Python matplotlib.pyplot 模块,tight_layout() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.tight_layout()

项目:CNNGestureRecognizer    作者:asingh33    | 项目源码 | 文件源码
def visualizeLayer(model, img, input_image, layerIndex):

    layer = model.layers[layerIndex]

    get_activations = K.function([model.layers[0].input, K.learning_phase()], [layer.output,])
    activations = get_activations([input_image, 0])[0]
    output_image = activations


    ## If 4 dimensional then take the last dimension value as it would be no of filters
    if output_image.ndim == 4:
        # Rearrange dimension so we can plot the result
        o1 = np.rollaxis(output_image, 3, 1)
        output_image = np.rollaxis(o1, 3, 1)

        print "Dumping filter data of layer{} - {}".format(layerIndex,layer.__class__.__name__)
        filters = len(output_image[0,0,0,:])

        fig=plt.figure(figsize=(8,8))
        # This loop will plot the 32 filter data for the input image
        for i in range(filters):
            ax = fig.add_subplot(6, 6, i+1)
            #ax.imshow(output_image[img,:,:,i],interpolation='none' ) #to see the first filter
            ax.imshow(output_image[0,:,:,i],'gray')
            #ax.set_title("Feature map of layer#{} \ncalled '{}' \nof type {} ".format(layerIndex,
            #                layer.name,layer.__class__.__name__))
            plt.xticks(np.array([]))
            plt.yticks(np.array([]))
        plt.tight_layout()
        #plt.show()
        fig.savefig("img_" + str(img) + "_layer" + str(layerIndex)+"_"+layer.__class__.__name__+".png")
        #plt.close(fig)
    else:
        print "Can't dump data of this layer{}- {}".format(layerIndex, layer.__class__.__name__)
项目:HousePricePredictionKaggle    作者:Nuwantha    | 项目源码 | 文件源码
def get_feature_importance(list_of_features):
    n_estimators=10000
    random_state=0
    n_jobs=4
    x_train=data_frame[list_of_features]
    y_train=data_frame.iloc[:,-1]
    feat_labels= data_frame.columns[1:]
    forest = BaggingRegressor(n_estimators=n_estimators,random_state=random_state,n_jobs=n_jobs) 
    forest.fit(x_train,y_train) 
    importances=forest.feature_importances_ 
    indices = np.argsort(importances)[::-1]


    for f in range(x_train.shape[1]):
        print("%2d) %-*s %f" % (f+1,30,feat_labels[indices[f]],
                                        importances[indices[f]]))


    plt.title("Feature Importance")
    plt.bar(range(x_train.shape[1]),importances[indices],color='lightblue',align='center')
    plt.xticks(range(x_train.shape[1]),feat_labels[indices],rotation=90)
    plt.xlim([-1,x_train.shape[1]])
    plt.tight_layout()
    plt.show()
项目:almond-nnparser    作者:Stanford-Mobisocial-IoT-Lab    | 项目源码 | 文件源码
def different_training_sets():
    # base+author -> +paraphrasing -> +ifttt -> +generated
    train = [84.7, 93.2, 90.4, 91.99]
    test = [3.6, 37.4, 50.94, 55.4]
    train_recall = [66.6, 88.43, 92.63, 91.21]
    test_recall = [0.066, 49.05, 50.94, 75.47]

    #plt.newfigure()

    X = 1 + np.arange(4)
    plt.plot(X, train_recall, '--', color='#85c1e5')
    plt.plot(X, train, '-x', color='#6182a6')
    plt.plot(X, test_recall, '-o', color='#6182a6')
    plt.plot(X, test, '-', color='#052548')

    plt.ylim(0, 100)
    plt.xlim(0.5, 4.5)

    plt.xticks(X, ["Base + Author", "+ Paraphrasing", "+ IFTTT", "+ Generated"])
    plt.tight_layout()

    plt.legend(["Train recall", "Train accuracy", "Test recall", "Test accuracy"], loc='lower right')
    plt.savefig('./figures/training-sets.pdf')
项目:facebook-message-analysis    作者:szheng17    | 项目源码 | 文件源码
def plot_line_graph_multiple_lines(x, label_to_values, title, x_label, y_label):
    if not all(len(x) == len(values) for values in label_to_values.values()):
        raise ValueError('values of label_to_values must have length len(x)')
    colors = ['b','g','r','c','m','y','k']
    line_styles = ['-','--',':']
    for (i, label) in enumerate(sorted(label_to_values.keys())):
        color = colors[i%len(colors)]
        line_style = line_styles[(i//len(colors))%len(line_styles)]
        plt.plot(x,
                 label_to_values[label],
                 label=label,
                 color=color,
                 linestyle=line_style)
    plt.legend(loc='center left', bbox_to_anchor=(1,0.5), prop={'size':9})
    plt.tight_layout(pad=9)
    plt.title(title)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.show()

# x_min, x_max for example proportion_initiated_by_user
项目:qqmbr    作者:ischurov    | 项目源码 | 文件源码
def make_python_fig(self, code: str,
                        exts: Tuple[str, ...]=('pdf', 'svg'),
                        tight_layout=True) -> str:
        hashsum = hashlib.md5(code.encode('utf8')).hexdigest()
        prefix = hashsum[:2]
        path = os.path.join(self.figures_dir, prefix, hashsum)
        needfigure = False
        for ext in exts:
            if not os.path.isfile(os.path.join(
                    path, self.default_figname + "." + ext)):
                needfigure = True
                break

        if needfigure:
            make_sure_path_exists(path)
            gl = self.pythonfigure_globals
            plt.close()
            exec(code, gl)
            if tight_layout:
                plt.tight_layout()
            for ext in exts:
                plt.savefig(os.path.join(
                    path, self.default_figname + "." + ext))
        return os.path.join(prefix, hashsum)
项目:ward-metrics    作者:phev8    | 项目源码 | 文件源码
def plot_events_with_event_scores(gt_event_scores, detected_event_scores, ground_truth_events, detected_events, show=True):
    fig = plt.figure(figsize=(10, 3))
    for i in range(len(detected_events)):
        d = detected_events[i]
        plt.axvspan(d[0], d[1], 0, 0.5)
        plt.text((d[1] + d[0]) / 2, 0.2, detected_event_scores[i], horizontalalignment='center', verticalalignment='center')

    for i in range(len(ground_truth_events)):
        gt = ground_truth_events[i]
        plt.axvspan(gt[0], gt[1], 0.5, 1)
        plt.text((gt[1] + gt[0]) / 2, 0.8, gt_event_scores[i], horizontalalignment='center', verticalalignment='center')

    plt.tight_layout()

    if show:
        plt.show()
    else:
        plt.draw()
项目:bnn-analysis    作者:myshkov    | 项目源码 | 文件源码
def plot_hist(baseline_samples, target_samples, true_x, true_y):
    baseline_samples = baseline_samples.squeeze()
    target_samples = target_samples.squeeze()

    bmin, bmax = baseline_samples.min(), baseline_samples.max()

    ax = sns.kdeplot(baseline_samples, shade=True, color=(0.6, 0.1, 0.1, 0.2))
    ax = sns.kdeplot(target_samples, shade=True, color=(0.1, 0.1, 0.6, 0.2))
    ax.set_xlim(bmin, bmax)

    y0, y1 = ax.get_ylim()

    plt.plot([true_y, true_y], [0, y1 - (y1 - y0) * 0.01], linewidth=1, color='r')
    plt.title('Predictive' + (f' at {true_x:.2f}' if true_x is not None else ''))

    fig = plt.gcf()
    fig.set_size_inches(9, 9)
    # plt.tight_layout()  # pad=0.4, w_pad=0.5, h_pad=1.0)

    name = utils.DATA_DIR.replace('/', '-')
    # plt.tight_layout(pad=0.6)
    utils.save_fig('predictive-at-point-' + name)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, target_names, title='Confusion matrix', cmap=plt.cm.Greys, block=True):
    # Colormaps: jet, Greys
    cm_normalized = cm.astype(np.float32) / cm.sum(axis=1)[:, np.newaxis]
    plt.imshow(cm_normalized, interpolation='nearest', cmap=cmap)

    # Show confidences
    for i, cas in enumerate(cm): 
        for j, c in enumerate(cas): 
            if c > 0: 
                plt.text(j-0.1, i+0.2, c, fontsize=16, fontweight='bold', color='#b70000')

    f = plt.figure(1)
    f.clf()
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.show(block=block)
项目:pybot    作者:spillai    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, clf_target_names, title='Confusion matrix', cmap=plt.cm.jet):
    target_names = map(lambda key: key.replace('_','-'), clf_target_names)

    for idx in range(len(cm)): 
        cm[idx,:] = (cm[idx,:] * 100.0 / np.sum(cm[idx,:])).astype(np.int)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    # plt.matshow(cm)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(clf_target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    # plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')
项目:shenlan    作者:vector-1127    | 项目源码 | 文件源码
def plotGeneratedImages(epoch,example=100,dim=(10,10),figsize=(10,10)):
    noise = np.random.normal(0,1,size=(example,randomDim))
    generatedImage = generator.predict(noise)
    generatedImage = generatedImage.reshape(example,28,28)

    plt.figure(figsize=figsize)

    for i in range(example):
        plt.subplot(dim[0],dim[1],i+1)
        plt.imshow(generatedImage[i],interpolation='nearest',cmap='gray')
        '''drop the x and y axis'''
        plt.axis('off')
    plt.tight_layout()

    if not os.path.exists('generated_image'):
        os.mkdir('generated_image')
    plt.savefig('generated_image/wgan_generated_img_epoch_%d.png' % epoch)
项目:snake    作者:rhinech    | 项目源码 | 文件源码
def __init__(self, model, num_nodes, ax):
        """Initialization of visualization."""

        # line1 is the snake
        # line2 is the sample points
        # lines are the external forces on each snake-node
        self._line1 = ax.plot([], [], '-ow')[0]
        if PLOT_MORE:
            self._line2 = ax.plot([], [], 'x')[0]
            self._lines = [
                ax.plot([], [], 'w')[0]
                for _ in range(num_nodes)
            ]
        ax.set_xlim([0, 1])
        ax.set_ylim([0, 1])
        ax.set_xlabel(model.x_label, fontsize=16)
        ax.set_ylabel(model.y_label, fontsize=16)
        ax.set_xticklabels(model.x_lim, fontsize=16)
        ax.set_yticklabels(model.y_lim, fontsize=16)
        ax.set_xticks([0, 1])
        ax.set_yticks([0, 1])
        ax.set_aspect('equal')
        plt.tight_layout()
项目:fingerprint-securedrop    作者:freedomofpress    | 项目源码 | 文件源码
def plot_feature_importances(feature_names, feature_importances, N=30):
    importances = list(zip(feature_names, list(feature_importances)))
    importances = pd.DataFrame(importances, columns=["Feature", "Importance"])
    importances = importances.set_index("Feature")

    # Sort by the absolute value of the importance of the feature
    importances["sort"] = abs(importances["Importance"])
    importances = importances.sort(columns="sort", ascending=False).drop("sort", axis=1)
    importances = importances[0:N]

    # Show the most important positive feature at the top of the graph
    importances = importances.sort(columns="Importance", ascending=True)

    with plt.style.context(('ggplot')):
        fig, ax = plt.subplots(figsize=(16,12))
        ax.tick_params(labelsize=16)
        importances.plot(kind="barh", legend=False, ax=ax)
        ax.set_frame_on(False)
        ax.set_xlabel("Relative importance", fontsize=20)
        ax.set_ylabel("Feature name", fontsize=20)
    plt.tight_layout()
    plt.title("Most important features for attack", fontsize=20).set_position([.5, 0.99])
    return fig
项目:klineyes    作者:tenstone    | 项目源码 | 文件源码
def mfi(df):
    df['date'] = pd.to_datetime(df.date)

    fig = plt.figure(figsize=(16, 9))
    gs = GridSpec(3, 1) # 2 rows, 3 columns
    fig.suptitle(df['date'][-1:].values[0])
    fig.set_label('MFI')
    price = fig.add_subplot(gs[:2, 0])
    price.plot(df['date'], df['close'], color='blue')

    indicator = fig.add_subplot(gs[2, 0], sharex=price)
    indicator.plot(df['date'], df['mfi'], c='pink')
    indicator.plot(df['date'], [20.]*len(df['date']), c='green')
    indicator.plot(df['date'], [80.]*len(df['date']), c='orange')

    price.grid(True)
    indicator.grid(True)
    plt.tight_layout()
    plt.show()
项目:klineyes    作者:tenstone    | 项目源码 | 文件源码
def atr(df):
    '''
    Average True Range
    :param df:
    :return:
    '''
    df['date'] = pd.to_datetime(df.date)

    fig = plt.figure(figsize=(16, 9))
    gs = GridSpec(3, 1) # 2 rows, 3 columns
    fig.suptitle(df['date'][-1:].values[0])
    fig.set_label('ATR')
    price = fig.add_subplot(gs[:2, 0])
    price.plot(df['date'], df['close'], color='blue')

    indicator = fig.add_subplot(gs[2, 0], sharex=price)
    indicator.plot(df['date'], df['atr'], c='pink')
    # indicator.plot(df['date'], [20.]*len(df['date']), c='green')
    # indicator.plot(df['date'], [80.]*len(df['date']), c='orange')

    price.grid(True)
    indicator.grid(True)
    plt.tight_layout()
    plt.show()
项目:klineyes    作者:tenstone    | 项目源码 | 文件源码
def rocr(df):
    '''
    Average True Range
    :param df:
    :return:
    '''
    df['date'] = pd.to_datetime(df.date)

    fig = plt.figure(figsize=(16, 9))
    gs = GridSpec(3, 1) # 2 rows, 3 columns
    fig.suptitle(df['date'][-1:].values[0])
    fig.set_label('ATR')
    price = fig.add_subplot(gs[:2, 0])
    price.plot(df['date'], df['close'], color='blue')

    indicator = fig.add_subplot(gs[2, 0], sharex=price)
    indicator.plot(df['date'], df['rocr'], c='pink')
    # indicator.plot(df['date'], [20.]*len(df['date']), c='green')
    # indicator.plot(df['date'], [80.]*len(df['date']), c='orange')

    price.grid(True)
    indicator.grid(True)
    plt.tight_layout()
    plt.show()
项目:linkedin_recommend    作者:duggalr2    | 项目源码 | 文件源码
def pieGraph(data_count):
    """
    Graph's a pie graph of the data with count values; Only includes data that appears more than once!
    Parameter: -data_count: dict
    """
    names, count = [], []
    for val, key in data_count.items():
        if key > 1:
            names.append(val)
            count.append(key)

    fig1, ax1 = plt.subplots()
    ax1.pie(count, labels=names, autopct='%1.1f%%', shadow=True, startangle=90)
    ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    # plt.tight_layout()
    plt.show()
项目:linkedin_recommend    作者:duggalr2    | 项目源码 | 文件源码
def pie_graph(data_count):
    """
    Graph's a pie graph of the data with count values (only shows schools that appear more than once)
    Parameter: -data_count: dict
    """
    names, count = [], []
    for val, key in data_count.items():
        if key > 1:
            names.append(val)
            count.append(key)

    fig1, ax1 = plt.subplots()
    ax1.pie(count, labels=names, autopct='%1.1f%%', shadow=True, startangle=90)
    ax1.axis('equal')  # Equal aspect ratio ensures that pie is drawn as a circle.
    # plt.tight_layout()
    plt.show()
项目:Flavor-Network    作者:lingcheng99    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, col, title, cmap=plt.cm.viridis):
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    for i in range(cm.shape[0]):
        plt.annotate("%.2f" %cm[i][i],xy=(i,i),
                    horizontalalignment='center',
                    verticalalignment='center')
    plt.title(title,fontsize=18)
    plt.colorbar(fraction=0.046, pad=0.04)
    tick_marks = np.arange(len(col.unique()))
    plt.xticks(tick_marks, sorted(col.unique()),rotation=90)
    plt.yticks(tick_marks, sorted(col.unique()))
    plt.tight_layout()
    plt.ylabel('True label',fontsize=18)
    plt.xlabel('Predicted label',fontsize=18)

#using flavor network to project recipes from ingredient matrix to flavor matrix
项目:kmeans-service    作者:MAYHEM-Lab    | 项目源码 | 文件源码
def plot_correlation_fig(data):
    """
    Creates a correlation heat map for all columns in user data.

    Parameters
    ----------
    data: Pandas DataFrame
        User data file as a Pandas DataFrame

    Returns
    -------
    Matplotlib Figure object.
    """
    sns.set(context='talk', style='white')
    fig = plt.figure()
    sns.heatmap(data.corr(), vmin=-1, vmax=1)
    plt.tight_layout()
    return fig
项目:kmeans-service    作者:MAYHEM-Lab    | 项目源码 | 文件源码
def plot_spatial_cluster_fig(data, covar_type_tied_labels_k):
    """ Creates a 3x2 plot spatial plot using labels as the color """
    sns.set(context='talk', style='white')
    data.columns = [c.lower() for c in data.columns]
    fig = plt.figure()
    placement = {'full': {True: 1, False: 4}, 'diag': {True: 2, False: 5}, 'spher': {True: 3, False: 6}}

    lim_left = data['longitude'].min()
    lim_right = data['longitude'].max()
    lim_bottom = data['latitude'].min()
    lim_top = data['latitude'].max()
    for covar_type, covar_tied, labels, k in covar_type_tied_labels_k:
        plt.subplot(2, 3, placement[covar_type][covar_tied])
        plt.scatter(data['longitude'], data['latitude'], c=labels, cmap=plt.cm.rainbow, s=10)
        plt.xlim(left=lim_left, right=lim_right)
        plt.ylim(bottom=lim_bottom, top=lim_top)
        plt.xticks([])
        plt.yticks([])
        plt.xlabel('Longitude')
        plt.ylabel('Latitude')
        plt.title('{}-{}, K={}'.format(covar_type.capitalize(), ['Untied', 'Tied'][covar_tied], k))
    plt.tight_layout()
    return fig
项目:glassdoor-analysis    作者:THEdavehogue    | 项目源码 | 文件源码
def plot_hist(arr, title):
    '''
    Function to plot a histogram of scores for employers

    INPUT:
        arr: Array-like, scores
        title: String, title for plot

    OUTPUT:
        Histogram plot (saved in directory)
    '''
    fig = plt.figure(figsize=(6, 4))
    ax = fig.add_subplot(111)
    ax.set_title(title, fontsize=14)
    ax.set_xlabel('Overall Score', fontsize=10)
    ax.set_ylabel('Observations', fontsize=10)
    ax.hist(arr, bins=(len(arr) / 180))
    plt.tight_layout()
    plt.savefig('images/{}.png'.format(title.replace(' ', '_').lower()))
    return
项目:glassdoor-analysis    作者:THEdavehogue    | 项目源码 | 文件源码
def plot_segmented_hist(arr_middle, arr_tails):
    '''
    Function to plot a histogram of scores, color coded tails to visualize
    sections of employers to be analyzed

    INPUT:
        arr_middle: Array-like, scores of employers not being analyzed
        (middle 90%)
        arr_tails: Array-like, scores of employers to be analyzed (>95%, <5%)

    OUTPUT:
        Histogram plot (saved in directory)
    '''

    fig = plt.figure(figsize=(6, 4))
    ax = fig.add_subplot(111)
    ax.set_title('Employers with Significant Scores', fontsize=14)
    ax.set_xlabel('Overall Score', fontsize=10)
    ax.set_ylabel('Observations', fontsize=10)
    ax.hist(arr_middle, bins=34, label='Middle 90%')
    ax.hist(arr_tails, bins=34, label='Outer 5% Tails')
    plt.legend(loc='best', fontsize=10)
    plt.tight_layout()
    plt.savefig('images/sig_scores.png')
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def plot_grid(images,w=10,path="plan.png",verbose=False):
    import matplotlib.pyplot as plt
    l = 0
    images = fix_images(images)
    l = len(images)
    h = int(math.ceil(l/w))
    plt.figure(figsize=(w*1.5, h*1.5))
    for i,image in enumerate(images):
        ax = plt.subplot(h,w,i+1)
        try:
            plt.imshow(image,interpolation='nearest',cmap='gray',)
        except TypeError:
            TypeError("Invalid dimensions for image data: image={}".format(np.array(image).shape))
        ax.get_xaxis().set_visible(False)
        ax.get_yaxis().set_visible(False)
    print(path) if verbose else None
    plt.tight_layout()
    plt.savefig(path)
    plt.close()

# contiguous image
项目:latplan    作者:guicho271828    | 项目源码 | 文件源码
def plot_grid2(images,w=10,path="plan.png",verbose=False):
    import matplotlib.pyplot as plt
    images = fix_images(images)
    l = images.shape[0]
    h = int(math.ceil(l/w))
    margin = 3
    m_shape = (margin + np.array(images.shape[1:]))
    all_shape = m_shape * np.array((h,w))
    figure = np.ones(all_shape)
    print(images.shape,h,w,m_shape,figure.shape) if verbose else None
    for y in range(h):
        for x in range(w):
            begin = m_shape * np.array((y,x))
            end   = (m_shape * (np.array((y,x))+1)) - margin
            # print(begin,end,y*w+x)
            if y*w+x < len(images):
                figure[begin[0]:end[0],begin[1]:end[1]] = images[y*w+x]
    plt.figure(figsize=all_shape[::-1] * 0.01)
    plt.imshow(figure,interpolation='nearest',cmap='gray',)
    print(path) if verbose else None
    plt.tight_layout()
    plt.savefig(path)
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def display_classes(png, images, classes, ncol=4):
  """
  Draw a number of images and their predictions

  Example:
  images = data[1][:12]
  classes = model.predict_classes('classes.png', images)
  """
  fig = plt.figure()
  nrow = len(images) / ncol
  if len(images) % ncol > 0: nrow = nrow + 1

  def draw(i):
    plt.subplot(nrow,ncol,i)
    plt.imshow(images[i].reshape(28,28), cmap='gray', interpolation='none')
    plt.title('Predicted: %s' % classes[i])
  [ draw(i) for i in range(0,len(images)) ]
  plt.tight_layout()
  plt.savefig(png)
项目:deep_learning_ex    作者:zatonovo    | 项目源码 | 文件源码
def display_classes(png, images, classes, ncol=4):
  """
  Draw a number of images and their predictions

  Example:
  images = data[1][:12]
  classes = model.predict_classes('classes.png', images)
  """
  fig = plt.figure()
  nrow = len(images) / ncol
  if len(images) % ncol > 0: nrow = nrow + 1

  def draw(i):
    plt.subplot(nrow,ncol,i)
    plt.imshow(images[i].reshape(28,28), cmap='gray', interpolation='none')
    plt.title('Predicted: %s' % classes[i])
  [ draw(i) for i in range(0,len(images)) ]
  plt.tight_layout()
  plt.savefig(png)
项目:wikilinks    作者:trovdimi    | 项目源码 | 文件源码
def plot_entropy_distribution():
    fig = plt.figure()
    ax = fig.add_subplot(111)

    entropy = read_pickle('output/normalized_entropy.obj')

    hist, bin_edges = np.histogram(entropy, bins=10000)
    print hist, bin_edges

    #ax.set_yscale('log')
    #ax.set_xscale('log')
    ax.plot(bin_edges[:-1], hist, marker='o', markersize=3, markeredgecolor='none', color='#D65F5F')

    #ax.set_ylim([10**0, 10**6])
    #ax.set_xlim([10**0, 10**6])
    ax.set_xlabel('Entropy')
    ax.set_ylabel('Frequency')

    fig.tight_layout()
    fig.savefig( 'output/normalized_entropy_distribution.pdf', bbox_inches='tight')
项目:wikilinks    作者:trovdimi    | 项目源码 | 文件源码
def plot_entropy_hist():
    fig = plt.figure()
    ax = fig.add_subplot(111)

    entropy = read_pickle('output/normalized_entropy.obj')
    number_of_zeros = [1 if item is 0 else 0 for item in entropy]

    print len(number_of_zeros)
    print sum(number_of_zeros)
    n, bins, patches = ax.hist(entropy, 50)
    ax.plot(bins, )
    #ax.set_ylim([-1,1])
    ax.set_xlim([0,1])
    ax.set_yscale('log')
    ax.set_xlabel('Normalized entropy')
    ax.set_ylabel('Frequency (log)')

    fig.tight_layout()
    fig.savefig( 'output/normalized_entropy_hist.pdf', bbox_inches='tight')
项目:quoll    作者:LanguageMachines    | 项目源码 | 文件源码
def visualize_document_topic_probs(self, outfile):
        plots = []
        height_cumulative = numpy.zeros(self.rows)
        #fig = pyplot.figure(figsize=(21, 10), dpi=550)
        for column in range(self.columns):
            color = pyplot.cm.coolwarm(column/self.columns, 1)
            if column == 0:
                p = pyplot.bar(self.ind, self.document_topics_raw[:, column], self.barwidth, color=color)
            else:
                p = pyplot.bar(self.ind, self.document_topics_raw[:, column], self.barwidth, bottom=height_cumulative, color=color)
            height_cumulative += self.document_topics_raw[:, column]
            plots.append(p)
        pyplot.ylim((0, 1))
        pyplot.ylabel('Topics')
        pyplot.title('Topic distribution of CLS papers')
        pyplot.xticks(self.ind+self.barwidth/2, self.document_names, rotation='vertical', size = 10)
        pyplot.yticks(numpy.arange(0, 1, 10))
        pyplot.legend([p[0] for p in plots], self.topic_labels, bbox_to_anchor=(1, 1))
        self.fig.tight_layout()
        pyplot.savefig(outfile)
项目:quoll    作者:LanguageMachines    | 项目源码 | 文件源码
def visualize_words_bytopic(self,outfile,num_words=25):
        topics = self.lda.show_topics(num_topics=self.columns,num_words=10000)
        word_topic = []
        probs = []
        for t in range(self.columns):
            word_topic_str = topics[t][1]
            prob_word = word_topic_str.split(' + ')
            word_prob = [(x.split('*')[1], float(x.split('*')[0])) for x in prob_word]
            word_prob_sorted = sorted(word_prob, key = lambda k : k[1], reverse=True)
            word_prob_pruned = word_prob_sorted[:num_words]
            probs.extend([x[1] for x in word_prob_pruned])
            word_topic.append(word_prob_pruned)
        fontsize_base = 100 / numpy.max(probs) # font size for word with largest share in corpus
        for t in range(self.columns):
            self.visualize_topic_words(t,word_topic[t],fontsize_base)
        self.fig.tight_layout()
        pyplot.savefig(outfile)
项目:sci-pype    作者:jay-johnson    | 项目源码 | 文件源码
def pd_show_with_entities(self, x_label, y_label, title_msg, ax, fig, plt, legend_list=[], show_plot=True, debug=False):

        plt.xlabel(x_label)
        plt.ylabel(y_label)

        ax.set_title(title_msg)

        if len(legend_list) == 0:
            ax.legend(loc="best", prop={"size":"medium"})
        else:
            ax.legend(legend_list, loc="best", prop={"size": "medium"})

        self.pd_add_footnote(fig)
        plt.tight_layout()

        if show_plot:
            plt.show()
        else:
            plt.plot()

    # end of pd_show_with_entities
项目:software-suite-movie-market-analysis    作者:93lorenzo    | 项目源码 | 文件源码
def tsplot(y, lags=None, figsize=(10, 8), style='bmh'):
    if not isinstance(y, pd.Series):
        y = pd.Series(y)
    with plt.style.context(style):
        fig = plt.figure(figsize=figsize)
        # mpl.rcParams['font.family'] = 'Ubuntu Mono'
        layout = (3, 2)
        ts_ax = plt.subplot2grid(layout, (0, 0), colspan=2)
        acf_ax = plt.subplot2grid(layout, (1, 0))
        pacf_ax = plt.subplot2grid(layout, (1, 1))
        qq_ax = plt.subplot2grid(layout, (2, 0))
        pp_ax = plt.subplot2grid(layout, (2, 1))

        y.plot(ax=ts_ax)
        ts_ax.set_title('Time Series Analysis Plots')
        smt.graphics.plot_acf(y, lags=lags, ax=acf_ax, alpha=0.5)
        smt.graphics.plot_pacf(y, lags=lags, ax=pacf_ax, alpha=0.5)
        sm.qqplot(y, line='s', ax=qq_ax)
        qq_ax.set_title('QQ Plot')
        scs.probplot(y, sparams=(y.mean(), y.std()), plot=pp_ax)

        plt.tight_layout()
    return
项目:squeezenet-keras    作者:chasingbob    | 项目源码 | 文件源码
def update(self, conf_mat, classes, normalize=False):
        """This function prints and plots the confusion matrix.
        Normalization can be applied by setting `normalize=True`.
        """
        plt.imshow(conf_mat, interpolation='nearest', cmap=self.cmap)
        plt.title(self.title)
        plt.colorbar()
        tick_marks = np.arange(len(classes))
        plt.xticks(tick_marks, classes, rotation=45)
        plt.yticks(tick_marks, classes)

        if normalize:
            conf_mat = conf_mat.astype('float') / conf_mat.sum(axis=1)[:, np.newaxis]

        thresh = conf_mat.max() / 2.
        for i, j in itertools.product(range(conf_mat.shape[0]), range(conf_mat.shape[1])):
            plt.text(j, i, conf_mat[i, j],                                          
                         horizontalalignment="center",
                         color="white" if conf_mat[i, j] > thresh else "black")

        plt.tight_layout()                                                    
        plt.ylabel('True label')                                              
        plt.xlabel('Predicted label')                                         
        plt.draw()
项目:johnson-county-ddj-public    作者:dssg    | 项目源码 | 文件源码
def plot_normalized_confusion_matrix_at_depth(self):
        """ Returns a normalized confusion matrix.

        :returns: normalized confusion matrix
        :rtype: matplotlib figure
        """
        cm = metrics.confusion_matrix(self.predictions['label'], self.y_pred)
        np.set_printoptions(precision = 2)
        fig = plt.figure()
        cm_normalized = cm.astype('float') / cm.sum(axis = 1)[:, np.newaxis]

        plt.imshow(cm_normalized, interpolation = 'nearest',
                   cmap = plt.cm.Blues)
        plt.title("Normalized Confusion Matrix")
        plt.colorbar()
        tick_marks = np.arange(len(self.labels))
        plt.xticks(tick_marks, self.labels, rotation = 45)
        plt.yticks(tick_marks, self.labels)
        plt.tight_layout()
        plt.ylabel('True label')
        plt.xlabel('Predicted label')
        return(fig)
项目:crypto-forcast    作者:7yl4r    | 项目源码 | 文件源码
def plotSeasonBreakdown(data, trend, seasonal, residual, decompfreq, saveFigName=None):
    """ plots each on own subplot """
    ax1 = plt.subplot(411)
    # print(data)
    plt.plot(data)#, label='Original')
    ax1.set_title('original')
    plt.legend(loc='best')
    ax2 = plt.subplot(412)
    plt.plot(trend)#, label='Trend')
    ax2.set_title('trend')
    plt.legend(loc='best')
    ax3 = plt.subplot(413)
    plt.plot(seasonal,label=str(decompfreq))
    ax3.set_title('seasonality')
    plt.legend(loc='best')
    ax4 = plt.subplot(414)
    plt.plot(residual)#, label='Residuals')
    ax4.set_title('residuals')
    plt.legend(loc='best')
    plt.tight_layout()
    if (saveFigName == None):
        plt.show()
    else:
        plt.savefig(str(saveFigName))
项目:hyperchamber    作者:255BITS    | 项目源码 | 文件源码
def visualize(config, vae):
    if(config['n_z'] != 2):
        print("Skipping visuals since n_z is not 2")
        return
    nx = ny = 20
    x_values = np.linspace(-3, 3, nx)
    y_values = np.linspace(-3, 3, ny)

    canvas = np.empty((28*ny, 28*nx))
    for i, yi in enumerate(x_values):
        for j, xi in enumerate(y_values):
            z_mu = np.array([[xi, yi]])
            x_mean = vae.generate(np.tile(z_mu, [config['batch_size'], 1]))
            canvas[(nx-i-1)*28:(nx-i)*28, j*28:(j+1)*28] = x_mean[0].reshape(28, 28)

    plt.figure(figsize=(8, 10))        
    Xi, Yi = np.meshgrid(x_values, y_values)
    plt.imshow(canvas, origin="upper")
    plt.tight_layout()

    img = "samples/2d-visualization.png"
    plt.savefig(img)
    hc.io.sample(config, [{"label": "2d visualization", "image": img}])
项目:hyperchamber    作者:255BITS    | 项目源码 | 文件源码
def sample(config, vae):
    x_sample = mnist.test.next_batch(100)[0]
    x_reconstruct = vae.reconstruct(x_sample)

    plt.figure(figsize=(8, 12))
    for i in range(5):

        plt.subplot(5, 2, 2*i + 1)
        plt.imshow(x_sample[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_reconstruct[i].reshape(28, 28), vmin=0, vmax=1)
        plt.title("Reconstruction")
        plt.colorbar()
    plt.tight_layout()
    img = "samples/reconstruction.png"
    plt.savefig(img)
    hc.io.sample(config, [{"label": "Reconstruction", "image": img}])
项目:same-stats-different-graphs    作者:jmatejka    | 项目源码 | 文件源码
def show_scatter(df, xlim=(-5, 105), ylim=(-5, 105), color="black", marker="o", reg_fit=False):
    """Create a scatter plot of the data

    Args:
        df (pd.DataFrame):      The data set to plot
        xlim ((float, float)):  The x-axis limits
        ylim ((float, float)):  The y-axis limits
        color (str):            The color of the scatter points
        marker (str):           The marker style for the scatter points
        reg_fit (bool):         Whether to plot a linear regression on the graph
    """
    sns.regplot(
        x="x",
        y="y",
        data=df,
        ci=None,
        fit_reg=reg_fit,
        marker=marker,
        scatter_kws={"s": 50, "alpha": 0.7, "color": color},
        line_kws={"linewidth": 4, "color": "red"})
    plt.xlim(xlim)
    plt.ylim(ylim)
    plt.tight_layout()
项目:PorousMediaLab    作者:biogeochemistry    | 项目源码 | 文件源码
def plot_profile(lab, element):
    plt.figure()
    plt.plot(lab.profiles[element], -lab.x,
             sns.xkcd_rgb["denim blue"], lw=3, label=element)
    if element == 'Temperature':
        plt.title('Temperature profile')
        plt.xlabel('Temperature, C')
    elif element == 'pH':
        plt.title('pH profile')
        plt.xlabel('pH')
    else:
        plt.title('%s concentration' % (element, ))
        plt.xlabel('Concentration')
    plt.ylabel('Depth')
    ax = plt.gca()
    ax.ticklabel_format(useOffset=False)
    ax.grid(linestyle='-', linewidth=0.2)
    plt.legend()
    plt.tight_layout()
    return ax
项目:Tacotron_pytorch    作者:root20    | 项目源码 | 文件源码
def saveAttention(input_sentence, attentions, outpath):
    # Set up figure with colorbar
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt
    import matplotlib.ticker as ticker

    fig = plt.figure(figsize=(24,10), )
    ax = fig.add_subplot(111)
    cax = ax.matshow(attentions.cpu().numpy(), cmap='bone')
    fig.colorbar(cax)

    if input_sentence:
        # Set up axes
        ax.set_yticklabels([' '] + list(input_sentence) + [' '])
        # Show label at every tick
        ax.yaxis.set_major_locator(ticker.MultipleLocator(1))

    plt.tight_layout()
    plt.savefig(outpath)
    plt.close('all')
项目:VLTPF    作者:avigan    | 项目源码 | 文件源码
def fit_peak(x, y, display=False):
    '''
    Fit a Gaussian (with linear trend)

    Parameters
    ----------
    x : array_like
        x values

    y : array_like
        y values

    display : bool
        Display the result of the fit

    Returns
    -------
    par    
        Fit parameters: Gaussian amplitude, Gaussian mean, Gaussian
        stddev, line slope, line intercept
    '''

    # fit: Gaussian + constant
    g_init = models.Gaussian1D(amplitude=y.max(), mean=x[np.argmax(y)]) + models.Linear1D(slope=0, intercept=0)
    fitter = fitting.LevMarLSQFitter()
    fit = fitter(g_init, x, y)

    if display:
        plt.clf()
        plt.plot(x, y, color='k')
        plt.plot(x, fit(x), color='r')
        plt.tight_layout()

    return fit.parameters
项目:Moving-Least-Squares    作者:Jarvis73    | 项目源码 | 文件源码
def demo2(fun):
    ''' 
        Smiled Monalisa  
    '''

    p = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [211, 244], [253, 244], [195, 254], [232, 281], [285, 252]
    ])
    q = np.array([
        [186, 140], [295, 135], [208, 181], [261, 181], [184, 203], [304, 202], [213, 225], 
        [243, 225], [207, 238], [261, 237], [199, 253], [232, 281], [279, 249]
    ])
    image = plt.imread(os.path.join(sys.path[0], "monalisa.jpg"))
    plt.subplot(121)
    plt.axis('off')
    plt.imshow(image)
    transformed_image = fun(image, p, q, alpha=1, density=1)
    plt.subplot(122)
    plt.axis('off')
    plt.imshow(transformed_image)
    plt.tight_layout(w_pad=1.0, h_pad=1.0)
    plt.show()
项目:casingSimulations    作者:lheagy    | 项目源码 | 文件源码
def plot(self, ax=None, clim=[None, None], pcolorOpts=None):
        """
        plot the electrical conductivity and relative permeability

        :param matplotlib.axes ax: axis
        :param list clim: list of numpy arrays: colorbar limits
        :param dict pcolorOpts: dictionary of pcolor options
        """

        if ax is None:
            fig, ax = plt.subplots(1, 2, figsize=(12, 4))

        if not isinstance(pcolorOpts, list):
            pcolorOpts = [pcolorOpts]*2

        self.plot_sigma(ax=ax[0], clim=clim[0], pcolorOpts=pcolorOpts[0])
        self.plot_mur(ax=ax[1], clim=clim[1], pcolorOpts=pcolorOpts[1])

        plt.tight_layout()
        return ax
项目:FHDMM    作者:aweinstein    | 项目源码 | 文件源码
def card_cue_bandit_experiment(alpha=0.1, beta=0.5):
    np.random.seed(42)
    print('Running experiment with alpha={} and beta={}'.format(alpha, beta))
    df = agent.run_single_softmax_experiment(beta, alpha)

    f = lambda x: {'reward':0, 'punishment':1, 'neutral':2}[x]
    df['cue'] = df['context'].map(f)

    f = lambda x: {23:0, 14:1, 8:2, 3:3}[x]
    df['action'] = df['action'].map(f)
    ml = ML(df)
    r = ml.ml_estimation()
    print(r)

    alpha_hat, beta_hat = r.x[:2]
    fig, ax = plt.subplots(1, 1)
    ml.plot_ml(ax, alpha, beta, alpha_hat, beta_hat)
    plt.tight_layout()
    plt.savefig('likelihood.pdf')
    plt.show()
    globals().update(locals())
项目:RealtimeFacialEmotionRecognition    作者:sushant3095    | 项目源码 | 文件源码
def plot_confusion_matrix(cm, names=None, title='Confusion Matrix', cmap=plt.cm.Blues):
    plt.figure(4)
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()

    # Add labels to confusion matrix:
    if names is None:
        names = range(cm.shape[0])

    tick_marks = np.arange(len(names))
    plt.xticks(tick_marks, names, rotation=45)
    plt.yticks(tick_marks, names)

    plt.tight_layout()
    plt.ylabel('Correct label')
    plt.xlabel('Predicted label')
    plt.show()

# Generate confusion matrix for Jaffe
# results = list of tuples of (correct label, predicted label)
#           e.g. [ ('HA', 3) ]
# categories = list of category names
# Returns confusion matrix; rows are correct labels and columns are predictions
项目:F1-Telemetry    作者:MrPranz    | 项目源码 | 文件源码
def plotstyle():
    # makes the plot look pretty :)
    ax1.set_xlabel('Distance(m)')
    ax1.set_ylabel('Velocity (km/h)')
    ax1.legend(loc='upper right',fontsize=11,fancybox=True)
    majxticks = np.arange(0,L,500)
    minxticks = np.arange(0,L,100)
    majyticks = np.arange(vmin,vmax,50)
    minyticks = np.arange(vmin,vmax,10)
    ax1.set_xticks(majxticks)
    ax1.set_xticks(minxticks,minor=True)
    ax1.set_yticks(majyticks)
    ax1.set_yticks(minyticks,minor=True)
    ax1.grid(which='major',alpha=0.5)
    ax1.grid(which='minor',alpha=0.25)
    ax1.axis([0,L,vmin,vmax])
    plt.tight_layout()
项目:actions-for-actions    作者:gsig    | 项目源码 | 文件源码
def plot(sizes,plotname):
    fig = plt.figure(figsize=(2.0,2.0),facecolor='white')
    ax = plt.subplot(111)
    psizes = ['%1.1f%%' % (x/sum(sizes)*100) for x in sizes]
    labels = [x+'\n'+y for x,y in zip(LABELS,psizes)]
    patches = plt.pie(sizes, colors=COLORS, labels=labels, 
                      shadow=False, startangle=90, labeldistance=0.7, 
                      wedgeprops={'linewidth': 4})
    for pie_wedge in patches[0]:
        pie_wedge.set_edgecolor('white')
    for t in patches[1]:
        t.set_horizontalalignment('center')
    plt.axis('equal')
    plt.tight_layout()
    plt.savefig(plotname)
    print('saved plot to {}'.format(plotname))
    plt.show()


######################################################
# Data processing
项目:Deep-subspace-clustering-networks    作者:panji1990    | 项目源码 | 文件源码
def test_face(Img, CAE, n_input):

    batch_x_test = Img[200:300,:]
    batch_x_test= np.reshape(batch_x_test,[100,n_input[0],n_input[1],1])
    CAE.restore()
    x_re = CAE.reconstruct(batch_x_test)

    plt.figure(figsize=(8,12))
    for i in range(5):
        plt.subplot(5,2,2*i+1)
        plt.imshow(batch_x_test[i,:,:,0], vmin=0, vmax=255, cmap="gray") #
        plt.title("Test input")
        plt.colorbar()
        plt.subplot(5, 2, 2*i + 2)
        plt.imshow(x_re[i,:,:,0], vmin=0, vmax=255, cmap="gray")
        plt.title("Reconstruction")
        plt.colorbar()
        plt.tight_layout()
    plt.show()
    return
项目:2020plus    作者:KarchinLab    | 项目源码 | 文件源码
def create_qqplots(pval_df, save_path):
    """Create qq plots for oncogene, tsg, and driver p-value.

    NOTE: gene names should be the index of the dataframe
    """
    pval_cols = ['oncogene p-value', 'tsg p-value', 'driver p-value']
    #keep_cols = ['gene'] + pval_cols
    plot_df = pval_df[pval_cols].copy()
    plot_df['gene'] = pval_df.index
    plot_df = plot_df[~plot_df['gene'].isin(pval.mlfc_remove_genes)]
    fig, ax = plt.subplots(1, 3,
                           subplot_kw={'aspect': 'equal'})
    fig.set_size_inches(9, 3)
    for i, pval_col in enumerate(pval_cols):
        qqplot(pval_df[pval_col], ax[i], title=pval_col.split(' ')[0])
        mlfc = pval.mean_log_fold_change(plot_df[pval_col], plot_df['gene'])
        ax[i].text(.05, .85, 'MLFC = {0:.2f}'.format(mlfc))
        ax[i].set_xlim((0, 1))
        ax[i].set_ylim((0, 1))
    plt.tight_layout()
    plt.savefig(save_path)
    plt.close()
项目:2020plus    作者:KarchinLab    | 项目源码 | 文件源码
def correlation_plot(x, y,
                     save_path,
                     title,
                     xlabel, ylabel):
    plt.scatter(x, y)
    slope, intercept, r_value, p_value, std_err = stats.linregress(x, y)
    line_x = np.arange(x.min(), x.max())
    line_y = slope*line_x + intercept
    plt.plot(line_x, line_y,
             label='$%.2fx + %.2f$, $R^2=%.2f$' % (slope, intercept, r_value**2))
    plt.legend(loc='best')
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.tight_layout()
    plt.savefig(save_path)
    plt.clf()  # clear figure
    plt.close()