Python numpy 模块,append() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.append()。
def get_points(event,x,y,flags,param):
global lpnts,rpnts
if event == cv2.EVENT_LBUTTONDOWN:
lpnts = np.append(lpnts, np.array([[x, y]]), axis=0)
cv2.polylines(img, [lpnts], False, (0, 0, 255))
if event == cv2.EVENT_RBUTTONDOWN:
rpnts = np.append(rpnts, np.array([[x, y]]), axis=0)
cv2.polylines(img, [rpnts], False, (255, 0, 0))
if rpnts.size>2:
check(lpnts, rpnts[-1], rpnts[-2])
#check if the new point crosses a line
def get_points(event, x, y, flags, param):
global lpnts, mode, counter, which_intersect
if event == cv2.EVENT_LBUTTONDOWN:
lpnts = np.append(lpnts, np.array([[x, y]]), axis=0)
cv2.polylines(img, [lpnts], False, (0, 0, 255))
if lpnts.size > 2:
if mode == 0:
#check(l1, lpnts[-1], lpnts[-2])
if check(l1, lpnts[-1], lpnts[-2]):
which_intersect = 0
mode = 1
#check(l2, lpnts[-1], lpnts[-2])
if check(l2, lpnts[-1], lpnts[-2]):
which_intersect = 1
mode = 1
elif mode == 1:
counter += 1
if check(lines[(which_intersect + 1) % 2], lpnts[-1], lpnts[-2]):
mode = 3
print counter
# check if the new point crosses a line
def rectifyCloud(xyc,autoPerimeterOffset=True,autoPerimeterDensity=True,
width=64, height=64,
perimeterSubdivisionSteps=4, paddingScale=1.05,
smoothing=0.001, warpQuality=9, perimeterOffset=None ):
sourceGridPoints = getCloudGrid( xyc,autoPerimeterOffset=autoPerimeterOffset,autoPerimeterDensity=autoPerimeterDensity,
width=width, height=width,
perimeterSubdivisionSteps=perimeterSubdivisionSteps, paddingScale=paddingScale,
smoothing=smoothing, warpQuality=warpQuality, perimeterOffset=perimeterOffset)
targetGridPoints = []
for yi in range(height):
for xi in range(width):
targetGridPoints.append([xi,yi])
return warpCloud( xyc, sourceGridPoints, targetGridPoints, warpQuality=warpQuality )
def get_normalized_dispersion(mat_mean, mat_var, nbins=20):
mat_disp = (mat_var - mat_mean) / np.square(mat_mean)
quantiles = np.percentile(mat_mean, np.arange(0, 100, 100 / nbins))
quantiles = np.append(quantiles, mat_mean.max())
# merge bins with no difference in value
quantiles = np.unique(quantiles)
if len(quantiles) <= 1:
# pathological case: the means are all identical. just return raw dispersion.
return mat_disp
# calc median dispersion per bin
(disp_meds, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, mat_disp, statistic='median', bins=quantiles)
# calc median absolute deviation of dispersion per bin
disp_meds_arr = disp_meds[disp_bins-1] # 0th bin is empty since our quantiles start from 0
disp_abs_dev = abs(mat_disp - disp_meds_arr)
(disp_mads, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, disp_abs_dev, statistic='median', bins=quantiles)
# calculate normalized dispersion
disp_mads_arr = disp_mads[disp_bins-1]
disp_norm = (mat_disp - disp_meds_arr) / disp_mads_arr
return disp_norm
def parse_fasta(self):
self.ref_id=dict()
self.ref_inf=dict()
i=1
N = 0
ref_inf=np.empty(shape=[0,3])
for seqs in SeqIO.parse(self.ref,'fasta'):
seq_id = seqs.id
self.ref_id[i] = seq_id
seq = str(seqs.seq.upper())
seq_len = len(seq)
self.ref_inf[seq_id]=seq_len
N+=seq.count('N')
ref_inf = np.append(ref_inf,[[i,seq_id,seq_len]],axis=0)
i+=1
self.ref_detail = pd.DataFrame(ref_inf,columns=['Index','Contig','Length(bp)'])
self.N = N
def qualification_filter(self):
"""
Providing information of those unqualified and qualified contigs from the orginal fasta file
with the criterion: >20Kb & >=5 restriction sites inside.
"""
unqualified = np.empty(shape=[0,3])
qualified = np.empty(shape=[0,4])
rm_dup = self.RcmapTable[['CMapId','ContigLength','NumSites']].drop_duplicates()
for i in self.ref_id.keys():
index = i
name = self.ref_id[i]
length = self.ref_inf[name]
if i not in self.RcmapTable['CMapId'].unique():
unqualified = np.append(unqualified,[[index,name, length]],axis=0)
else:
Id = rm_dup[rm_dup['CMapId']==i].index[0]
sites = rm_dup['NumSites'][Id]
qualified = np.append(qualified,[[index,name,length,sites]],axis=0)
self.unqualified = pd.DataFrame(unqualified, columns=['index','contig','length(bp)'])
self.qualified = pd.DataFrame(qualified, columns=['index','contig','length(bp)','numSites'])
def _pad_features_with_zeros(self, state, action):
'''
Args:
features (iterable)
Returns:
(list): Of the same length as self.max_state_features
'''
features = state.features()
while len(features) < self.max_state_features:
features = np.append(features, 0)
# Reshape per update to cluster regression in sklearn 0.17.
reshaped_features = np.append(features, [self.actions.index(action)])
reshaped_features = reshaped_features.reshape(1, -1)
return reshaped_features
def parse_audio_files(parent_dir,sub_dirs,file_ext='*.wav'):
ignored = 0
features, labels, name = np.empty((0,161)), np.empty(0), np.empty(0)
for label, sub_dir in enumerate(sub_dirs):
print sub_dir
for fn in glob.glob(os.path.join(parent_dir, sub_dir, file_ext)):
try:
mfccs, chroma, mel, contrast, tonnetz = extract_features(fn)
ext_features = np.hstack([mfccs, chroma, mel, contrast, tonnetz])
features = np.vstack([features,ext_features])
l = [fn.split('-')[1]] * (mfccs.shape[0])
labels = np.append(labels, l)
except (KeyboardInterrupt, SystemExit):
raise
except:
ignored += 1
print "Ignored files: ", ignored
return np.array(features), np.array(labels, dtype = np.int)
def fill_array(self, target, value, chunk_size = 1000):
"""Fill the target HDF5 array with a single value. Useful for
initializing an array, since the rhdf5 package tends to segfault if you
load an uninitialized data set.
Parameters
----------
target: str
the location of the HDF5 array, e.g., "samples/time"
value: any
the value to fill the array with
chunk_size: int
the number of items to insert at a time. This only needs to be
increased for very large data sets.
"""
n = self.h5_table[target].shape[0]
chunks = np.append(np.arange(0, n, chunk_size), n)
for i in range(len(chunks)-1):
self.h5_table[target][chunks[i]:chunks[i+1]] = (
[value]*(chunks[i+1] - chunks[i]) )
def append_features(df, *cols):
"""Append features from columns to the features vector.
Parameters
----------
df : pyspark.sql.DataFrame
cols : list of str
Returns
-------
pyspark.sql.DataFrame
"""
def add_features(feat, *other):
raw = feat.toArray()
return Vectors.dense(np.append(raw, map(float, other)))
add_features_udf = F.udf(add_features, VectorUDT())
new_feat_list = df.schema['features'].metadata['features'] + cols
return df.withColumn('features', mjolnir.spark.add_meta(
df._sc, add_features_udf('features', *cols), {'features': new_feat_list}))
def init_ops(self):
self.input_ops = []
for thread_num in range(self.n_threads):
op = {}
for attr_num in range(self.n_attrs):
fq = self.file_queues[thread_num][attr_num]
args = self.read_args[attr_num]
kwargs = self.read_kwargs[attr_num]
_op = self.get_input_op(fq, *args, **kwargs)
if self.trans_dicts and self.trans_dicts[attr_num]:
td = self.trans_dicts[attr_num]
for k in td:
if k in _op:
_op[td[k]] = _op.pop(k)
op.update(_op)
self.input_ops.append(op)
self.apply_postprocessing()
return self.input_ops
def get_data_paths(paths, file_pattern=DEFAULT_TFRECORDS_GLOB_PATTERN):
if not isinstance(paths, list):
assert isstring(paths)
paths = [paths]
if not isinstance(file_pattern, list):
assert isstring(file_pattern)
file_patterns = [file_pattern] * len(paths)
else:
file_patterns = file_pattern
assert len(file_patterns) == len(paths), (file_patterns, paths)
datasources = []
for path, file_pattern in zip(paths, file_patterns):
if os.path.isdir(path):
tfrecord_pattern = os.path.join(path, file_pattern)
datasource = tf.gfile.Glob(tfrecord_pattern)
datasource.sort()
datasources.append(datasource)
else:
datasources.append([path])
dl = map(len, datasources)
assert all([dl[0] == d for d in dl[1:]]), dl
return datasources
def parse_standard_tfmeta(paths):
meta_list = []
for path in paths:
if isstring(path):
if path.startswith('meta') and path.endswith('.pkl'):
mpaths = [path]
else:
assert os.path.isdir(path)
mpaths = filter(lambda x: x.startswith('meta') and x.endswith('.pkl'),
os.listdir(path))
mpaths = [os.path.join(path, mp) for mp in mpaths]
else:
# in this case, it's a list
assert isinstance(path, list)
mpaths = path
d = {}
for mpath in mpaths:
d.update(cPickle.load(open(mpath)))
meta_list.append(d)
return meta_list
def train_tas(model, model_scope, num_epoches, result_file):
height, width = FEATURE_HEIGHT, FEATURE_WIDTH
feats0, feats1 = read_features_tas(height, width)
y0 = np.zeros((feats0.shape[0], 1), dtype=np.float32)
y1 = np.ones((feats1.shape[0], 1), dtype=np.float32)
all_feats = np.append(feats0, feats1, axis=0)
all_y = np.append(y0, y1, axis=0)
print("all_feats shapes: toll = {}, closed = {}, all = {}; "
"and dtype = {}".format(feats0.shape, feats1.shape, all_feats.shape, all_feats.dtype))
print("all_y shape: {}; and dtype={}".format(all_y.shape, all_y.dtype))
res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')
img_cnn = ImgConvNets(model, model_scope, height, width, class_count=2, keep_prob=0.5,
batch_size=32, learning_rate=1e-4, lr_adaptive=True, num_epoches=num_epoches)
img_cnn.train(all_feats, all_y, res_dir, result_file=result_file)
def train_lss(model, model_scope, num_epoches, result_file):
height, width = FEATURE_HEIGHT, FEATURE_WIDTH
feats0, feats1, feats2, feats3 = read_features_lss(height, width)
y0 = np.zeros((feats0.shape[0], 1), dtype=np.float32)
y1 = np.ones((feats1.shape[0], 1), dtype=np.float32)
y2 = np.ones((feats2.shape[0], 1), dtype=np.float32) * 2
y3 = np.ones((feats3.shape[0], 1), dtype=np.float32) * 3
all_feats = np.append(np.append(np.append(feats0, feats1, axis=0), feats2, axis=0),
feats3, axis=0)
all_y = np.append(np.append(np.append(y0, y1, axis=0), y2, axis=0), y3, axis=0)
print("all_feats shapes: zero toll = {}, closed = {}, normal = {}, congested = {}, all = {}; "
"and dtype = {}".format(feats0.shape, feats1.shape, feats2.shape, feats3.shape,
all_feats.shape, all_feats.dtype))
print("all_y shape: {}; and dtype={}".format(all_y.shape, all_y.dtype))
res_dir = os.path.join(PROJECT_ROOT, 'Data', 'Result')
img_cnn = ImgConvNets(model, model_scope, height, width, class_count=4, keep_prob=0.5,
batch_size=32, learning_rate=1e-4, lr_adaptive=True, num_epoches=num_epoches)
img_cnn.train(all_feats, all_y, res_dir, result_file=result_file)
def makedists(pdata,binl):
##### This is called from within makeraindist.
##### Caclulate distributions
pds=pdata.shape; nlat=pds[1]; nlon=pds[0]; nd=pds[2]
bins=np.append(0,binl)
n=np.empty((nlon,nlat,len(binl)))
binno=np.empty(pdata.shape)
for ilon in range(nlon):
for ilat in range(nlat):
# this is the histogram - we'll get frequency from this
thisn,thisbin=np.histogram(pdata[ilon,ilat,:],bins)
n[ilon,ilat,:]=thisn
# these are the bin locations. we'll use these for the amount dist
binno[ilon,ilat,:]=np.digitize(pdata[ilon,ilat,:],bins)
#### Calculate the number of days with non-missing data, for normalization
ndmat=np.tile(np.expand_dims(np.nansum(n,axis=2),axis=2),(1,1,len(bins)-1))
thisppdfmap=n/ndmat
#### Iterate back over the bins and add up all the precip - this will be the rain amount distribution
testpamtmap=np.empty(thisppdfmap.shape)
for ibin in range(len(bins)-1):
testpamtmap[:,:,ibin]=(pdata*(ibin==binno)).sum(axis=2)
thispamtmap=testpamtmap/ndmat
return thisppdfmap,thispamtmap
def makedists(pdata,binl):
##### This is called from within makeraindist.
##### Caclulate distributions
pds=pdata.shape; nlat=pds[1]; nlon=pds[0]; nd=pds[2]
bins=np.append(0,binl)
n=np.empty((nlon,nlat,len(binl)))
binno=np.empty(pdata.shape)
for ilon in range(nlon):
for ilat in range(nlat):
# this is the histogram - we'll get frequency from this
thisn,thisbin=np.histogram(pdata[ilon,ilat,:],bins)
n[ilon,ilat,:]=thisn
# these are the bin locations. we'll use these for the amount dist
binno[ilon,ilat,:]=np.digitize(pdata[ilon,ilat,:],bins)
#### Calculate the number of days with non-missing data, for normalization
ndmat=np.tile(np.expand_dims(np.nansum(n,axis=2),axis=2),(1,1,len(bins)-1))
thisppdfmap=n/ndmat
#### Iterate back over the bins and add up all the precip - this will be the rain amount distribution
testpamtmap=np.empty(thisppdfmap.shape)
for ibin in range(len(bins)-1):
testpamtmap[:,:,ibin]=(pdata*(ibin==binno)).sum(axis=2)
thispamtmap=testpamtmap/ndmat
return thisppdfmap,thispamtmap
def linear_trajectory_to(self, target_tf, traj_len):
"""Creates a trajectory of poses linearly interpolated from this tf to a target tf.
Parameters
----------
target_tf : :obj:`RigidTransform`
The RigidTransform to interpolate to.
traj_len : int
The number of RigidTransforms in the returned trajectory.
Returns
-------
:obj:`list` of :obj:`RigidTransform`
A list of interpolated transforms from this transform to the target.
"""
if traj_len < 0:
raise ValueError('Traj len must at least 0')
delta_t = 1.0 / (traj_len + 1)
t = 0.0
traj = []
while t < 1.0:
traj.append(self.interpolate_with(target_tf, t))
t += delta_t
traj.append(target_tf)
return traj
def get_extrema(data):
# find extrema by finding indexes where diff changes sign
data_diff = np.diff(data)
asign = np.sign(data_diff)
signchange = ((np.roll(asign, 1) - asign) != 0).astype(int)
# first and last value is always a local extrema
signchange[0] = 1
# last value is missing because the diff-array is 1 value shorter than the
# input array so we have to add it again
signchange = np.append(signchange, np.array([1]))
calc_data = data[np.where(signchange != 0)]
return calc_data
def count_pairs(data):
df = pd.DataFrame(data)
start, target = df.columns.tolist()
# first we create groups for each pair and take size of each group as count.
# counts is a pandas.Series with the pairs as index
counts = df.groupby([start, target]).size()
# than we remove duplicate pairs from original dateframe,
# so length and counts are equal in size
df = df.drop_duplicates()
# reset index to values of pairs to fit index of counts
df.set_index([0, 1], inplace=True, drop=False)
# now we append the counts as column to the original data
df[2] = pd.Series(counts.values, index=counts.index)
# just cast pandas-dataframe back to numpy 2d-array usable for following
# steps
array = df.values
return array
def kl_train(z,prior,posterior,hps):
# push prior through AR layer
logqs = posterior.logps(z)
if hps.n_flow > 0:
nice_layers = []
print('Does this print')
for i in range(hps.n_flow):
nice_layers.append(nice_layer(tf.shape(z),hps,'nice{}'.format(i),ar=hps.ar))
for i,layer in enumerate(nice_layers):
z,log_det = layer.forward(z)
logqs += log_det
# track the KL divergence after transformation
logps = prior.logps(z)
kl = logqs - logps
return z, kl
### Autoregressive layers
def forward(self,z):
if not self.ar:
mu,log_sigma = self._get_mu_and_sigma(z)
else:
# permute z
z = tf.reshape(z,[-1]+[1]*self.hps.z_size)
perm = np.random.permutation(self.hps.z_size)+1
z = tf.transpose(z,np.append([0],perm))
z = tf.reshape(z,[-1,self.hps.z_size])
mu,log_sigma = ar_layer(z,self.hps,n_hidden=self.n_hidden)
log_sigma = tf.clip_by_value(log_sigma,-5,5)
if not self.hps.ignore_sigma_flow:
y = z * tf.exp(log_sigma) + mu
log_det = -1 * log_sigma
else:
y = z + mu
log_det = 0.0
return y,log_det
def keyReleaseEvent(self, event):
self.outerclass.end_time = np.append(self.outerclass.end_time, time.time())
if event.key() == QtCore.Qt.Key_Return:
if self.text() == self.outerclass.pwd:
self.outerclass.timing_vector = np.empty((0,), dtype=np.float64)
i = 0
# print self.outerclass.end_time.size
while i < self.outerclass.end_time.size - 1:
self.outerclass.timing_vector = np.append(self.outerclass.timing_vector, self.outerclass.start_time[i] - self.outerclass.end_time[i])
self.outerclass.timing_vector = np.append(self.outerclass.timing_vector, self.outerclass.end_time[i+1] - self.outerclass.start_time[i])
i += 1
self.outerclass.timing_vector = np.append(self.outerclass.timing_vector, self.outerclass.start_time[i] - self.outerclass.end_time[i])
print self.outerclass.start_time
print self.outerclass.end_time
print self.outerclass.timing_vector
self.outerclass.tv_list.append(np.array(self.outerclass.timing_vector))
self.outerclass.start_time = np.empty((0,), dtype=np.float64)
self.outerclass.end_time = np.empty((0,), dtype=np.float64)
self.outerclass.timing_vector = np.empty((0,), dtype=np.float64)
self.clear()
else:
self.outerclass.end_time = np.empty((0,), dtype=np.float64)
self.clear()
# print "Key released"
QtGui.QLineEdit.keyReleaseEvent(self, event)
def get_image_array(roidb, scales, scale_indexes, need_mean=True):
"""
build image array from specific roidb
:param roidb: images to be processed
:param scales: scale list
:param scale_indexes: indexes
:return: array [b, c, h, w], list of scales
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in range(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = scales[scale_indexes[i]]
im, im_scale = image_processing.resize(im, target_size, config.MAX_SIZE)
im_tensor = image_processing.transform(im, config.PIXEL_MEANS, need_mean=need_mean)
processed_ims.append(im_tensor)
im_scales.append(im_scale)
array = image_processing.tensor_vstack(processed_ims)
return array, im_scales
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
def extract_candidates(predictions_scan, tf_matrix, pid, outputs_path):
print 'computing blobs'
start_time = time.time()
blobs = blobs_detection.blob_dog(predictions_scan[0, 0], min_sigma=1, max_sigma=15, threshold=0.1)
print 'blobs computation time:', (time.time() - start_time) / 60.
print 'n blobs detected:', blobs.shape[0]
blobs_original_voxel_coords = []
for j in xrange(blobs.shape[0]):
blob_j = np.append(blobs[j, :3], [1])
blob_j_original = tf_matrix.dot(blob_j)
blobs_original_voxel_coords.append(blob_j_original)
blobs = np.asarray(blobs_original_voxel_coords)
print blobs.shape
utils.save_pkl(blobs, outputs_path + '/%s.pkl' % pid)
def extract_candidates(predictions_scan, tf_matrix, pid, outputs_path):
print 'computing blobs'
start_time = time.time()
blobs = blobs_detection.blob_dog(predictions_scan[0, 0], min_sigma=1, max_sigma=15, threshold=0.1)
print 'blobs computation time:', (time.time() - start_time) / 60.
print 'n blobs detected:', blobs.shape[0]
blobs_original_voxel_coords = []
for j in xrange(blobs.shape[0]):
blob_j = np.append(blobs[j, :3], [1])
blob_j_original = tf_matrix.dot(blob_j)
blobs_original_voxel_coords.append(blob_j_original)
blobs = np.asarray(blobs_original_voxel_coords)
print blobs.shape
utils.save_pkl(blobs, outputs_path + '/%s.pkl' % pid)
def get_genotype_probability(aln_profile, aln_specificity, sigma=0.12):
# 'aln_specificity' should be a set of unit vectors (at least one of the entry is larger than 1.)
num_haps = len(aln_profile)
aln_vec = unit_vector(aln_profile)
genoprob = []
for i in xrange(num_haps):
v1 = unit_vector(aln_specificity[i])
for j in xrange(i, num_haps):
if j == i:
genoprob.append(sum(np.power(aln_vec - v1, 2))) # homozygotes
else:
v2 = unit_vector(aln_specificity[j])
geno_vec = unit_vector(v1 + v2)
# compute directional similarity
genoprob.append(sum(np.power(aln_vec - geno_vec, 2))) # for heterozygotes
genoprob = np.exp(np.array(genoprob) / (-2 * sigma * sigma))
return np.array(genoprob / sum(genoprob))
def update_eva_history(eva_history, eva_candidate):
for i in range(len(eva_candidate)):
phi = eva_candidate[i]
continue_flag = 0
for j in range(len(eva_history.phi)):
if numpy.sum(numpy.abs(phi - eva_history.phi[j])) < 1e-4:
continue_flag = 1
break
if continue_flag == 1:
continue
eva_history.phi.append(phi.tolist())
eva_history.time.append(eva_a_time(phi))
eva_history.acc.append(eva_a_acc(phi))
def tune_tal(mono_phi_score, tal_list):
errs = []
tals = []
for tal in tal_list:
err = []
for i in range(len(mono_phi_score)):
mono_1 = numpy.delete(mono_phi_score, i, axis=0)
dim_h = mono_phi_score[i][:-1]
value_h, alpha = train_predict_regression(mono_1, dim_h, tal)
err.append((value_h - mono_phi_score[i][-1])**2)
err = numpy.mean(err)
errs.append(err)
tals.append(tal)
print 'regression tal:', tal, 'err', err
idx = numpy.argmin(errs)
return tals[idx]
def add(self,data):
"""
This function allows to append data to the already fitted data
Parameters
----------
data : list, numpy.array, pandas.Series
data to append
"""
if isinstance(data,list):
data = np.array(data)
elif isinstance(data,np.ndarray):
data = data
elif isinstance(data,pd.Series):
data = data.values
else:
print('This data format (%s) is not supported' % type(data))
return
self.data = np.append(self.data,data)
return
def add(self,data):
"""
This function allows to append data to the already fitted data
Parameters
----------
data : list, numpy.array, pandas.Series
data to append
"""
if isinstance(data,list):
data = np.array(data)
elif isinstance(data,np.ndarray):
data = data
elif isinstance(data,pd.Series):
data = data.values
else:
print('This data format (%s) is not supported' % type(data))
return
self.data = np.append(self.data,data)
return
def add(self,data):
"""
This function allows to append data to the already fitted data
Parameters
----------
data : list, numpy.array, pandas.Series
data to append
"""
if isinstance(data,list):
data = np.array(data)
elif isinstance(data,np.ndarray):
data = data
elif isinstance(data,pd.Series):
data = data.values
else:
print('This data format (%s) is not supported' % type(data))
return
self.data = np.append(self.data,data)
return
def _get_image_blob(roidb, scale_inds):
"""Builds an input blob from the images in the roidb at the specified
scales.
"""
num_images = len(roidb)
processed_ims = []
im_scales = []
for i in xrange(num_images):
im = cv2.imread(roidb[i]['image'])
if roidb[i]['flipped']:
im = im[:, ::-1, :]
target_size = cfg.TRAIN.SCALES[scale_inds[i]]
im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size,
cfg.TRAIN.MAX_SIZE)
im_scales.append(im_scale)
processed_ims.append(im)
# Create a blob to hold the input images
blob = im_list_to_blob(processed_ims)
return blob, im_scales
def plotArc(start_angle, stop_angle, radius, width, **kwargs):
""" write a docstring for this function"""
numsegments = 100
theta = np.radians(np.linspace(start_angle+90, stop_angle+90, numsegments))
centerx = 0
centery = 0
x1 = -np.cos(theta) * (radius)
y1 = np.sin(theta) * (radius)
stack1 = np.column_stack([x1, y1])
x2 = -np.cos(theta) * (radius + width)
y2 = np.sin(theta) * (radius + width)
stack2 = np.column_stack([np.flip(x2, axis=0), np.flip(y2,axis=0)])
#add the first values from the first set to close the polygon
np.append(stack2, [[x1[0],y1[0]]], axis=0)
arcArray = np.concatenate((stack1,stack2), axis=0)
return patches.Polygon(arcArray, True, **kwargs), ((x1, y1), (x2, y2))
def eval(self, t):
# given a time vector t, return the design matrix column vector(s)
if self.type is None:
return np.array([])
hl = np.zeros((t.shape[0],))
ht = np.zeros((t.shape[0],))
if self.type in (0,2):
hl[t >= self.year] = np.log10(1 + (t[t >= self.year] - self.year) / self.T)
if self.type in (1,2):
ht[t >= self.year] = 1
return np.append(ht,hl) if np.any(hl) else ht
def LoadParameters(self, C):
s = 0
for jump in self.table:
if not jump.type is None:
if jump.params == 1 and jump.T != 0:
jump.a = np.append(jump.a, C[s:s + 1])
elif jump.params == 1 and jump.T == 0:
jump.b = np.append(jump.b, C[s:s + 1])
elif jump.params == 2:
jump.b = np.append(jump.b, C[s:s + 1])
jump.a = np.append(jump.a, C[s + 1:s + 2])
s = s + jump.params
def trainepoch(self, X, y, epoch_size=1):
self.model.train()
for _ in range(self.nepoch, self.nepoch + epoch_size):
permutation = np.random.permutation(len(X))
all_costs = []
for i in range(0, len(X), self.batch_size):
# forward
idx = torch.LongTensor(permutation[i:i + self.batch_size])
if isinstance(X, torch.cuda.FloatTensor):
idx = idx.cuda()
Xbatch = Variable(X.index_select(0, idx))
ybatch = Variable(y.index_select(0, idx))
if self.cudaEfficient:
Xbatch = Xbatch.cuda()
ybatch = ybatch.cuda()
output = self.model(Xbatch)
# loss
loss = self.loss_fn(output, ybatch)
all_costs.append(loss.data[0])
# backward
self.optimizer.zero_grad()
loss.backward()
# Update parameters
self.optimizer.step()
self.nepoch += epoch_size
def add(self, output, target):
if torch.is_tensor(output):
output = output.cpu().squeeze().numpy()
if torch.is_tensor(target):
target = target.cpu().squeeze().numpy()
elif isinstance(target, numbers.Number):
target = np.asarray([target])
assert np.ndim(output) == 1, \
'wrong output size (1D expected)'
assert np.ndim(target) == 1, \
'wrong target size (1D expected)'
assert output.shape[0] == target.shape[0], \
'number of outputs and targets does not match'
assert np.all(np.add(np.equal(target, 1), np.equal(target, 0))), \
'targets should be binary (0, 1)'
self.scores = np.append(self.scores, output)
self.targets = np.append(self.targets, target)
def set_replay_buffer(self,record):
"""After get reward from environment, Agent should add new record into replay buffer.
Args:
record: dict type, has following key at least:
'reward':
'terminal':
'next_observation':
"""
new_state = self.observation2state(record['observation'])
if type(self.current_state) == dict:
raise Exception("current state type error")
self.replay_buffer.add(self.current_state, record['action'], record['reward'], new_state,
float(record['terminal']), self.current_feature, record['target_ob'])
# self.replayMemory.append([self.current_state,record['action'],record['reward'],new_state,record['terminal'],record['feature']])
# if len(self.replayMemory) > REPLAY_MEMORY:
# self.replayMemory.popleft()
self.current_state = new_state
self.current_feature = list_to_dic(record['observation'])
def plot_trace(n=0, lg=False):
plt.plot(trueC[n], c=col[2], clip_on=False, zorder=5, label='Truth')
plt.plot(solution, c=col[0], clip_on=False, zorder=7, label='Estimate')
plt.plot(y, c=col[7], alpha=.7, lw=1, clip_on=False, zorder=-10, label='Data')
if lg:
plt.legend(frameon=False, ncol=3, loc=(.1, .62), columnspacing=.8)
spks = np.append(0, solution[1:] - g * solution[:-1])
plt.text(800, 2.2, 'Correlation: %.3f' % (np.corrcoef(trueSpikes[n], spks)[0, 1]), size=24)
plt.gca().set_xticklabels([])
simpleaxis(plt.gca())
plt.ylim(0, 2.85)
plt.xlim(0, 1500)
plt.yticks([0, 2], [0, 2])
plt.xticks([300, 600, 900, 1200], ['', ''])
# init params
def longestrunones8(binin):
''' The focus of the test is the longest run of ones within M-bit blocks. The purpose of this test is to determine whether the length of the longest run of ones within the tested sequence is consistent with the length of the longest run of ones that would be expected in a random sequence. Note that an irregularity in the expected length of the longest run of ones implies that there is also an irregularity in the expected length of the longest run of zeroes. Long runs of zeroes were not evaluated separately due to a concern about statistical independence among the tests.'''
m = 8
k = 3
pik = [0.2148, 0.3672, 0.2305, 0.1875]
blocks = [binin[xs*m:m+xs*m:] for xs in xrange(len(binin) / m)]
n = len(blocks)
counts1 = [xs+'01' for xs in blocks] # append the string 01 to guarantee the length of 1
counts = [xs.replace('0',' ').split() for xs in counts1] # split into all parts
counts2 = [map(len, xx) for xx in counts]
counts4 = [(4 if xx > 4 else xx) for xx in map(max,counts2)]
freqs = [counts4.count(spi) for spi in [1, 2, 3, 4]]
chisqr1 = [(freqs[xx]-n*pik[xx])**2/(n*pik[xx]) for xx in xrange(4)]
chisqr = reduce(su, chisqr1)
pval = spc.gammaincc(k / 2.0, chisqr / 2.0)
return pval
def SExtractorCat2fits(sextractorfiles,stringcols=[1],header=73,verbose=True):
"""
Converting an ascii catalog with columns defined in header in the SExtractor format, i.e. one column
name per row preceeded by a "#" and a column numner, and followed by a description (or any ascii file
with the given setup) to a fits binary table
--- INPUT ---
sextractorfiles List of ascii files to convert to fits
stringcols Columns to use a string format for (all other columns will be set to double float)
header Header containing the column names of the catalogs following the "SExtractor notation"
verbose Toggle verbosity
--- EXAMPLE OF USE ---
import glob
import tdose_utilities as tu
catalogs = glob.glob('/Volumes/DATABCKUP2/MUSE-Wide/catalogs_photometry/catalog_photometry_candels-cdfs-*.cat')
tu.SExtractorCat2fits(catalogs,stringcols=[1],header=73,verbose=True)
"""
for sexcat_ascii in sextractorfiles:
asciiinfo = open(sexcat_ascii,'r')
photcols = []
for line in asciiinfo:
if line.startswith('#'):
colname = line.split()[2]
photcols.append(colname)
photfmt = ['D']*len(photcols)
for stringcol in stringcols:
photfmt[stringcol] = 'A60'
sexcat_fits = tu.ascii2fits(sexcat_ascii,asciinames=photcols,skip_header=header,fitsformat=photfmt,verbose=verbose)
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def layers(net):
out = []
for elem in net['layer']:
out.append(elem['name'])
for x in elem['top']:
out.append(x)
return set(out)
def get_layer(net,layer_name):
out = []
for elem in net['layer']:
out.append(elem['name'])
out_ind = []
for i,elem in enumerate(out):
if elem == layer_name:
out_ind.append(i)
return out_ind
def warpCloud( xyc, sourceGridPoints, targetGridPoints, warpQuality=9 ):
sourceTree = KDTree(sourceGridPoints, leafsize=10)
warpedXYC = []
for c in xyc:
nearestEdge = sourceTree.query(c,k=warpQuality)
nx = 0.0
ny = 0.0
ws = 0.0
for i in range(warpQuality):
p = targetGridPoints[nearestEdge[1][i]]
w = nearestEdge[0][i]
if w == 0.0:
nx = p[0]
ny = p[1]
ws = 1.0
break
else:
w = 1.0 / w
nx += w * p[0]
ny += w * p[1]
ws += w
warpedXYC.append([nx/ws,ny/ws])
warpedXYC = np.array(warpedXYC)
return warpedXYC
def getCoonsGrid( bounds, width=64, height=64, densities=None, paddingScale=1.0):
targets = []
for yi in range(height):
for xi in range(width):
targets.append(getCoonsPatchPointBez(bounds,xi,yi,width,height,densities=densities))
targets = np.array(targets)
tmean = [np.mean(targets[:,0]),np.mean(targets[:,1])]
targets -= tmean
targets *= paddingScale
targets += tmean
return targets
def __repr__(self):
statements = []
for metric in self.METRIC_NAMES:
value = getattr(self, metric)[-1]
if isinstance(value, list):
if len(value) == 0:
value = np.nan
else:
value = value[-1]
statements.append("{m}:{v}".format(m=metric, v=value))
return '\n'.join(statements)
def load_chunk(group, col_start, col_end):
''' Load a submatrix specified by the given column (barcode) range from an h5 group
Args: col_start, col_end - half-open interval of column indices to load'''
# Check bounds
shape = getattr(group, cr_constants.H5_MATRIX_SHAPE_ATTR).read()
assert col_start >= 0 and col_start < shape[1]
assert col_end >= 0 and col_end <= shape[1]
# Load genes and barcodes
genes = GeneBCMatrix.load_genes_from_h5_group(group)
bcs = GeneBCMatrix.load_bcs_from_h5_group(group)[col_start:col_end]
matrix = GeneBCMatrix(genes, bcs)
# Get views into full matrix
data = getattr(group, cr_constants.H5_MATRIX_DATA_ATTR)
indices = getattr(group, cr_constants.H5_MATRIX_INDICES_ATTR)
indptr = getattr(group, cr_constants.H5_MATRIX_INDPTR_ATTR)
# Determine extents of selected columns
ind_start = indptr[col_start]
if col_end < len(indptr)-1:
# Last index (end-exclusive) is the start of the next column
ind_end = indptr[col_end]
else:
# Last index is the last index in the matrix
ind_end = len(data)
chunk_data = data[ind_start:ind_end]
chunk_indices = indices[ind_start:ind_end]
chunk_indptr = np.append(indptr[col_start:col_end], ind_end) - ind_start
chunk_shape = (shape[0], col_end - col_start)
matrix.m = sp_sparse.csc_matrix((chunk_data, chunk_indices, chunk_indptr), shape=chunk_shape)
return matrix