Python numpy 模块,median() 实例源码
我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用numpy.median()。
def clipped_linscale_img(img_array,
cap=255.0,
lomult=2.0,
himult=2.0):
'''
This clips the image between the values:
[median(img_array) - lomult*stdev(img_array),
median(img_array) + himult*stdev(img_array)]
and returns a linearly scaled image using the cap given.
'''
img_med, img_stdev = np.median(img_array), np.std(img_array)
clipped_linear_img = np.clip(img_array,
img_med-lomult*img_stdev,
img_med+himult*img_stdev)
return cap*clipped_linear_img/(img_med+himult*img_stdev)
def svgd_kernel(self, h = -1):
sq_dist = pdist(self.theta)
pairwise_dists = squareform(sq_dist)**2
if h < 0: # if h < 0, using median trick
h = np.median(pairwise_dists)
h = np.sqrt(0.5 * h / np.log(self.theta.shape[0]+1))
# compute the rbf kernel
Kxy = np.exp( -pairwise_dists / h**2 / 2)
dxkxy = -np.matmul(Kxy, self.theta)
sumkxy = np.sum(Kxy, axis=1)
for i in range(self.theta.shape[1]):
dxkxy[:, i] = dxkxy[:,i] + np.multiply(self.theta[:,i],sumkxy)
dxkxy = dxkxy / (h**2)
return (Kxy, dxkxy)
def reshape_array(array, newsize, pixcombine='sum'):
"""
Reshape an array to a give size using either the sum, mean or median of the pixels binned
Note that the old array dimensions have to be multiples of the new array dimensions
--- INPUT ---
array Array to reshape (combine pixels)
newsize New size of array
pixcombine The method to combine the pixels with. Choices are sum, mean and median
"""
sh = newsize[0],array.shape[0]//newsize[0],newsize[1],array.shape[1]//newsize[1]
pdb.set_trace()
if pixcombine == 'sum':
reshapedarray = array.reshape(sh).sum(-1).sum(1)
elif pixcombine == 'mean':
reshapedarray = array.reshape(sh).mean(-1).mean(1)
elif pixcombine == 'median':
reshapedarray = array.reshape(sh).median(-1).median(1)
return reshapedarray
# = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
def get_normalized_dispersion(mat_mean, mat_var, nbins=20):
mat_disp = (mat_var - mat_mean) / np.square(mat_mean)
quantiles = np.percentile(mat_mean, np.arange(0, 100, 100 / nbins))
quantiles = np.append(quantiles, mat_mean.max())
# merge bins with no difference in value
quantiles = np.unique(quantiles)
if len(quantiles) <= 1:
# pathological case: the means are all identical. just return raw dispersion.
return mat_disp
# calc median dispersion per bin
(disp_meds, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, mat_disp, statistic='median', bins=quantiles)
# calc median absolute deviation of dispersion per bin
disp_meds_arr = disp_meds[disp_bins-1] # 0th bin is empty since our quantiles start from 0
disp_abs_dev = abs(mat_disp - disp_meds_arr)
(disp_mads, _, disp_bins) = scipy.stats.binned_statistic(mat_mean, disp_abs_dev, statistic='median', bins=quantiles)
# calculate normalized dispersion
disp_mads_arr = disp_mads[disp_bins-1]
disp_norm = (mat_disp - disp_meds_arr) / disp_mads_arr
return disp_norm
def summarize_subsampled_matrices_cb(self, filtered_mats, subsample_type, subsample_depth):
"""
Computes simple summary metrics such as median genes detected and UMI counts on subsampled filtered matrices
Args:
filtered_mats (GeneBCMatrices): subsampled and filtered GeneBCMatrices
subsample_type (string): subsampling type
subsample_depth (int): target depth per cell for subsampling
"""
for genome in self.genomes:
if filtered_mats is not None:
matrix = filtered_mats.matrices[genome]
genes_detected = np.median(matrix._sum(matrix.m >= cr_constants.MIN_READS_PER_GENE, axis=0))
median_counts = np.median(matrix._sum(matrix.m, axis=0))
subsampled_filtered_bc_median_unique_genes_detected = self._get_metric_attr('subsampled_filtered_bcs_median_unique_genes_detected', genome, subsample_type, subsample_depth)
subsampled_filtered_bc_median_unique_genes_detected.set_value(genes_detected)
subsampled_filtered_bcs_median_counts = self._get_metric_attr('subsampled_filtered_bcs_median_counts', genome, subsample_type, subsample_depth)
subsampled_filtered_bcs_median_counts.set_value(median_counts)
def getMedianDistanceBetweenSamples(self, sampleSet=None) :
"""
Jaakkola's heuristic method for setting the width parameter of the Gaussian
radial basis function kernel is to pick a quantile (usually the median) of
the distribution of Euclidean distances between points having different
labels.
Reference:
Jaakkola, M. Diekhaus, and D. Haussler. Using the Fisher kernel method to detect
remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. Brutlad, J.
Glasgow, H.- W. Mewes, and R. Zimmer, editors, Proceedings of the Seventh
International Conference on Intelligent Systems for Molecular Biology.
"""
numrows = sampleSet.shape[0]
samples = sampleSet
G = sum((samples * samples), 1)
Q = numpy.tile(G[:, None], (1, numrows))
R = numpy.tile(G, (numrows, 1))
distances = Q + R - 2 * numpy.dot(samples, samples.T)
distances = distances - numpy.tril(distances)
distances = distances.reshape(numrows**2, 1, order="F").copy()
return numpy.sqrt(0.5 * numpy.median(distances[distances > 0]))
def read_tagger(alignment, method='median'):
""" tag a read alignment to a genomic locus
Args:
Returns:
"""
tagger_func = {
# center of the read; must dicard junction reads
'median': lambda x: -1 if 'N' in x.cigarstring else int(np.median(x.positions))+1,
# start site of the read; trunction in iCLIP/eCLIP
'start': lambda x: x.positions[-1] if x.is_reverse else x.positions[0]+1
}
try:
tag=tagger_func[method](alignment)
except:
tag=-1
return tag
def genplot(x, y, fit, xdata=None, ydata=None, maxpts=10000):
bin_range = (0, 360)
a = (np.arange(*bin_range))
f_a = nuth_func(a, fit[0], fit[1], fit[2])
nuth_func_str = r'$y=%0.2f*cos(%0.2f-x)+%0.2f$' % tuple(fit)
if xdata.size > maxpts:
import random
idx = random.sample(list(range(xdata.size)), 10000)
else:
idx = np.arange(xdata.size)
f, ax = plt.subplots()
ax.set_xlabel('Aspect (deg)')
ax.set_ylabel('dh/tan(slope) (m)')
ax.plot(xdata[idx], ydata[idx], 'k.', label='Orig pixels')
ax.plot(x, y, 'ro', label='Bin median')
ax.axhline(color='k')
ax.plot(a, f_a, 'b', label=nuth_func_str)
ax.set_xlim(*bin_range)
pad = 0.2 * np.max([np.abs(y.min()), np.abs(y.max())])
ax.set_ylim(y.min() - pad, y.max() + pad)
ax.legend(prop={'size':8})
return f
#Function copied from from openPIV pyprocess
def __load_page_data(self):
self.__clearRows()
if hasattr(self,"selectChan"):
with hp.File(self.file_name,"r") as f:
sampling_rate = f["analogs"][self.selectChan]["sampling_rate"].value
start_time = f["analogs"][self.selectChan]["start_time"].value
start_point = sampling_rate*self.row_num*self.current_page
end_point = sampling_rate*self.row_num*(self.current_page+1)
self.page_data = f["analogs"][self.selectChan]["data"][start_point:end_point]
self.sigma = np.median(np.abs(self.page_data)/0.6745)
Thr = self.thresholds[self.selectChan] * self.sigma
self.sampling_rate = sampling_rate
self.row_wins_rois = [0]*self.row_num
for i in range(self.row_num):
start_point = i*sampling_rate
end_point = (i+1)*sampling_rate
if self.page_data[start_point:end_point].size:
ys = self.page_data[start_point:end_point]
xs = np.arange(ys.size)
line = MultiLine(np.array([xs]),np.array([ys]),"w")
self.row_wins[i].addItem(line)
self.row_wins_rois[i] = pg.InfiniteLine(pos=Thr,angle=0,movable=False)
self.row_wins_rois[i].setZValue(10)
self.row_wins[i].addItem(self.row_wins_rois[i])
def __load_page_data(self):
self.__clearRows()
if hasattr(self,"selectChan"):
with hp.File(self.file_name,"r") as f:
sampling_rate = f["analogs"][self.selectChan]["sampling_rate"].value
start_time = f["analogs"][self.selectChan]["start_time"].value
start_point = sampling_rate*self.row_num*self.current_page
end_point = sampling_rate*self.row_num*(self.current_page+1)
self.page_data = f["analogs"][self.selectChan]["data"][start_point:end_point]
self.sigma = np.median(np.abs(self.page_data)/0.6745)
Thr = self.thresholds[self.selectChan] * self.sigma
self.sampling_rate = sampling_rate
self.row_wins_rois = [0]*self.row_num
for i in range(self.row_num):
start_point = i*sampling_rate
end_point = (i+1)*sampling_rate
if self.page_data[start_point:end_point].size:
ys = self.page_data[start_point:end_point]
xs = np.arange(ys.size)
line = MultiLine(np.array([xs]),np.array([ys]),"w")
self.row_wins[i].addItem(line)
self.row_wins_rois[i] = pg.InfiniteLine(pos=Thr,angle=0,movable=False)
self.row_wins_rois[i].setZValue(10)
self.row_wins[i].addItem(self.row_wins_rois[i])
def svgd_kernel(self, theta, h = -1):
sq_dist = pdist(theta)
pairwise_dists = squareform(sq_dist)**2
if h < 0: # if h < 0, using median trick
h = np.median(pairwise_dists)
h = np.sqrt(0.5 * h / np.log(theta.shape[0]+1))
# compute the rbf kernel
Kxy = np.exp( -pairwise_dists / h**2 / 2)
dxkxy = -np.matmul(Kxy, theta)
sumkxy = np.sum(Kxy, axis=1)
for i in range(theta.shape[1]):
dxkxy[:, i] = dxkxy[:,i] + np.multiply(theta[:,i],sumkxy)
dxkxy = dxkxy / (h**2)
return (Kxy, dxkxy)
def get_ambient_temperature(self, n=5):
'''
Populates the self.ambient_temp property
Calculation is taken from Rs232_Comms_v100.pdf section "Converting values
sent by the device to meaningful units" item 5.
'''
self.logger.info('Getting ambient temperature')
values = []
for i in range(0, n):
try:
value = float(self.query('!T')[0]) / 100.
except:
pass
else:
self.logger.debug(' Ambient Temperature Query = {:.1f}'.format(value))
values.append(value)
if len(values) >= n - 1:
self.ambient_temp = np.median(values) * u.Celsius
self.logger.info(' Ambient Temperature = {:.1f}'.format(self.ambient_temp))
else:
self.ambient_temp = None
self.logger.info(' Failed to Read Ambient Temperature')
return self.ambient_temp
def get_rain_frequency(self, n=5):
'''
Populates the self.rain_frequency property
'''
self.logger.info('Getting rain frequency')
values = []
for i in range(0, n):
try:
value = float(self.query('!E')[0]) * 100. / 1023.
self.logger.debug(' Rain Freq Query = {:.1f}'.format(value))
values.append(value)
except:
pass
if len(values) >= n - 1:
self.rain_frequency = np.median(values)
self.logger.info(' Rain Frequency = {:.1f}'.format(self.rain_frequency))
else:
self.rain_frequency = None
self.logger.info(' Failed to read Rain Frequency')
return self.rain_frequency
def score_fusion_strategy(strategy_name = 'average'):
"""Returns a function to compute a fusion strategy between different scores.
Different strategies are employed:
* ``'average'`` : The averaged score is computed using the :py:func:`numpy.average` function.
* ``'min'`` : The minimum score is computed using the :py:func:`min` function.
* ``'max'`` : The maximum score is computed using the :py:func:`max` function.
* ``'median'`` : The median score is computed using the :py:func:`numpy.median` function.
* ``None`` is also accepted, in which case ``None`` is returned.
"""
try:
return {
'average' : numpy.average,
'min' : min,
'max' : max,
'median' : numpy.median,
None : None
}[strategy_name]
except KeyError:
# warn("score fusion strategy '%s' is unknown" % strategy_name)
return None
def test_bootstrap_replicate_1d(data, seed):
np.random.seed(seed)
x = dcst.bootstrap_replicate_1d(data, np.mean)
np.random.seed(seed)
x_correct = original.bootstrap_replicate_1d(data[~np.isnan(data)], np.mean)
assert (np.isnan(x) and np.isnan(x_correct, atol=atol, equal_nan=True)) \
or np.isclose(x, x_correct, atol=atol, equal_nan=True)
np.random.seed(seed)
x = dcst.bootstrap_replicate_1d(data, np.median)
np.random.seed(seed)
x_correct = original.bootstrap_replicate_1d(data[~np.isnan(data)], np.median)
assert (np.isnan(x) and np.isnan(x_correct, atol=atol, equal_nan=True)) \
or np.isclose(x, x_correct, atol=atol, equal_nan=True)
np.random.seed(seed)
x = dcst.bootstrap_replicate_1d(data, np.std)
np.random.seed(seed)
x_correct = original.bootstrap_replicate_1d(data[~np.isnan(data)], np.std)
assert (np.isnan(x) and np.isnan(x_correct, atol=atol, equal_nan=True)) \
or np.isclose(x, x_correct, atol=atol, equal_nan=True)
def _draw_bs_reps_median(data, size=1):
"""
Generate bootstrap replicates of the median out of `data`.
Parameters
----------
data : array_like
One-dimensional array of data.
size : int, default 1
Number of bootstrap replicates to generate.
Returns
-------
output : float
Bootstrap replicates of the median computed from `data`.
"""
# Set up output array
bs_reps = np.empty(size)
# Draw replicates
n = len(data)
for i in range(size):
bs_reps[i] = np.median(np.random.choice(data, size=n))
return bs_reps
def despike(df, window=31, l=6):
"""
Remove outliers from the columns of :class:`DataFrame` by
comparing the absolute deviation from the windowed median to the
windowed robust standard deviation (see :func:`robust_std`). Use a
centered window of length *window* (must be odd). Replace values
that are *l* robust standard deviations from the absolute
difference from the median with the median.
Reference: Hampel F. R., "The influence curve and its role in
robust estimation," Journal of the American Statistical
Association, 69, 382-393, 1974.
"""
if window % 2 == 0:
raise ValueError('window length must be odd')
df_rolling = df.rolling(window, center=True)
df_rolling_median = df_rolling.median()
df_robust_std = df_rolling.apply(robust_std)
I = (df - df_rolling_median).abs() > l * df_robust_std
df_despike = df.copy()
df_despike[I] = df_rolling_median
return df_despike.iloc[(window-1):-(window-1)]
def save(self, outfile):
data = self.psd1d
header = [
"pixel: %s [%s]" % self.pixel,
"frequency: [%s^-1]" % self.pixel[1],
]
if self.meanstd:
header += [
"psd1d: *mean* powers of radial averaging annuli",
"psd1d_err: *standard deviation*",
]
else:
header += [
"psd1d: *median* powers of radial averaging annuli",
"psd1d_err: 1.4826*MAD (median absolute deviation)",
]
header += [
"n_cells: number of averaging cells",
"",
"frequency psd1d psd1d_err n_cells"
]
np.savetxt(outfile, data, header="\n".join(header))
print("Saved PSD data to: %s" % outfile)
def get_series_median_peryear(word_time_series, i_year_words, one_minus=False, start_year=1900, end_year=2000, year_inc=10, exclude_partial_missing=False):
"""
Return the mean and stderr arrays for the values of the words specified per year in i_year_words for specified years
"""
medians = []
r_word_time_series = {}
if exclude_partial_missing:
for word, time_series in word_time_series.iteritems():
if not np.isnan(np.sum(time_series.values())):
r_word_time_series[word] = time_series
else:
r_word_time_series = word_time_series
for year in xrange(start_year, end_year + 1, year_inc):
word_array = np.array([r_word_time_series[word][year] for word in i_year_words[year]
if word in r_word_time_series and not np.isnan(r_word_time_series[word][year]) and not r_word_time_series[word][year] == 0])
if len(word_array) == 0:
continue
if one_minus:
word_array = 1 - word_array
medians.append(np.median(word_array))
return np.array(medians)
def simple_slope_percentiles(res, df, target, varying, percs=[25, 50, 75]):
exog = {}
for param in res.fe_params.index:
if len(param.split(":")) != 1:
continue
if param == "Intercept":
exog[param] = 1.0
else:
exog[param] = np.median(df[param])
ret_vals = collections.OrderedDict()
for varying_perc in percs:
exog[varying] = np.percentile(df[varying], varying_perc)
ret_vals[exog[varying]] = collections.defaultdict(list)
for target_perc in [25, 75]:
exog[target] = np.percentile(df[target], target_perc)
exog_arr = np.array([exog[param] if len(param.split(":")) == 1 else exog[param.split(":")[0]] * exog[param.split(":")[1]]
for param in res.fe_params.index])
ret_vals[exog[varying]]["endog"].append(res.model.predict(res.fe_params, exog=exog_arr))
ret_vals[exog[varying]]["target"].append(exog[target])
return ret_vals
def _gene_signature(self,wm,size,key):
'''????????????????????????'''
wm = cv2.resize(wm,(size,size))
wU,_,wV = np.linalg.svd(np.mat(wm))
sumU = np.sum(np.array(wU),axis=0)
sumV = np.sum(np.array(wV),axis=0)
sumU_mid = np.median(sumU)
sumV_mid = np.median(sumV)
sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])
uv_xor=np.logical_xor(sumU,sumV)
np.random.seed(key)
seq=np.random.randint(2,size=len(uv_xor))
signature = np.logical_xor(uv_xor, seq)
sqrts = int(np.sqrt(size))
return np.array(signature,dtype=np.int8).reshape((sqrts,sqrts))
def _gene_signature(self,wm,key):
'''????????????????????????'''
wm = cv2.resize(wm,(256,256))
wU,_,wV = np.linalg.svd(np.mat(wm))
sumU = np.sum(np.array(wU),axis=0)
sumV = np.sum(np.array(wV),axis=0)
sumU_mid = np.median(sumU)
sumV_mid = np.median(sumV)
sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])
uv_xor=np.logical_xor(sumU,sumV)
np.random.seed(key)
seq=np.random.randint(2,size=len(uv_xor))
signature = np.logical_xor(uv_xor, seq)
return np.array(signature,dtype=np.int8)
def _gene_signature(self,wU,wV,key):
'''????????????????????????'''
sumU = np.sum(wU,axis=0)
sumV = np.sum(wV,axis=0)
sumU_mid = np.median(sumU)
sumV_mid = np.median(sumV)
sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])
uv_xor=np.logical_xor(sumU,sumV)
np.random.seed(key)
seq=np.random.randint(2,size=len(uv_xor))
signature = np.logical_xor(uv_xor, seq)
return np.array(signature,dtype=np.int8)
def get_Surface_Potentials(mtrue, survey, src, field_obj):
phi = field_obj['phi']
CCLoc = mesh.gridCC
XLoc = np.unique(mesh.gridCC[:, 0])
surfaceInd, zsurfaceLoc = get_Surface(mtrue, XLoc)
phiSurface = phi[surfaceInd]
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60., 0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return XLoc, phiSurface, phiScale
def get_Surface_Potentials(survey, src,field_obj):
phi = field_obj['phi']
CCLoc = mesh.gridCC
zsurfaceLoc = np.max(CCLoc[:,1])
surfaceInd = np.where(CCLoc[:,1] == zsurfaceLoc)
xSurface = CCLoc[surfaceInd,0].T
phiSurface = phi[surfaceInd]
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60.,0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return xSurface,phiSurface,phiScale
# Inline functions for computing apparent resistivity
#eps = 1e-9 #to stabilize division
#G = lambda A, B, M, N: 1. / ( 1./(np.abs(A-M)+eps) - 1./(np.abs(M-B)+eps) - 1./(np.abs(N-A)+eps) + 1./(np.abs(N-B)+eps) )
#rho_a = lambda VM,VN, A,B,M,N: (VM-VN)*2.*np.pi*G(A,B,M,N)
def get_Surface_Potentials(survey, src, field_obj):
phi = field_obj[src, 'phi']
CCLoc = mesh.gridCC
zsurfaceLoc = np.max(CCLoc[:,1])
surfaceInd = np.where(CCLoc[:,1] == zsurfaceLoc)
xSurface = CCLoc[surfaceInd,0].T
phiSurface = phi[surfaceInd]
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60.,0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return xSurface,phiSurface,phiScale
def get_Surface_Potentials(mtrue, survey, src, field_obj):
phi = field_obj['phi']
CCLoc = mesh.gridCC
XLoc = np.unique(mesh.gridCC[:, 0])
surfaceInd, zsurfaceLoc = get_Surface(mtrue, XLoc)
phiSurface = phi[surfaceInd]
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60., 0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return XLoc, phiSurface, phiScale
def get_Surface_Potentials(survey, src, field_obj):
phi = field_obj[src, 'phi']
CCLoc = mesh.gridCC
zsurfaceLoc = np.max(CCLoc[:,1])
surfaceInd = np.where(CCLoc[:,1] == zsurfaceLoc)
phiSurface = phi[surfaceInd]
xSurface = CCLoc[surfaceInd,0].T
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60.,0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return xSurface,phiSurface,phiScale
def get_Surface_Potentials(survey, src, field_obj):
phi = field_obj['phi']
CCLoc = mesh.gridCC
zsurfaceLoc = np.max(CCLoc[:,1])
surfaceInd = np.where(CCLoc[:,1] == zsurfaceLoc)
xSurface = CCLoc[surfaceInd,0].T
phiSurface = phi[surfaceInd]
phiScale = 0.
if(survey == "Pole-Dipole" or survey == "Pole-Pole"):
refInd = Utils.closestPoints(mesh, [xmax+60.,0.], gridLoc='CC')
# refPoint = CCLoc[refInd]
# refSurfaceInd = np.where(xSurface == refPoint[0])
# phiScale = np.median(phiSurface)
phiScale = phi[refInd]
phiSurface = phiSurface - phiScale
return xSurface,phiSurface,phiScale
def project_verteces(self, mesh, orientation):
"""Supplement the mesh array with scalars (max and median)
for each face projected onto the orientation vector.
Args:
mesh (np.array): with format face_count x 6 x 3.
orientation (np.array): with format 3 x 3.
Returns:
adjusted mesh.
"""
mesh[:, 4, 0] = np.inner(mesh[:, 1, :], orientation)
mesh[:, 4, 1] = np.inner(mesh[:, 2, :], orientation)
mesh[:, 4, 2] = np.inner(mesh[:, 3, :], orientation)
mesh[:, 5, 1] = np.max(mesh[:, 4, :], axis=1)
mesh[:, 5, 2] = np.median(mesh[:, 4, :], axis=1)
sleep(0) # Yield, so other threads get a bit of breathing space.
return mesh
def deltasCSVWriter(self, name='ant'):
"Changes"
header = array([h.name[1:] for h in self.test.headers[:-2]])
oldRows = [r for r, p in zip(self.test._rows, self.pred) if p > 0]
delta = array([self.delta(t) for t in oldRows])
y = median(delta, axis=0)
yhi, ylo = percentile(delta, q=[75, 25], axis=0)
dat1 = sorted(
[(h, a, b, c) for h, a, b, c in zip(header, y, ylo, yhi)], key=lambda F: F[1])
dat = asarray([(d[0], n, d[1], d[2], d[3])
for d, n in zip(dat1, range(1, 21))])
with open('/Users/rkrsn/git/GNU-Plots/rkrsn/errorbar/%s.csv' % (name), 'w') as csvfile:
writer = csv.writer(csvfile, delimiter=' ')
for el in dat[()]:
writer.writerow(el)
# new = [self.newRow(t) for t in oldRows]
def find_history_data(self, row, history_dict=None,):
start_district_id = row.iloc[0]
time_id = row.iloc[1]
index = ['history_mean','history_median','history_mode','history_plus_mean','history_plus_median', 'history_plus_mode']
min_list = self.__get_historylist_from_dict(history_dict, start_district_id, time_id)
plus_list1 = self.__get_historylist_from_dict(history_dict, start_district_id, time_id-1)
plus_list2 = self.__get_historylist_from_dict(history_dict, start_district_id, time_id-2)
plus_list = np.array((plus_list1 + plus_list2 + min_list))
min_list = np.array(min_list)
res =pd.Series([min_list.mean(), np.median(min_list), mode(min_list)[0][0], plus_list.mean(), np.median(plus_list),mode(plus_list)[0][0]], index = index)
return res
return pd.Series(res, index = ['history_mean', 'history_mode', 'history_median'])
def get_7d_all(user_id):
data_paths = [
'./features/tensorflow_model/np_tiny_7_model/',
'./features/tensorflow_model/np_tiny_7_exp_model/',
'./features/tensorflow_model/np_tiny_7_filtered_model/',
'./features/tensorflow_model/np_tiny_7_filtered_exp_model/',
'./features/tensorflow_model/np_tiny_7_f2_model/',
'./features/tensorflow_model/np_tiny_7_f2_exp_model/',
]
def get_predict_val(dataset):
return dataset['y_p#%d'%user_id][-1]
def get_mid_val(day):
all_dataset = map(lambda path:pd.DataFrame.from_csv(path+'%d.csv'%day),data_paths)
val_list = map(get_predict_val,all_dataset)
val = np.median(val_list)
print (user_id,day,val)
return val
return map(get_mid_val,range(1,32))
def _nanmedian1d(arr1d, overwrite_input=False):
"""
Private function for rank 1 arrays. Compute the median ignoring NaNs.
See nanmedian for parameter usage
"""
c = np.isnan(arr1d)
s = np.where(c)[0]
if s.size == arr1d.size:
warnings.warn("All-NaN slice encountered", RuntimeWarning)
return np.nan
elif s.size == 0:
return np.median(arr1d, overwrite_input=overwrite_input)
else:
if overwrite_input:
x = arr1d
else:
x = arr1d.copy()
# select non-nans at end of array
enonan = arr1d[-s.size:][~c[-s.size:]]
# fill nans in beginning of array with non-nans of end
x[s[:enonan.size]] = enonan
# slice nans away
return np.median(x[:-s.size], overwrite_input=True)
def test_out(self):
mat = np.random.rand(3, 3)
nan_mat = np.insert(mat, [0, 2], np.nan, axis=1)
resout = np.zeros(3)
tgt = np.median(mat, axis=1)
res = np.nanmedian(nan_mat, axis=1, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
# 0-d output:
resout = np.zeros(())
tgt = np.median(mat, axis=None)
res = np.nanmedian(nan_mat, axis=None, out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
res = np.nanmedian(nan_mat, axis=(0, 1), out=resout)
assert_almost_equal(res, resout)
assert_almost_equal(res, tgt)
def test_basic(self):
a0 = np.array(1)
a1 = np.arange(2)
a2 = np.arange(6).reshape(2, 3)
assert_equal(np.median(a0), 1)
assert_allclose(np.median(a1), 0.5)
assert_allclose(np.median(a2), 2.5)
assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5])
assert_equal(np.median(a2, axis=1), [1, 4])
assert_allclose(np.median(a2, axis=None), 2.5)
a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775])
assert_almost_equal((a[1] + a[3]) / 2., np.median(a))
a = np.array([0.0463301, 0.0444502, 0.141249])
assert_equal(a[0], np.median(a))
a = np.array([0.0444502, 0.141249, 0.0463301])
assert_equal(a[-1], np.median(a))
# check array scalar result
assert_equal(np.median(a).ndim, 0)
a[1] = np.nan
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_equal(np.median(a).ndim, 0)
assert_(w[0].category is RuntimeWarning)
def test_axis_keyword(self):
a3 = np.array([[2, 3],
[0, 1],
[6, 7],
[4, 5]])
for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]:
orig = a.copy()
np.median(a, axis=None)
for ax in range(a.ndim):
np.median(a, axis=ax)
assert_array_equal(a, orig)
assert_allclose(np.median(a3, axis=0), [3, 4])
assert_allclose(np.median(a3.T, axis=1), [3, 4])
assert_allclose(np.median(a3), 3.5)
assert_allclose(np.median(a3, axis=None), 3.5)
assert_allclose(np.median(a3.T), 3.5)
def getPreferenceList(preference,nSamplesOri,data_array):
"""
Input preference should be a numeric scalar, or a string of 'min' / 'median', or a list/np 1D array(length of samples).
Return preference list(same length as samples)
"""
# numeric value
if isinstance(preference, float) or isinstance(preference, int) or isinstance(preference, long):
preference_list=[float(preference)]*nSamplesOri
# str/unicode min/mean
elif isinstance(preference, basestring):
if str(preference)=='min':
preference=data_array.min()
elif str(preference)=='median':
preference=np.median(data_array)
else: #other string
raise ValueError("Preference should be a numeric scalar, or a string of 'min' / 'median',\
or a list/np 1D array(length of samples).\n Your input preference is: {0})".format(str(prefernce)))
preference_list=[preference]*nSamplesOri
# list or numpy array
elif (isinstance(preference, list) or isinstance(preference, np.ndarray)) and len(preference)==nSamplesOri:
preference_list=preference
else:
raise ValueError("Preference should be a numeric scalar, or a str of 'min' / 'median',\
or a list/np 1D array(length of samples).\n Your input preference is: {0})".format(str(prefernce)))
return preference_list
def medfilt(x, k):
'''
Apply a length-k median filter to a 1D array x.
Boundaries are extended by repeating endpoints.
Args:
x (numpy.array)
k (int)
Returns:
numpy.array
'''
assert k % 2 == 1, 'Median filter length must be odd.'
assert x.ndim == 1, 'Input must be one-dimensional.'
k2 = (k - 1) // 2
y = np.zeros((len(x), k), dtype=x.dtype)
y[:, k2] = x
for i in range(k2):
j = k2 - i
y[j:, i] = x[:-j]
y[:j, i] = x[0]
y[:-j, -(i+1)] = x[j:]
y[-j:, -(i+1)] = x[-1]
return np.median(y, axis=1)
def prctile(data, p_vals=[0, 25, 50, 75, 100], sorted_=False):
"""``prctile(data, 50)`` returns the median, but p_vals can
also be a sequence.
Provides for small samples better values than matplotlib.mlab.prctile,
however also slower.
"""
ps = [p_vals] if isscalar(p_vals) else p_vals
if not sorted_:
data = sorted(data)
n = len(data)
d = []
for p in ps:
fi = p * n / 100 - 0.5
if fi <= 0: # maybe extrapolate?
d.append(data[0])
elif fi >= n - 1:
d.append(data[-1])
else:
i = int(fi)
d.append((i + 1 - fi) * data[i] + (fi - i) * data[i + 1])
return d[0] if isscalar(p_vals) else d
def plotmatchdisthist(M, mas=True, nbins=100, doclf=True, color='b', **kwa):
import pylab as plt
if doclf:
plt.clf()
R = np.sqrt(M.dra_arcsec**2 + M.ddec_arcsec**2)
if mas:
R *= 1000.
rng = [0, M.rad*1000.]
else:
rng = [0, M.rad]
print 'Match distances: median', np.median(R), 'arcsec'
n,b,p = plt.hist(R, nbins, range=rng, histtype='step', color=color, **kwa)
if mas:
plt.xlabel('Match distance (mas)')
else:
plt.xlabel('Match distance (arcsec)')
plt.xlim(*rng)
return n,b,p
def analyze(self):
self.neighborgrid()
# just looking at up and left to avoid needless doubel calculations
slopes=np.concatenate((np.abs(self.left - self.center),np.abs(self.up - self.center)))
return '\n'.join(["%-15s: %.3f"%t for t in [
('height average', np.average(self.center)),
('height median', np.median(self.center)),
('height max', np.max(self.center)),
('height min', np.min(self.center)),
('height std', np.std(self.center)),
('slope average', np.average(slopes)),
('slope median', np.median(slopes)),
('slope max', np.max(slopes)),
('slope min', np.min(slopes)),
('slope std', np.std(slopes))
]]
)
def GetTransitTimes(file = 'ttv_kruse.dat'):
'''
'''
planet, _, time, dtime = np.loadtxt(os.path.join(TRAPPIST_DAT, file), unpack = True)
transit_times = [None for i in range(7)]
if file == 'ttv_kruse.dat':
for i in range(7):
inds = np.where(planet == i + 1)[0]
transit_times[i] = time[inds] + (2455000 - 2454833)
elif file == 'ttv_agol.dat':
for i in range(6):
inds = np.where(planet == i + 1)[0]
transit_times[i] = time[inds] + (2450000 - 2454833)
# Append a few extra for padding
pad = [transit_times[i][-1] + np.median(np.diff(transit_times[i])),
transit_times[i][-1] + 2 * np.median(np.diff(transit_times[i])),
transit_times[i][-1] + 3 * np.median(np.diff(transit_times[i]))]
transit_times[i] = np.append(transit_times[i], pad)
return PlanetProperty(transit_times)
def __reduce_vertex_metrics(self, metrics, is_property_map = True):
"""
Calculate mean, min, max and median of given vertex metrics
:param metrics: Metric values of vertexes
:param is_property_map: Is metrics PropertyMap (list otherwise)
:return: Dict of reduced metrics
"""
statistics = collections.OrderedDict()
if is_property_map:
metrics = metrics.get_array() # Get a numpy.ndarray subclass (PropertyArray)
statistics["mean"] = metrics.mean()
statistics["min"] = metrics.min()
statistics["max"] = metrics.max()
statistics["median"] = np.median(metrics)
return statistics
def reject_outliers(data, m = 2.):
d = np.abs(data - np.median(data))
mdev = np.median(d)
s = d/mdev if mdev else 0.
return data[s<m]
def obs_callback(self, msg):
cn0 = np.array([obs.cn0/4.0 for obs in msg.obs])
m = SignalStatus()
m.header.stamp = rospy.Time.now()
m.mean_cn0 = np.mean(cn0)
m.median_cn0 = np.median(cn0)
m.robust_mean_cn0 = np.mean(reject_outliers(cn0))
m.num_sats = len(msg.obs)
self.signal_pub.publish(m)
def median_color(obs, color, frame_coordinates=None):
color = np.array(color)
if frame_coordinates is not None:
(r1, r2), (c1, c2) = frame_coordinates
obs = obs[r1:r2, c1:c2]
indices = (obs == color).all(2).nonzero()
indices = np.array(indices)
if indices.size:
med = np.median(indices, axis=1)
return med.astype(np.int32)
return None
def median_color(obs, color, frame_coordinates=None):
color = np.array(color)
if frame_coordinates is not None:
(r1, r2), (c1, c2) = frame_coordinates
obs = obs[r1:r2, c1:c2]
indices = (obs == color).all(2).nonzero()
indices = np.array(indices)
if indices.size:
med = np.median(indices, axis=1)
return med.astype(np.int32)
return None
def median_color(obs, color, frame_coordinates=None):
color = np.array(color)
if frame_coordinates is not None:
(r1, r2), (c1, c2) = frame_coordinates
obs = obs[r1:r2, c1:c2]
indices = (obs == color).all(2).nonzero()
indices = np.array(indices)
if indices.size:
med = np.median(indices, axis=1)
return med.astype(np.int32)
return None