我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用net.py()。
def inference(sess,preprocessed_image): # Forward pass of the preprocessed image into the network defined in the net.py file predictions = sess.run(net.o9,feed_dict={net.x:preprocessed_image}) return predictions ### MAIN ##############################################################################################################
def main(_): # Definition of the paths weights_path = './tiny-yolo-voc.weights' input_img_path = './horses.jpg' output_image_path = './output.jpg' # If you do not have the checkpoint yet keep it like this! When you will run test.py for the first time it will be created automatically ckpt_folder_path = './ckpt/' # Definition of the parameters input_height = 416 input_width = 416 score_threshold = 0.3 iou_threshold = 0.3 # Definition of the session sess = tf.InteractiveSession() tf.global_variables_initializer().run() # Check for an existing checkpoint and load the weights (if it exists) or do it from binary file print('Looking for a checkpoint...') saver = tf.train.Saver() _ = weights_loader.load(sess,weights_path,ckpt_folder_path,saver) # Preprocess the input image print('Preprocessing...') preprocessed_image = preprocessing(input_img_path,input_height,input_width) # Compute the predictions on the input image print('Computing predictions...') predictions = inference(sess,preprocessed_image) # Postprocess the predictions and save the output image print('Postprocessing...') output_image = postprocessing(predictions,input_img_path,score_threshold,iou_threshold,input_height,input_width) cv2.imwrite(output_image_path,output_image)
def __set_cpu_or_gpu(self): # Prepare multi-layer perceptron model, defined in net.py if self.gpu >= 0: cuda.get_device(self.gpu).use() self.model.to_gpu() self.xp = np if self.gpu < 0 else cuda.cupy