsize=chain.shape[0]
#        print rows,cols
        print '%4s %16s %12s %12s [%12s, %12s, %12s]'%('no','name','mean','stddev','16%','50%','84%')
        for i,name in enumerate(self.varnames):
            temp=np.percentile(chain[:,i],[16.0,84.0,50.0])
            print '%4i %16s %12g %12g [%12g, %12g, %12g]'%(i,name,np.mean(chain[:,i]),(temp[1]-temp[0])/2.0,temp[0],temp[2],temp[1])
            if plot:
                ax=plt.subplot(rows,cols,2*i+1) 
#                plt.text(0.05,0.9,r'$\tau$='+'%5.1f'%(acor.acor(chain[:,i])[0]),transform=ax.transAxes)
                plt.plot(chain[:,i])
                plt.ylabel(self.model.descr[name][3])
                plt.xlabel('Iteration')
                ax=plt.subplot(rows,cols,2*i+2) 
                plt.hist(chain[:,i],bins=100,histtype='step')
                plt.text(0.05,0.9,sround(np.mean(chain[:,i]),temp[0],temp[1]),transform=ax.transAxes)
                plt.xlabel(self.model.descr[name][3])
                # plt.text(0.05,0.9,'%6g %3g (%4g-%4g)'%(np.mean(chain[:,i]),(temp[1]-temp[0])/2.0,temp[0],temp[1]),transform=ax.transAxes)
项目:Magic-Pixel    作者:zhwhong    | 项目源码 | 文件源码
def generalBlur(srcpath, dstpath):
    img = cv2.imread(srcpath, 0) #????????
    img1 = np.float32(img) #??????
    kernel = np.ones((5,5),np.float32)/25

    dst = cv2.filter2D(img1,-1,kernel)
    #cv2.filter2D(src,dst,kernel,auchor=(-1,-1))???
    #?????????????
    #?????-1??????????plt.figure()
    plt.subplot(1,2,1), plt.imshow(img1,'gray')
    # plt.savefig('test1.jpg')
    plt.subplot(1,2,2), plt.imshow(dst,'gray')
    # plt.savefig('test2.jpg')
    plt.show()

# ????
项目:crypto-forcast    作者:7yl4r    | 项目源码 | 文件源码
def plotSeasonBreakdown(data, trend, seasonal, residual, decompfreq, saveFigName=None):
    """ plots each on own subplot """
    ax1 = plt.subplot(411)
    # print(data)
    plt.plot(data)#, label='Original')
    ax1.set_title('original')
    plt.legend(loc='best')
    ax2 = plt.subplot(412)
    plt.plot(trend)#, label='Trend')
    ax2.set_title('trend')
    plt.legend(loc='best')
    ax3 = plt.subplot(413)
    plt.plot(seasonal,label=str(decompfreq))
    ax3.set_title('seasonality')
    plt.legend(loc='best')
    ax4 = plt.subplot(414)
    plt.plot(residual)#, label='Residuals')
    ax4.set_title('residuals')
    plt.legend(loc='best')
    plt.tight_layout()
    if (saveFigName == None):
        plt.show()
    else:
        plt.savefig(str(saveFigName))
项目:hyperchamber    作者:255BITS    | 项目源码 | 文件源码
def sample(config, vae):
    x_sample = mnist.test.next_batch(100)[0]
    x_reconstruct = vae.reconstruct(x_sample)

    plt.figure(figsize=(8, 12))
    for i in range(5):

        plt.subplot(5, 2, 2*i + 1)
        plt.imshow(x_sample[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_reconstruct[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Reconstruction")
        plt.colorbar()
    plt.tight_layout()
    img = "samples/reconstruction.png"
    plt.savefig(img)
    hc.io.sample(config, [{"label": "Reconstruction", "image": img}])
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def plot_depths(lab, element, depths=[0, 1, 2, 3, 4], time_to_plot=False):
    plt.figure()
    ax = plt.subplot(111)
    if element == 'Temperature':
        plt.title('Temperature at specific depths')
        plt.ylabel('Temperature, C')
    else:
        plt.title(element + ' concentration at specific depths')
        plt.ylabel('Concentration')
    if time_to_plot:
        num_of_elem = int(time_to_plot / lab.dt)
    else:
        num_of_elem = len(lab.time)
    t = lab.time[-num_of_elem:]
    plt.xlabel('Time')
    for depth in depths:
        lbl = str(depth)
        plt.plot(t, lab.species[element]['concentration'][int(
            depth / lab.dx)][-num_of_elem:], lw=3, label=lbl)
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    ax.grid(linestyle='-', linewidth=0.2)
    return ax
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def plot_times(lab, element, time_slices=[0, 1, 2, 3, 4]):
    plt.figure()
    ax = plt.subplot(111)
    if element == 'Temperature':
        plt.title('Temperature profile')
        plt.xlabel('Temperature, C')
    else:
        plt.title(element + ' concentration')
        plt.xlabel('Concentration')
    plt.ylabel('Depth, cm')
    for tms in time_slices:
        lbl = 'at time: %.2f ' % (tms)
        plt.plot(lab.species[element]['concentration'][
                 :, int(tms / lab.dt)], -lab.x, lw=3, label=lbl)
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), ncol=2)
    ax.grid(linestyle='-', linewidth=0.2)
    return ax
项目:3D_Dense_Transformer_Networks    作者:JohnYC1995    | 项目源码 | 文件源码
def show_data(data,label):
    [d1,d2,d3,d4] = data.shape
    for slices in range(d1):
        for depth in range(d2):
            #gray()
            plt.figure(figsize=(8,7),dpi=98)
            p1 = plt.subplot(211)
            p1.imshow(data[slices,depth,:,:])
            title_data = 'data batch:' + str(slices+1) + 'th' + ' slices: ' + str(depth+1)
            plt.title(title_data)
            p2 = plt.subplot(212)
            p2.imshow(label[slices,depth,:,:])
            title_label =  'label batch:' + str(slices+1) + 'th' + ' slices: ' + str(depth+1)
            plt.title(title_label)
            plt.pause(0.000001)
            plt.close()
项目:wntf    作者:tonybaloney    | 项目源码 | 文件源码
def wheel_radii(wheel, name):
    cnt = len(wheel['pattern'].keys())
    if cnt == 0:
        return
    N = cnt
    theta = numpy.linspace(0.0, 2*numpy.pi, N, endpoint=False)
    radii = [item['count'] for key, item in wheel['pattern'].items()]
    width = numpy.pi * 2 / N

    ax = plt.subplot(111, projection='polar')
    bars = ax.bar(theta, radii, width=width, bottom=0.0)
    for r, theta, bar, key in zip(radii, theta, bars, [key for key, item in wheel['pattern'].items()]):
        bar.set_label(name)
        bar.set_facecolor(plt.cm.jet(r / 10.))
        bar.set_alpha(0.5)
        if r > 0:
            ax.annotate(
                key, (theta, r), xytext=(15, 15),
                textcoords='offset points',
                arrowprops=dict(facecolor='black', shrink=0.05),)
    plt.title(name)
    plt.savefig('out/wheel_%s.png' % name, dpi=300, format='png')
    plt.show()
项目:Moving-Least-Squares    作者:Jarvis73    | 项目源码 | 文件源码
def demo2(fun):
    ''' 
        Smiled Monalisa  
    '''

    p = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [211, 244], [253, 244], [195, 254], [232, 281], [285, 252]
    ])
    q = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [207, 238], [261, 237], [199, 253], [232, 281], [279, 249]
    ])
    image = plt.imread(os.path.join(sys.path[0], "monalisa.jpg"))
    plt.subplot(121)
    plt.axis('off')
    plt.imshow(image)
    transformed_image = fun(image, p, q, alpha=1, density=1)
    plt.subplot(122)
    plt.axis('off')
    plt.imshow(transformed_image)
    plt.tight_layout(w_pad=1.0, h_pad=1.0)
    plt.show()
项目:Kiddo    作者:Subarno    | 项目源码 | 文件源码
def visualize(X, Y, classes, samples_per_class=10):
    nb_classes = len(classes)

    for y, cls in enumerate(classes):
        idxs = np.flatnonzero(Y == y)
        idxs = np.random.choice(idxs, samples_per_class, replace=False)

        for i, idx in enumerate(idxs):
            plt_idx = i * nb_classes + y + 1
            plt.subplot(samples_per_class, nb_classes, plt_idx)
            plt.imshow(X[idx], cmap='gray')
            plt.axis('off')
            if i == 0:
                plt.title(cls)
    #plt.show()
    plt.savefig('img/data.png')
    plt.clf()
项目:good-semi-bad-gan    作者:christiancosgrove    | 项目源码 | 文件源码
def plot(samples):
    width = min(12,int(np.sqrt(len(samples))))
    fig = plt.figure(figsize=(width, width))
    gs = gridspec.GridSpec(width, width)
    gs.update(wspace=0.05, hspace=0.05)

    for ind, sample in enumerate(samples):
        if ind >= width*width:
            break
        ax = plt.subplot(gs[ind])
        plt.axis('off')
        ax.set_xticklabels([])
        ax.set_yticklabels([])
        ax.set_aspect('equal')
        sample = sample * 0.5 + 0.5
        sample = np.transpose(sample, (1, 2, 0))
        plt.imshow(sample)

    return fig
项目:merlin    作者:CSTR-Edinburgh    | 项目源码 | 文件源码
def plot_weight_histogram(model, outfile, lower=-0.25, upper=0.25):
    n = len(model.params)
    plt.clf()
    for (i, theano_shared_params) in enumerate(model.params):
        weights = theano_shared_params.get_value()
        values = weights.flatten()
        plt.subplot(n,1,i+1)
        frame = plt.gca()
        frame.axes.get_yaxis().set_ticks([])
        if i != n-1:  ## only keep bottom one
            frame.axes.get_xaxis().set_ticks([])
        plt.hist(values, 100)
        plt.xlim(lower, upper)
        print('   param no. %s'%(i))
        print(get_stats(theano_shared_params))
    plt.savefig(outfile)
    print('Made plot %s'%(outfile))
项目:actions-for-actions    作者:gsig    | 项目源码 | 文件源码
def plot(sizes,plotname):
    fig = plt.figure(figsize=(2.0,2.0),facecolor='white')
    ax = plt.subplot(111)
    psizes = ['%1.1f%%' % (x/sum(sizes)*100) for x in sizes]
    labels = [x+'\n'+y for x,y in zip(LABELS,psizes)]
    patches = plt.pie(sizes, colors=COLORS, labels=labels, 
                      shadow=False, startangle=90, labeldistance=0.7, 
                      wedgeprops={'linewidth': 4})
    for pie_wedge in patches[0]:
        pie_wedge.set_edgecolor('white')
    for t in patches[1]:
        t.set_horizontalalignment('center')
    plt.axis('equal')
    plt.tight_layout()
    plt.savefig(plotname)
    print('saved plot to {}'.format(plotname))
    plt.show()


######################################################
# Data processing
项目:Deep-subspace-clustering-networks    作者:panji1990    | 项目源码 | 文件源码
def test_face(Img, CAE, n_input):

    batch_x_test = Img[200:300,:]
    batch_x_test= np.reshape(batch_x_test,[100,n_input[0],n_input[1],1])
    CAE.restore()
    x_re = CAE.reconstruct(batch_x_test)

    plt.figure(figsize=(8,12))
    for i in range(5):
        plt.subplot(5,2,2*i+1)
        plt.imshow(batch_x_test[i,:,:,0], vmin=0, vmax=255, cmap="gray") #
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_re[i,:,:,0], vmin=0, vmax=255, cmap="gray")
        plt.title("Reconstruction")
        plt.colorbar()
        plt.tight_layout()
    plt.show()
    return
项目:YellowFin    作者:JianGoForIt    | 项目源码 | 文件源码
def plot_loss(loss_list, log_dir, iter_id):
  def running_mean(x, N):
    cumsum = np.cumsum(np.insert(x, 0, 0))
    return (cumsum[N:] - cumsum[:-N]) / N
  plt.figure()
  plt.semilogy(loss_list, '.', alpha=0.2, label="Loss")
  plt.semilogy(running_mean(loss_list,100), label="Average Loss")
  plt.xlabel('Iterations')
  plt.ylabel('Loss')
  plt.legend()
  plt.grid()
  ax = plt.subplot(111)
  ax.legend(loc='upper center', bbox_to_anchor=(0.5, 1.05),
        ncol=3, fancybox=True, shadow=True)
  plt.savefig(log_dir + "/fig_loss_iter_" + str(iter_id) + ".pdf")
  print("figure plotted")
  plt.close()
项目:pytorch_tutorial    作者:soravux    | 项目源码 | 文件源码
def train(epoch):
    if epoch > 2:
        import pdb; pdb.set_trace()

    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        # 1. Add requires_grad so Torch doesn't erase the gradient with its optimization pass
        data, target = Variable(data, requires_grad=True), Variable(target)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.data[0]))

            # 2. Get the `.grad` attribute of the variable.
            # This is a Torch tensor, so to get the data as numpy format, we have to use `.grad.data.numpy()`
            adversarial_example = data.grad.data.numpy()
            print(adversarial_example.max())

            if epoch > 2:
                # 3. Let's plot it, because we can!
                plt.clf()
                plt.subplot(121); plt.imshow(data.data.numpy()[0,0,...], cmap='gray_r')
                plt.subplot(122); plt.imshow(adversarial_example[0,0,...]); plt.colorbar()
                plt.show(block=False)
                plt.pause(0.01)
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot(obj, colorbar=True, subplot_loc=None, mytitle=None, show_axis='off', vmin=None, vmax=None, logscale=False):
    if subplot_loc is not None:
        plt.subplot(subplot_loc)
#    plt.gca().set_aspect('equal')
    if isinstance(obj, dl.Function):
        pp = mplot_function(obj, vmin, vmax, logscale)
    elif isinstance(obj, dl.CellFunctionSizet):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.CellFunctionDouble):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.CellFunctionInt):
        pp = mplot_cellfunction(obj)
    elif isinstance(obj, dl.Mesh):
        if (obj.geometry().dim() != 2):
            raise AttributeError('Mesh must be 2D')
        pp = plt.triplot(mesh2triang(obj), color='#808080')
        colorbar = False
    else:
        raise AttributeError('Failed to plot %s'%type(obj))

    plt.axis(show_axis)

    if colorbar:
        plt.colorbar(pp, fraction=.1, pad=0.2)
    else:
        plt.gca().set_aspect('equal')

    if mytitle is not None:
        plt.title(mytitle, fontsize=20)

    return pp
项目:hippylib    作者:hippylib    | 项目源码 | 文件源码
def plot_eigenvalues(d, mytitle = None, subplot_loc=None):
    k = d.shape[0]
    if subplot_loc is not None:
        plt.subplot(subplot_loc)
    plt.plot(range(0,k), d, 'b*', range(0,k), np.ones(k), '-r')
    plt.yscale('log')
    if mytitle is not None:
        plt.title(mytitle)
项目:cube_browser    作者:SciTools    | 项目源码 | 文件源码
def test(self):
        projection = iplt.default_projection(self.cube)
        ax = plt.subplot(111, projection=projection)
        plot = Contourf(self.cube, ax, coords=self.coords)
        for index in range(self.cube.shape[0]):
            element = plot(time=index)
            self.assertIsInstance(element, QuadContourSet)
            self.assertEqual(element, plot.element)
            self.assertIsInstance(plot.axes, GeoAxesSubplot)
            self.assertEqual(ax, plot.axes)
            self.assertEqual(self.cube[index], plot.subcube)
项目:cube_browser    作者:SciTools    | 项目源码 | 文件源码
def test(self):
        projection = iplt.default_projection(self.cube)
        ax = plt.subplot(111, projection=projection)
        plot = Contour(self.cube, ax, coords=self.coords)
        for index in range(self.cube.shape[0]):
            element = plot(time=index)
            self.assertIsInstance(element, QuadContourSet)
            self.assertEqual(element, plot.element)
            self.assertIsInstance(plot.axes, GeoAxesSubplot)
            self.assertEqual(ax, plot.axes)
            self.assertEqual(self.cube[index], plot.subcube)