我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用matplotlib.pyplot.ion()。
def on_train_begin(self, logs={}): sns.set_style("whitegrid") sns.set_style("whitegrid", {"grid.linewidth": 0.5, "lines.linewidth": 0.5, "axes.linewidth": 0.5}) flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] sns.set_palette(sns.color_palette(flatui)) # flatui = ["#9b59b6", "#3498db", "#95a5a6", "#e74c3c", "#34495e", "#2ecc71"] # sns.set_palette(sns.color_palette("Set2", 10)) plt.ion() # set plot to animated self.fig = plt.figure( figsize=(self.width * (1 + len(self.get_metrics(logs))), self.height)) # width, height in inches # move it to the upper left corner move_figure(self.fig, 25, 25)
def on_train_begin(self, logs={}): for layer in self.get_trainable_layers(): for param in self.parameters: if any(w for w in layer.weights if param in w.name.split("_")): name = layer.name + "_" + param self.layers_stats[name]["values"] = numpy.asarray( []).ravel() for s in self.stats: self.layers_stats[name][s] = [] # plt.style.use('ggplot') plt.ion() # set plot to animated width = 3 * (1 + len(self.stats)) height = 2 * len(self.layers_stats) self.fig = plt.figure( figsize=(width, height)) # width, height in inches # sns.set_style("whitegrid") # self.draw_plot()
def __init__(self,to_plot = True): self.state = np.array([0,0]) self.observation_shape = np.shape(self.get_state())[0] if to_plot: plt.ion() fig = plt.figure() ax1 = fig.add_subplot(111,aspect='equal') #ax1.axis('off') plt.xlim([-0.5,5.5]) plt.ylim([-0.5,5.5]) self.g1 = ax1.add_artist(plt.Circle((self.state[0],self.state[1]),0.1,color='red')) self.fig = fig self.ax1 = ax1 self.fig.canvas.draw() self.fig.canvas.flush_events()
def vis_lmdb(prms, setName='train'): db = mpio.DbReader(prms['paths']['lmdb'][setName]) plt.ion() fig = plt.figure() ax = plt.subplot(1,1,1) clNames = get_classnames(prms) N = 100 for i in range(N): im,lb = db.read_next() im = im.transpose((1,2,0)) im = im[:,:,[2,1,0]] ax.imshow(im) ax.axis('off') plt.title('Class: %s' % clNames[lb]) raw_input() ## # Make all the lmdbs
def init_plot(self): # Interactive mode plt.ion() # Chart size and margins plt.figure(figsize = (20, 10)) plt.subplots_adjust(hspace = 0.05, top = 0.95, bottom = 0.1, left = 0.05, right = 0.95) # Setup axis labels and ranges plt.title('Pico Technology TC-08') plt.xlabel('Time [s]') plt.ylabel('Temperature [' + self.unit_text + ']') plt.xlim(0, self.duration) self.plotrangemin = 19 self.plotrangemax = 21 plt.ylim(self.plotrangemin, self.plotrangemax) # Enable a chart line for each channel self.lines = [] for i in CHANNEL_CONFIG: if CHANNEL_CONFIG.get(i) != ' ': self.lines.append(line(plt, CHANNEL_NAME.get(i))) else: self.lines.append(line(plt, 'Channel {:d} OFF'.format(i))) # Plot the legend plt.legend(loc = 'best', fancybox = True, framealpha = 0.5) plt.draw()
def initialize(self): self.fig = plt.figure() self.axes_dict = self.create_fig(self.fig) for plot_key in self.plot_layers.keys(): plot_layer = self.plot_layers[plot_key] if plot_key not in self.axes_dict: raise KeyError("No axis created for plot %s" % plot_key) plot_layer.create_fig(self.fig, self.axes_dict[plot_key]) # matplotlib.animation.Animation._blit_draw = _blit_draw self.anim = animation.FuncAnimation(self.fig, self.update_func, init_func=self.init_func, frames=None, interval=1000 / self.fps, blit=True) print("show") plt.ion() plt.show() print("continue")
def plot_spikepattern(spike_trains, sim_time): """Plot set of spike trains (spike pattern)""" plt.ioff() plt.figure() for i in xrange(len(spike_trains)): spike_times = spike_trains[i].value plt.plot(spike_times, np.full(len(spike_times), i, dtype=np.int), 'k.') plt.xlim((0.0, sim_time)) plt.ylim((0, len(spike_trains))) plt.xlabel('Time (ms)') plt.ylabel('Neuron index') plt.show() plt.ion()
def plot_spiker(record, spike_trains_target, neuron_index=0): """Plot spikeraster and target timings for given neuron index""" plt.ioff() spike_trains = [np.array(i.spiketrains[neuron_index]) for i in record.segments] n_segments = record.size['segments'] plt.figure() for i in xrange(len(spike_trains)): plt.plot(spike_trains[i], np.full(len(spike_trains[i]), i + 1, dtype=np.int), 'k.') target_timings = spike_trains_target[neuron_index].value plt.plot(target_timings, np.full(len(target_timings), 1.025 * n_segments), 'kx', markersize=8, markeredgewidth=2) plt.xlim((0., np.float(record.segments[0].t_stop))) plt.ylim((0, np.int(1.05 * n_segments))) plt.xlabel('Time (ms)') plt.ylabel('Trials') plt.title('Output neuron {}'.format(neuron_index)) plt.show() plt.ion()
def setup_plot_iv_multi(self,nrows=16,ncols=8,xwin=True): if not isinstance(self.vbias,np.ndarray): self.vbias=make_Vbias() ttl=str('QUBIC I-V curves (%s)' % (self.obsdate.strftime('%Y-%b-%d %H:%M UTC'))) nbad=0 for val in self.is_good_iv(): if not val:nbad+=1 ttl+=str('\n%i flagged as bad pixels' % nbad) if xwin: plt.ion() else: plt.ioff() fig,axes=plt.subplots(nrows,ncols,sharex=True,sharey=False,figsize=self.figsize) if xwin: fig.canvas.set_window_title('plt: '+ttl) fig.suptitle(ttl,fontsize=16) plt.xlabel('Bias Voltage / V') plt.ylabel('Current / $\mu$A') return fig,axes
def setup_plot_iv(self,TES,xwin=True): ttl=str('QUBIC I-V curve for TES#%3i (%s)' % (TES,self.obsdate.strftime('%Y-%b-%d %H:%M UTC'))) if self.temperature==None: tempstr='unknown' else: tempstr=str('%.0f mK' % (1000*self.temperature)) subttl=str('Array %s, ASIC #%i, Pixel #%i, Temperature %s' % (self.detector_name,self.asic,self.tes2pix(TES),tempstr)) if xwin: plt.ion() else: plt.ioff() fig=plt.figure(figsize=self.figsize) fig.canvas.set_window_title('plt: '+ttl) fig.suptitle(ttl+'\n'+subttl,fontsize=16) ax=plt.gca() ax.set_xlabel('Bias Voltage / V') ax.set_ylabel('Current / $\mu$A') ax.set_xlim([self.bias_factor*self.min_bias,self.bias_factor*self.max_bias]) return fig,ax
def plot(api, images, aoi): # GeoJSON FeatureCollection containing footprints and properties of the scenes metadata = api.get_footprints()#images properties = [metadata.features[i].properties for i in range(0, len(images))] footprints = [metadata.features[i].geometry.coordinates for i in range(0,len(images))] # Get coordinates of the Area of Interest (AOI) with open(aoi) as geojson_file: geojson = json.load(geojson_file) for feature in geojson['features']: polygon = (feature['geometry']) aoi_coordinates = polygon['coordinates'] aoi_x_coordinates = [aoi_coordinates[0][i][0] for i in range(0,len(aoi_coordinates[0]))] aoi_y_coordinates = [aoi_coordinates[0][i][1] for i in range(0,len(aoi_coordinates[0]))] plt.ion() # Plot Footprints and AOI for i in range(0,len(images)): plt.plot(*zip(*footprints[i][0]), label='Image '+str(properties[i]['product_id']), linestyle='dashed') plt.plot(aoi_x_coordinates, aoi_y_coordinates, 'r') plt.legend() plt.show()
def create_fig(self): fig = plt.figure(figsize=(16,6)) ax1 = fig.add_subplot(1, 1, 1) ax1.cla() ax1.hold(True) self.time_str = 'time = %-6.2f' ax1.set_title( '' ) ax1.set_xlabel('X') ax1.set_ylabel('Y') self.ax1 = ax1 plt.ion() self.im=ax1.imshow( self.z2d, vmin=self.cax[0],vmax=self.cax[1], cmap=plt.get_cmap('jet'),origin='lower', interpolation='nearest') cb = plt.colorbar(self.im) fig.show() fig.canvas.draw() self.fig = fig
def _render(self, mode = "human", close = False): if close: return import matplotlib.pyplot as plt if self.tick == 0: plt.ion() G = self.G attrs = nx.get_node_attributes(G, "ndd") values = ["red" if attrs[v] else "blue" for v in G.nodes()] plt.clf() nx.draw(G, pos = nx.circular_layout(G), node_color = values) plt.pause(0.01) return []
def _render(self, mode='human', close=False): if self.inited == False: return if self.render_on == 0: # self.fig = plt.figure(figsize=(10, 4)) self.fig = plt.figure(figsize=(12, 6)) self.render_on = 1 plt.ion() plt.clf() self._plot_trades() plt.suptitle("Code: " + self.src.symbol + ' ' + \ "Round:" + str(self.reset_count) + "-" + \ "Step:" + str(self.src.idx - self.src.orgin_idx) + " (" + \ "from:" + self.src.reset_start_day + " " + \ "to:" + self.src.reset_end_day + ")") plt.pause(0.001) return self.fig
def graph_live_data(self): """draw a live graph of pi GPU """ tempg = [] plt.ion() #pre-load dummy data for i in range(0, 26): tempg.append(0) while True: #GPU ostemp = os.popen('vcgencmd measure_temp').readline() temp = (ostemp.replace("temp=", "").replace("'C\n", "")) tempg.append(temp) tempg.pop(0) #plot graph pass function temp plot_now_func(tempg) plt.pause(1)
def __init__(self, evaluator, figsize=(7, 7), sleep=0.0001): super(DataFittingMonitor, self).__init__(evaluator, 'data_fitting_monitor') self._sleep = sleep self._network = self.evaluator.network self._fig = plt.figure(figsize=figsize) self._ax = self._fig.add_subplot(111) self._scat = self._ax.scatter( [], [], label=r'$predicted$', c=self.color_test, # blue like s=30, alpha=0.6, edgecolor='none') self._real_line, = self._ax.plot( [None, None], [None, None], ls='--', lw=3, c=self.color_train, # red like label=r'$real$') self._ax.grid(True) self._ax.legend(loc='upper left') self._ax.set_xlabel(r'$Real\ data$') self._ax.set_ylabel(r'$Predicted$') plt.ion() plt.show()
def __init__(self, grid_space, objects, evaluator, figsize, sleep=0.001): super(ScaleMonitor, self).__init__(evaluator, 'score_monitor') self._network = self.evaluator.network self._axes = {} self._tplot_axes = {} self._vplot_axes = {} self._fig = plt.figure(figsize=figsize) self._sleep = sleep for r_loc, name in enumerate(objects): r_span, c_span = 1, grid_space[1] self._axes[name] = plt.subplot2grid(grid_space, (r_loc, 0), colspan=c_span, rowspan=r_span) if name != objects[-1]: plt.setp(self._axes[name].get_xticklabels(), visible=False) self._axes[name].set_ylabel(r'$%s$' % name.replace(' ', r'\ ').capitalize()) self._fig.subplots_adjust(hspace=0.1) plt.ion() plt.show()
def gen_blurred_diag_pxy(s): X = 1024 Y = X # generate pdf from scipy.stats import multivariate_normal pxy = np.zeros((X,Y)) rv = multivariate_normal(cov=s) for x in range(X): pxy[x,:] = np.roll(rv.pdf(np.linspace(-X/2,X/2,X+1)[:-1]),int(X/2+x)) pxy = pxy/np.sum(pxy) # plot p(x,y) import matplotlib.pyplot as plt plt.figure() plt.contourf(pxy) plt.ion() plt.title("p(x,y)") plt.show() return pxy
def set_interactive(interactive = False): """This function does something. Args: name (str): The name to use. Kwargs: state (bool): Current state to be in. Returns: int. The return code:: 0 -- Success! 1 -- No good. 2 -- Try again. Raises: AttributeError, KeyError """ if interactive: plt.ion() else: plt.ioff()
def main(): session = tf.Session() env = gym.make('Pong-v0') last_observation = env.reset() preproc_f = preproc_graph(session, env.observation_space.shape) fig, ax = plt.subplots(figsize=(6,6)) plt.ion() for _ in range(1000): observation, _, _, _ = env.step(env.action_space.sample()) print("wtf?") pp = preproc_f(last_observation, observation) print("wtf!") ax.imshow(pp[:,:,0]) plt.pause(0.05) print("Let the bodies hit the floor") last_observation = observation
def viewanim(data,start=0,skip=2,title=None,cmap='bone', ms_per_step=None): """ Show an animation of a single simulation run, each node represented (via its node label) as pixel (i,j) in an MxN image. So this will only be useful for grid graphs. Args: data: MxNxT array of voltage traces start: first timestep to show skip: timesteps to advance in each frame (higher -> faster) title: figure title cmap: matplotlib colormap (name OR object) """ #plt.ioff() anim = createanim(data,start,skip,title=title,cmap=cmap, ms_per_step=ms_per_step) plt.show() plt.ion()
def draw_loop(): """ Draw the graph in a loop """ global G plt.ion() # mng = plt.get_current_fig_manager() # mng.resize(*mng.window.maxsize()) plt.draw() for line in fileinput.input(): if output(line): plt.clf() nx.draw(G) plt.draw()
def _test_AsynDrawKline(self): code = '300033' start_day = '2017-8-25' #df = stock.getHisdatDataFrameFromRedis(code, start_day) df = stock.getFiveHisdatDf(code, start_day=start_day) import account account = account.LocalAcount(account.BackTesting()) #???????? indexs = agl.GenRandomArray(len(df), 3) trade_bSell = [0,1,0] df_trades = df[df.index.map(lambda x: x in df.index[indexs])] df_trades = df_trades.copy() df_trades[AsynDrawKline.enum.trade_bSell] = trade_bSell plt.ion() for i in range(10): AsynDrawKline.drawKline(df[i*10:], df_trades) plt.ioff() #plt.show() #???????? ????????
def render(self): if GRAPHICS: plt.ion() plt.show() xBottom = self.drawParams['xBottom'] carlength = self.drawParams['carlength'] ego = self.drawParams['ego'] self.drawParams['txtDist'].set_text('distance: %f' % self.d) self.drawParams['txtS_ego'].set_text('ego speed: %f' % self.s_ego) self.drawParams['txtS_lead'].set_text( 'lead speed: %f' % self.s_lead[self.tstep]) self.ax.set_xlim( (min([-self.d - 2 * carlength, xBottom]), 2 * carlength)) ego.set_xy((-self.d - carlength, 0)) plt.draw() plt.pause(0.1)
def render(self): plt.ion() plt.show() self.ax.cla() img = self.j.render(self.simparams, np.zeros( (500, 500)).astype('uint32')) #img=self.j.retrieve_frame_data(500, 500, self.simparams) self.ax.imshow(img, cmap=plt.get_cmap('bwr')) #self.ax.imshow(img, cmap=plt.get_cmap('seismic')) plt.draw() plt.pause(1e-6) return
def render(self): # plt.ion() # plt.show() # self.ax.cla() # img = self.j.render(self.simparams, np.zeros((500,500)).astype('uint32')) # #img=self.j.retrieve_frame_data(500, 500, self.simparams) # self.ax.imshow(img, cmap=plt.get_cmap('bwr')) # #self.ax.imshow(img, cmap=plt.get_cmap('seismic')) # plt.draw() # plt.pause(1e-6) return
def __init__(self,ASN): self.filename = str(ASN) + 'network graph' self.alias_filename = str(ASN) + 'alias_candidates.txt' self.ISP_Network = networkx.Graph() self.files_read = 0 self.border_points = set() if os.path.isfile(self.filename): load_file = shelve.open(self.filename, 'r') self.files_read = load_file['files_read'] self.ISP_Network = load_file['ISP_Network'] self.border_points = load_file['border_points'] self.ASN = ASN plt.ion() country = raw_input('enter country to focus on map [Israel/Usa/Australia/other]: ') if country == 'Israel' or country == 'israel' or country == 'ISRAEL': self.wmap = Basemap(projection='aeqd', lat_0 = 31.4, lon_0 = 35, width = 200000, height = 450000, resolution = 'i') elif country == 'USA' or country == 'usa': self.wmap = Basemap(projection='aeqd', lat_0 = 40, lon_0 = -98, width = 4500000, height = 2700000, resolution = 'i') elif country == 'Australia' or 'australia' or 'AUSTRALIA': self.wmap = Basemap(projection='aeqd', lat_0 = -23.07, lon_0 = 132.08, width = 4500000, height = 3500000, resolution = 'i') else: self.wmap = Basemap(projection='cyl', resolution = 'c') plt.hold(False)
def initialize(self): plt.ion() #Set up plot self.fig = plt.figure(figsize=plt.figaspect(2.)) self.ax0 = self.fig.add_subplot(2,1,1) self.laser_angular, = self.ax0.plot([],[], 'r.') self.laser_filtered, = self.ax0.plot([],[], 'b-') self.ax0.set_ylim(-1, 15) self.ax0.set_xlim(-np.pi, +np.pi) self.ax0.invert_xaxis() self.ax0.grid() self.ax1 = self.fig.add_subplot(2,1,2) self.ax1.invert_xaxis() self.ax1.grid() self.laser_euclid, = self.ax1.plot([],[], '.') self.laser_regressed, = self.ax1.plot([],[], 'g') self.redraw()
def train(self, alpha=0.05, num_epochs=30): self.sess.run(tf.global_variables_initializer()) batch_size = 64 plt.ion() start_time = time.time() for epoch in range(0, num_epochs): batch_idxs = 1093 self.visualize(alpha) for idx in range(0, batch_idxs): bx, _ = mnist.train.next_batch(batch_size) loss, _ = self.sess.run([self.loss, self.trainer], feed_dict={self.x: bx, self.alpha: alpha}) if idx % 100 == 0: print("Epoch: [%2d] [%4d/%4d] time: %4.4f, " % (epoch, idx, batch_idxs, time.time() - start_time), end='') print("loss: %4.4f" % loss) plt.ioff() self.visualize(alpha=0.0, batch_size=20)
def train(self, alpha=0.05, num_epochs=30): self.sess.run(tf.global_variables_initializer()) batch_size = 128 plt.ion() start_time = time.time() for epoch in range(0, num_epochs): batch_idxs = 545 #self.visualize(alpha) for idx in range(0, batch_idxs): bx, _ = mnist.train.next_batch(batch_size) bz = self.sess.run(self.rand_init, feed_dict={self.x: bx, self.alpha: alpha}) loss, _ = self.sess.run([self.loss, self.trainer], feed_dict={self.x: bx, self.alpha: alpha, self.init: bz}) if idx % 100 == 0: print("Epoch: [%2d] [%4d/%4d] time: %4.4f, " % (epoch, idx, batch_idxs, time.time() - start_time), end='') print("loss: %4.4f" % loss) self.visualize(alpha=0.0, batch_size=10, repeat=2) plt.ioff() self.visualize(alpha=0.0, batch_size=20, repeat=2)
def visualiseLearnedFeatures(self): """ Visualise the features learned by the autoencoder """ import matplotlib.pyplot as plt extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture # number of rows and columns to plot (number of hidden units also stored in self._architecture) plotDims = np.rint(np.sqrt(self._architecture[1])) plt.ion() fig = plt.figure() plt.set_cmap("gnuplot") plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1) learnedFeatures = self.getLearnedFeatures() for i in range(self._architecture[1]): image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000 ax = fig.add_subplot(plotDims, plotDims, i) plt.axis("off") ax.imshow(image, interpolation="nearest") plt.show() raw_input("Program paused. Press enter to continue.")
def stochastic_gradient_descent(self, f, x0, fprime, maxiter, args): import matplotlib.pyplot as plt input, targets = args stochastic_indices = np.random.permutation(maxiter) for i,index in enumerate(stochastic_indices): sys.stdout.write("Iteration | %d\r" % (i)) sys.stdout.flush() if i % 10 == 0: plt.clf() plt.ion() #try: # cost, grad = self.costFunction(x0, input[:,:index], targets[:index]) #except, ValueError: cost, grad = self.costFunction(x0, input, targets) costs.append(cost) iters.append(i) plt.plot(iters, costs) plt.draw() # only pass a single training example for each iteration costGrad = fprime(x0, input[:,index][:,np.newaxis], targets[:,index][:,np.newaxis]) x0 = x0 - self._ALPHA*costGrad return x0
def visualiseLearnedFeatures(self): """ Visualise the features learned by the autoencoder """ import matplotlib.pyplot as plt extent = np.sqrt(self._architecture[0]) # size of input vector is stored in self._architecture # number of rows and columns to plot (number of hidden units also stored in self._architecture) plotDims = np.rint(np.sqrt(self._architecture[1])) plt.ion() fig = plt.figure() plt.set_cmap("gnuplot") plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=-0.6, hspace=0.1) learnedFeatures = self.getLearnedFeatures() for i in range(self._architecture[1]): image = np.reshape(learnedFeatures[i,:], (extent, extent), order="F") * 1000 ax = fig.add_subplot(plotDims, plotDims, i) plt.axis("off") ax.imshow(image, interpolation="nearest") plt.show() input("Program paused. Press enter to continue.")
def create_curve(): # Create the curve which we want the RNN to learn plt.ion() fig = plt.figure(figsize=(10, 10)) ax = plt.gca() r = np.arange(0, .34, 0.001) n_points = len(r) theta = 45 * np.pi * r x_offset, y_offset = .5, .5 y_curve_points = 1.4 * r * np.sin(theta) + y_offset x_curve_points = r * np.cos(theta) + x_offset curve = list(zip(x_curve_points, y_curve_points)) collection = LineCollection([curve], colors='k') ax.add_collection(collection) return ax, n_points, x_curve_points, y_curve_points
def train_op(LR=0.0001,train_size=TRAINSIZE): sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) train_op=tf.train.AdamOptimizer(LR).minimize(regretion_loss) xs,ys = get_next_batch() feed_dict={ x_RNN : xs,y_: ys} # plt.ion() # plt.show() for i in range(train_size): if i%10==0: loss= sess.run(regretion_loss,feed_dict=feed_dict) print('batch ' ,i , ' loss= ' , loss) f, a = plt.subplots(2, 1) # a[0][1].imshow(np.reshape(image_p[-1], (LONGITUDE, WIDTH))) # a[1][1].imshow(np.reshape(res[0], (LONGITUDE, WIDTH))) # plt.show() sess.run(train_op,feed_dict=feed_dict)
def __init__(self, name='expression', display=True): super(Expression, self).__init__() self.name = name self.display = display if display: import matplotlib.pyplot as plt plt.ion() else: import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt self.fig, (self.ax1, self.ax2) = plt.subplots(nrows=2, ncols=1)
def _finalize_plotting(self): from matplotlib import pyplot pyplot.tight_layout(rect=(0, 0, 0.96, 1)) pyplot.draw() # update "screen" pyplot.ion() # prevents that the execution stops after plotting pyplot.show() pyplot.rcParams['font.size'] = self.original_fontsize
def plot(self, plot_cmd=None, tf=lambda y: y): """plot the data we have, return ``self``""" from matplotlib import pyplot if not plot_cmd: plot_cmd = self.plot_cmd colors = 'bgrcmyk' pyplot.gcf().clear() res = self.res flatx, flatf = self.flattened() minf = np.inf for i in flatf: minf = min((minf, min(flatf[i]))) addf = 1e-9 - minf if minf <= 1e-9 else 0 for i in sorted(res.keys()): # we plot not all values here if isinstance(i, int): color = colors[i % len(colors)] arx = sorted(res[i].keys()) plot_cmd(arx, [tf(np.median(res[i][x]) + addf) for x in arx], color + '-') pyplot.text(arx[-1], tf(np.median(res[i][arx[-1]])), i) plot_cmd(flatx[i], tf(np.array(flatf[i]) + addf), color + 'o') pyplot.ylabel('f + ' + str(addf)) pyplot.draw() pyplot.ion() pyplot.show() return self
def superpose(cdfs, outputpath, data): border_x = 0.5 dx = 0.001 x = np.arange(0, border_x, dx) plt.ioff() fig = plt.figure(figsize=(10,8)) plt.xticks([0.01, 0.02, 0.05, 0.07, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]) plt.yticks([0.1, 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0]) plt.xticks(rotation=70) plt.grid(b=True, which='major', axis='both', linestyle='dotted') floating = 3 prec = "%." + str(floating) + "f" for cdf in cdfs: title = cdf["title"] auc = cdf["auc"] cdf01 = cdf["cdf01"] cdf_val = cdf["cdf"] plt.plot(x, cdf_val, marker=',', label=title + ", CDF(0.1)=" + str(prec % (cdf01*100)) + "%, AUC=" + str(prec % np.float(auc)) + "%") plt.legend(loc=4, prop={'size': 8}, fancybox=True, shadow=True) fig.suptitle('Cumulative distribution function (CDF) of NRMSE over ' + data + ' test set.') plt.xlabel('NRMSE') plt.ylabel('Data proportion') fig.savefig(outputpath, bbox_inches='tight', format='eps', dpi=1000) plt.ion()
def show_landmarks_unit_test(self, im, phis_pred, phis_mean_train, bbox, save=False, path="../im.png"): """ Display a shape over the face image. (python) phis_pred: predicted phis [xxxyyy] phis_mean_train: mean phis of ground of truth bbox=[x y w h] im = np.ndarray """ plt.close('all') if save: plt.ioff() nfids = int(len(phis_pred)/2) plt.imshow(im, cmap = cm.Greys_r) gt = plt.scatter(x=phis_mean_train[0:nfids], y=phis_mean_train[nfids:], c='g', s=40) pr = plt.scatter(x=phis_pred[0:nfids], y=phis_pred[nfids:], c='r', s=20) mse = np.mean(np.power((phis_pred - phis_mean_train), 2)) plt.legend((gt, pr), ("mean shape train", "prediction, MSE="+str(mse)), scatterpoints=1,loc='lower left', fontsize=8, fancybox=True, shadow=True) """ plt.plot([bbox[0], bbox[0]],[bbox[1],bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0], bbox[0]+bbox[2]],[bbox[1], bbox[1]],'-b', linewidth=1) plt.plot([bbox[0]+bbox[2], bbox[0]+bbox[2]],[bbox[1], bbox[1]+bbox[3]],'-b', linewidth=1) plt.plot([bbox[0] ,bbox[0]+bbox[2]],[bbox[1]+bbox[3] ,bbox[1]+bbox[3]],'-b', linewidth=1) """ plt.axis('off') if save: plt.savefig(path,bbox_inches='tight', dpi=1000) plt.ion() else: plt.show() raw_input("... Press ENTER to continue,") plt.close('all')
def __init__(self, size=(600,350)): streams = resolve_byprop('name', 'bci', timeout=2.5) try: self.inlet = StreamInlet(streams[0]) except IndexError: raise ValueError('Make sure stream name=bci is opened first.') self.running = True self.ProcessedSig = [] self.SecondTimes = [] self.count = -1 self.sampleCount = self.count self.maximum = 0 self.minimum = 0 plt.ion() plt.hold(False) self.lineHandle = plt.plot(self.SecondTimes, self.ProcessedSig) plt.title("Live Stream EEG Data") plt.xlabel('Time (s)') plt.ylabel('mV') #plt.autoscale(True, 'y', tight = True) plt.show() #while(1): #secondTimes.append(serialData[0]) #add time stamps to array 'timeValSeconds' #floatSecondTimes.append(float(serialData[0])/1000000) # makes all second times into float from string #processedSig.append(serialData[6]) #add processed signal values to 'processedSig' #floatProcessedSig.append(float(serialData[6]))
def __init__(self, size=(600,350)): self.running = True self.ProcessedSig = [] self.SecondTimes = [] self.count = -1 plt.ion() plt.hold(False) self.lineHandle = plt.plot(self.SecondTimes, self.ProcessedSig) plt.title("Streaming Live EMG Data") plt.xlabel('Time (s)') plt.ylabel('Volts') plt.show()
def pair_visual(original, adversarial, figure=None): """ This function displays two images: the original and the adversarial sample :param original: the original input :param adversarial: the input after perterbations have been applied :param figure: if we've already displayed images, use the same plot :return: the matplot figure to reuse for future samples """ import matplotlib.pyplot as plt # Ensure our inputs are of proper shape assert(len(original.shape) == 2 or len(original.shape) == 3) # To avoid creating figures per input sample, reuse the sample plot if figure is None: plt.ion() figure = plt.figure() figure.canvas.set_window_title('Cleverhans: Pair Visualization') # Add the images to the plot perterbations = adversarial - original for index, image in enumerate((original, perterbations, adversarial)): figure.add_subplot(1, 3, index + 1) plt.axis('off') # If the image is 2D, then we have 1 color channel if len(image.shape) == 2: plt.imshow(image, cmap='gray') else: plt.imshow(image) # Give the plot some time to update plt.pause(0.01) # Draw the plot and return plt.show() return figure