Python numpy 模块,bool() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.bool()。
def load_data(from_file, input_words, grammar, max_length):
inputs = []
input_lengths = []
parses = []
labels = []
label_lengths = []
with open(from_file, 'r') as data:
for line in data:
split = line.strip().split('\t')
if len(split) == 4:
_, sentence, canonical, parse = split
else:
_, sentence, canonical = split
parse = None
input, in_len = vectorize(sentence, input_words, max_length, add_eos=False)
inputs.append(input)
input_lengths.append(in_len)
label, label_len = grammar.vectorize_program(canonical, max_length)
labels.append(label)
label_lengths.append(label_len)
if parse is not None:
parses.append(vectorize_constituency_parse(parse, max_length, in_len))
else:
parses.append(np.zeros((2*max_length-1,), dtype=np.bool))
return inputs, input_lengths, parses, labels, label_lengths
def is_task_done(self):
"""
Queries the status of the task and indicates if it completed
execution. Use this function to ensure that the specified
operation is complete before you stop the task.
Returns:
bool:
Indicates if the measurement or generation completed.
"""
is_task_done = c_bool32()
cfunc = lib_importer.windll.DAQmxIsTaskDone
if cfunc.argtypes is None:
with cfunc.arglock:
if cfunc.argtypes is None:
cfunc.argtypes = [
lib_importer.task_handle, ctypes.POINTER(c_bool32)]
error_code = cfunc(
self._handle, ctypes.byref(is_task_done))
check_for_error(error_code)
return is_task_done.value
def _write_digital_lines(
task_handle, write_array, num_samps_per_chan, auto_start, timeout,
data_layout=FillMode.GROUP_BY_CHANNEL):
samps_per_chan_written = ctypes.c_int()
cfunc = lib_importer.windll.DAQmxWriteDigitalLines
if cfunc.argtypes is None:
with cfunc.arglock:
if cfunc.argtypes is None:
cfunc.argtypes = [
lib_importer.task_handle, ctypes.c_int, c_bool32,
ctypes.c_double, ctypes.c_int,
wrapped_ndpointer(dtype=numpy.bool, flags=('C', 'W')),
ctypes.POINTER(ctypes.c_int), ctypes.POINTER(c_bool32)]
error_code = cfunc(
task_handle, num_samps_per_chan, auto_start, timeout,
data_layout.value, write_array,
ctypes.byref(samps_per_chan_written), None)
check_for_error(error_code)
return samps_per_chan_written.value
def test_one_sample_one_line(self, x_series_device, seed):
# Reset the pseudorandom number generator with seed.
random.seed(seed)
do_line = random.choice(x_series_device.do_lines).name
with nidaqmx.Task() as task:
task.do_channels.add_do_chan(
do_line, line_grouping=LineGrouping.CHAN_PER_LINE)
writer = DigitalSingleChannelWriter(task.out_stream)
reader = DigitalSingleChannelReader(task.in_stream)
# Generate random values to test.
values_to_test = [bool(random.getrandbits(1)) for _ in range(10)]
values_read = []
for value_to_test in values_to_test:
writer.write_one_sample_one_line(value_to_test)
time.sleep(0.001)
values_read.append(reader.read_one_sample_one_line())
numpy.testing.assert_array_equal(values_read, values_to_test)
def __init__(self, task_out_stream, auto_start=AUTO_START_UNSET):
"""
Args:
task_out_stream: Specifies the output stream associated with
an NI-DAQmx task which to write samples.
auto_start (Optional[bool]): Specifies if the write method
automatically starts the task if you did not explicitly
start it with the DAQmx Start Task method.
If you do not specify a value for this parameter,
NI-DAQmx determines its value based on the type of write
method used. If you use a one sample write method, the
value is True; conversely, if you use a many sample
write method, the value is False.
"""
self._out_stream = task_out_stream
self._task = task_out_stream._task
self._handle = task_out_stream._task._handle
self._verify_array_shape = True
self._auto_start = auto_start
def corrupt_image(img, MAR_prob=0, min_rects=0, max_rects=0, min_width=0, max_width=0):
new_img = img.copy()
mask = np.zeros(img.shape[0:2], dtype=np.bool)
if MAR_prob > 0:
mask[(random_sample(mask.shape) < MAR_prob)] = True
if max_rects > 0 and max_width > 0:
h, w = mask.shape
num_rects = random_integers(min_rects, max_rects)
for i in range(num_rects):
px1 = random_integers(0, w - min(max(min_width, 1), w))
py1 = random_integers(0, h - min(max(min_width, 1), h))
px2 = px1 + (min_width - 1) + random_integers(0, max(min(w - px1 - min_width, max_width - min_width), 0));
py2 = py1 + (min_width - 1) + random_integers(0, max(min(h - py1 - min_width, max_width - min_width), 0));
if px1 <= px2 and py1 <= py2:
mask[py1:py2, px1:px2] = True
else:
# One of the sides has length 0, so we should remove any pixels4
pass
if len(new_img.shape) == 2:
new_img[mask] = 0
else:
new_img[mask,:] = 0
return (new_img, 1.0 * mask)
# Process command line inputs
def label_and_build_mask(self, episode):
is_catastrophe_array = np.array(
[is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
# should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])
labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)
for i in range(len(episode.frames)):
if i + self.block_radius + 1 >= len(episode.frames):
mask[i] = False
continue
if is_catastrophe_array[i]:
mask[i] = False
continue
for j in range(self.block_radius + 1):
if is_catastrophe_array[i + j + 1]:
labels[i] = True
break
return labels, mask
def label_and_build_mask(self, episode):
is_catastrophe_array = np.array(
[is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
# should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])
labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)
for i in range(len(episode.frames)):
if i + self.block_radius + 1 >= len(episode.frames):
mask[i] = False
continue
if is_catastrophe_array[i]:
mask[i] = False
continue
for j in range(self.block_radius + 1):
if is_catastrophe_array[i + j + 1]:
labels[i] = True
break
return labels, mask
def label_and_build_mask(self, episode):
is_catastrophe_array = np.array(
[is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
# should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])
labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)
for i in range(len(episode.frames)):
if i + self.block_radius + 1 >= len(episode.frames):
mask[i] = False
continue
if is_catastrophe_array[i]:
mask[i] = False
continue
for j in range(self.block_radius + 1):
if is_catastrophe_array[i + j + 1]:
labels[i] = True
break
return labels, mask
def label_and_build_mask(self, episode):
is_catastrophe_array = np.array(
[is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
# should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])
labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)
for i in range(len(episode.frames)):
if i + self.block_radius + 1 >= len(episode.frames):
mask[i] = False
continue
if is_catastrophe_array[i]:
mask[i] = False
continue
for j in range(self.block_radius + 1):
if is_catastrophe_array[i + j + 1]:
labels[i] = True
break
return labels, mask
def label_and_build_mask(self, episode):
is_catastrophe_array = np.array(
[is_catastrophe(frame.image) for frame in episode.frames if frame.action is not None])
# should_block_array = np.array([should_block(frame.image, frame.action) for frame in episode.frames])
labels = np.full(len(episode.frames), fill_value=False, dtype=np.bool)
mask = np.full(len(episode.frames), fill_value=True, dtype=np.bool)
for i in range(len(episode.frames)):
if i + self.block_radius + 1 >= len(episode.frames):
mask[i] = False
continue
if is_catastrophe_array[i]:
mask[i] = False
continue
for j in range(self.block_radius + 1):
if is_catastrophe_array[i + j + 1]:
labels[i] = True
break
return labels, mask
def reg2bin_vector(begin, end):
'''Vectorized tabix reg2bin -- much faster than reg2bin'''
result = np.zeros(begin.shape)
# Entries filled
done = np.zeros(begin.shape, dtype=np.bool)
for (bits, bins) in rev_bit_bins:
begin_shift = begin >> bits
new_done = (begin >> bits) == (end >> bits)
mask = np.logical_and(new_done, np.logical_not(done))
offset = ((1 << (29 - bits)) - 1) / 7
result[mask] = offset + begin_shift[mask]
done = new_done
return result.astype(np.int32)
def load_data(infile, chroms, resolutions):
starts = infile['starts'][...]
chromosomes = infile['chromosomes'][...]
data = {}
for res in resolutions:
data[res] = {}
for i, chrom in enumerate(chromosomes):
if chrom not in chroms:
continue
start = (starts[i] / res) * res
dist = infile['dist.%s.%i' % (chrom, res)][...]
valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
corr = infile['corr.%s.%i' % (chrom, res)][...]
valid = numpy.zeros(corr.shape, dtype=numpy.bool)
N, M = corr.shape
valid = numpy.zeros((N, M), dtype=numpy.int32)
for i in range(min(N - 1, M)):
P = N - i - 1
valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
temp = corr * dist
valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
data[res][chrom] = [start, temp, valid]
return data
def load_data(infile, chroms, resolutions):
starts = infile['starts'][...]
chromosomes = infile['chromosomes'][...]
data = {}
for res in resolutions:
data[res] = {}
for i, chrom in enumerate(chromosomes):
if chrom not in chroms:
continue
start = (starts[i] / res) * res
dist = infile['dist.%s.%i' % (chrom, res)][...]
valid_rows = infile['valid.%s.%i' % (chrom, res)][...]
corr = infile['corr.%s.%i' % (chrom, res)][...]
valid = numpy.zeros(corr.shape, dtype=numpy.bool)
N, M = corr.shape
valid = numpy.zeros((N, M), dtype=numpy.int32)
for i in range(min(N - 1, M)):
P = N - i - 1
valid[:P, i] = valid_rows[(i + 1):] * valid_rows[:P]
temp = corr * dist
valid[numpy.where(numpy.abs(temp) == numpy.inf)] = False
data[res][chrom] = [start, temp, valid]
return data
def test_bbs_in_bbs(self):
bbs_a = np.array([1, 1, 2.0, 3])
bbs_b = np.array([1, 0, 4, 5])
bbs_c = np.array([0, 0, 2, 2])
assert bbs_in_bbs(bbs_a, bbs_b).all()
assert bbs_in_bbs(bbs_b, bbs_c).any() is not True
assert bbs_in_bbs(bbs_a, bbs_c).any() is not True
bbs_d = np.array([
[0, 0, 5, 5],
[1, 2, 4, 4],
[2, 3, 4, 5]
])
assert (bbs_in_bbs(bbs_a, bbs_d) == np.array([1, 0, 0], dtype=np.bool)).all()
assert (bbs_in_bbs(bbs_d, bbs_d) == np.ones((3), dtype=np.bool)).all()
bbs_a *= 100
bbs_d *= 100
assert (bbs_in_bbs(bbs_a, bbs_d) == np.array([1, 0, 0], dtype=np.bool)).all()
def test_pts_in_bbs(self):
pt = np.array([1, 2])
bbs_a = np.array([1, 2, 3, 4])
assert isinstance(pts_in_bbs(pt, bbs_a), np.bool_)
assert pts_in_bbs(pt, bbs_a)
pts = np.array([
[1, 2],
[2, 3],
[3, 4]
])
bbs_b = np.array([
[1, 2, 3, 4],
[5, 6, 7, 8],
[2, 3, 4, 5]
])
assert (pts_in_bbs(pts, bbs_b) == np.array([1, 0, 1], dtype=np.bool)).all()
def _neighbors_filtering_by_contact_area(self, label, neighbors, min_contact_area, real_area):
"""
Function used to filter the returned neighbors according to a given minimal contact area between them!
Args:
label: (int) - label of the image to threshold by the min contact area.
neighbors` (list) - list of neighbors of the `label: to be filtered.
min_contact_area: (None|int|float) - value of the min contact area threshold.
real_area: (bool) - indicate wheter the min contact area is a real world value or a number of voxels.
"""
areas = self.cell_wall_area(label, neighbors, real_area)
nei = cp.copy(neighbors)
for i,j in areas.keys():
if areas[(i,j)] < min_contact_area:
nei.remove( i if j==label else j )
return nei
def primes_2_to_n(n):
"""
Efficient algorithm to find and list primes from
2 to `n'.
Args:
n (int): highest number from which to search for primes
Returns:
np array of all primes from 2 to n
References:
Robert William Hanks,
https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n/
"""
sieve = np.ones(int(n / 3 + (n % 6 == 2)), dtype=np.bool)
for i in range(1, int((n ** 0.5) / 3 + 1)):
if sieve[i]:
k = 3 * i + 1 | 1
sieve[int(k * k / 3)::2 * k] = False
sieve[int(k * (k - 2 * (i & 1) + 4) / 3)::2 * k] = False
return np.r_[2, 3, ((3 * np.nonzero(sieve)[0][1:] + 1) | 1)]
def _random_overlay(self, static_hidden=False):
"""Construct random max pool locations."""
s = self.shapes[2]
if static_hidden:
args = np.random.randint(s[2], size=np.prod(s) / s[2] / s[4])
overlay = np.zeros(np.prod(s) / s[4], np.bool)
overlay[args + np.arange(len(args)) * s[2]] = True
overlay = overlay.reshape([s[0], s[1], s[3], s[2]])
overlay = np.rollaxis(overlay, -1, 2)
return arrays.extend(overlay, s[4])
else:
args = np.random.randint(s[2], size=np.prod(s) / s[2])
overlay = np.zeros(np.prod(s), np.bool)
overlay[args + np.arange(len(args)) * s[2]] = True
overlay = overlay.reshape([s[0], s[1], s[3], s[4], s[2]])
return np.rollaxis(overlay, -1, 2)
def store_effect(self, idx, action, reward, done):
"""Store effects of action taken after obeserving frame stored
at index idx. The reason `store_frame` and `store_effect` is broken
up into two functions is so that once can call `encode_recent_observation`
in between.
Paramters
---------
idx: int
Index in buffer of recently observed frame (returned by `store_frame`).
action: int
Action that was performed upon observing this frame.
reward: float
Reward that was received when the actions was performed.
done: bool
True if episode was finished after performing that action.
"""
self.action[idx] = action
self.reward[idx] = reward
self.done[idx] = done
def get_training_data_page(self, num_samples):
"""
Returns a TrainingDataPage with shuffled, transformed transitions from
replay memory.
:param num_samples: Number of transitions to sample from replay memory.
"""
states, actions, rewards, next_states, next_actions, terminals,\
possible_next_actions = self.sample_memories(num_samples)
return TrainingDataPage(
np.array(states, dtype=np.float32),
np.array(actions, dtype=np.float32),
np.array(rewards, dtype=np.float32),
np.array(next_states, dtype=np.float32),
np.array(next_actions, dtype=np.float32),
np.array(possible_next_actions, dtype=np.float32),
None, None, np.logical_not(terminals, dtype=np.bool)
)
def true_values_for_sample(
self, states, actions, assume_optimal_policy: bool
):
true_q_values = self.true_q_values(DISCOUNT, assume_optimal_policy)
print("TRUE Q")
print(true_q_values.reshape([5, 5]))
results = []
for x in range(len(states)):
int_state = int(list(states[x].keys())[0])
next_state = self.move_on_index_limit(int_state, actions[x])
if self.is_terminal(int_state):
results.append(self.reward(int_state))
else:
results.append(
self.reward(int_state) +
(DISCOUNT * true_q_values[next_state])
)
return results
def calculate_plane_histogram(plane, doseplane, dosegridpoints,
maxdose, dd, id, structure, hist):
"""Calculate the DVH for the given plane in the structure."""
contours = [[x[0:2] for x in c['data']] for c in plane]
# If there is no dose for the current plane, go to the next plane
if not len(doseplane):
return (np.arange(0, maxdose), 0)
# Create a zero valued bool grid
grid = np.zeros((dd['rows'], dd['columns']), dtype=np.uint8)
# Calculate the histogram for each contour in the plane
# and boolean xor to remove holes
for i, contour in enumerate(contours):
m = get_contour_mask(dd, id, dosegridpoints, contour)
grid = np.logical_xor(m.astype(np.uint8), grid).astype(np.bool)
hist, vol = calculate_contour_dvh(
grid, doseplane, maxdose, dd, id, structure)
return (hist, vol)
def decodeMask(R):
"""
Decode binary mask M encoded via run-length encoding.
:param R (object RLE) : run-length encoding of binary mask
:return: M (bool 2D array) : decoded binary mask
"""
N = len(R['counts'])
M = np.zeros( (R['size'][0]*R['size'][1], ))
n = 0
val = 1
for pos in range(N):
val = not val
for c in range(R['counts'][pos]):
R['counts'][pos]
M[n] = val
n += 1
return M.reshape((R['size']), order='F')
def _build_graph(self):
"""Compute the graph Laplacian."""
# Graph sparsification
if self.sparsify == 'epsilonNN':
self.A_ = radius_neighbors_graph(self.X_, self.radius, include_self=False)
else:
Q = kneighbors_graph(
self.X_,
self.n_neighbors,
include_self = False
).astype(np.bool)
if self.sparsify == 'kNN':
self.A_ = (Q + Q.T).astype(np.float64)
elif self.sparsify == 'MkNN':
self.A_ = (Q.multiply(Q.T)).astype(np.float64)
# Edge re-weighting
if self.reweight == 'rbf':
W = rbf_kernel(self.X_, gamma=self.t)
self.A_ = self.A_.multiply(W)
return sp.csgraph.laplacian(self.A_, normed=self.normed)
def load_annoataion(p):
'''
load annotation from the text file
:param p:
:return:
'''
text_polys = []
text_tags = []
if not os.path.exists(p):
return np.array(text_polys, dtype=np.float32)
with open(p, 'r') as f:
reader = csv.reader(f)
for line in reader:
label = line[-1]
# strip BOM. \ufeff for python3, \xef\xbb\bf for python2
line = [i.strip('\ufeff').strip('\xef\xbb\xbf') for i in line]
x1, y1, x2, y2, x3, y3, x4, y4 = list(map(float, line[:8]))
text_polys.append([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
if label == '*' or label == '###':
text_tags.append(True)
else:
text_tags.append(False)
return np.array(text_polys, dtype=np.float32), np.array(text_tags, dtype=np.bool)
def classifier_accuracy_report(self, prediction_vector, threshold=0.5):
""" Determine AUC and other metrics, write report.
prediction_vector: vector of booleans (or outcome
probabilities) of length n_subjects,
e.g. self.point_predictions, self.ensemble_probabilities()...
If this has dtype other than bool, prediction_vector > threshold
is used for the confusion matrix.
Returns: one string (multiple lines joined with \n, including
trailing newline) containing a formatted report.
"""
auc = roc_auc_score(self.model.data.y.astype(float), prediction_vector.astype(float))
if not (prediction_vector.dtype == np.bool):
prediction_vector = prediction_vector >= threshold
conf = confusion_matrix(self.model.data.y, prediction_vector)
lines = ['AUC: %.3f' % auc,
'Confusion matrix: \n\t%s' % str(conf).replace('\n','\n\t')]
return '\n'.join(lines) + '\n'
########################################
# BAYES-FACTOR-BASED METHODS
def _make_border_mask(sz, borderSize, omitSlices=[]):
""" Creates a logical tensor of size
(#slices, #rows, #colums)
where 1/true is an "included" pixel, where "included" means
- not within borderSize pixels the edge of the xy plane
- not within a slice that is to be omitted.
"""
[s,m,n] = sz
bitMask = np.ones(sz, dtype=bool)
bitMask[omitSlices,:,:] = 0
if borderSize > 0:
bitMask[:, 0:borderSize, :] = 0
bitMask[:, (m-borderSize):m, :] = 0
bitMask[:, :, 0:borderSize] = 0
bitMask[:, :, (n-borderSize):n] = 0
return bitMask
def _downsample_mask(X, pct):
""" Create a boolean mask indicating which subset of X should be
evaluated.
"""
if pct < 1.0:
Mask = np.zeros(X.shape, dtype=np.bool)
m = X.shape[-2]
n = X.shape[-1]
nToEval = np.round(pct*m*n).astype(np.int32)
idx = sobol(2, nToEval ,0)
idx[0] = np.floor(m*idx[0])
idx[1] = np.floor(n*idx[1])
idx = idx.astype(np.int32)
Mask[:,:,idx[0], idx[1]] = True
else:
Mask = np.ones(X.shape, dtype=np.bool)
return Mask
def get_poly_centers(ob, type=np.float32):
mod = False
m_count = len(ob.modifiers)
if m_count > 0:
show = np.zeros(m_count, dtype=np.bool)
ren_set = np.copy(show)
ob.modifiers.foreach_get('show_render', show)
ob.modifiers.foreach_set('show_render', ren_set)
mod = True
mesh = ob.to_mesh(bpy.context.scene, True, 'RENDER')
p_count = len(mesh.polygons)
center = np.zeros(p_count * 3)#, dtype=type)
mesh.polygons.foreach_get('center', center)
center.shape = (p_count, 3)
bpy.data.meshes.remove(mesh)
if mod:
ob.modifiers.foreach_set('show_render', show)
return center
def get_poly_normals(ob, type=np.float32):
mod = False
m_count = len(ob.modifiers)
if m_count > 0:
show = np.zeros(m_count, dtype=np.bool)
ren_set = np.copy(show)
ob.modifiers.foreach_get('show_render', show)
ob.modifiers.foreach_set('show_render', ren_set)
mod = True
mesh = ob.to_mesh(bpy.context.scene, True, 'RENDER')
p_count = len(mesh.polygons)
normal = np.zeros(p_count * 3)#, dtype=type)
mesh.polygons.foreach_get('normal', normal)
normal.shape = (p_count, 3)
bpy.data.meshes.remove(mesh)
if mod:
ob.modifiers.foreach_set('show_render', show)
return normal
def get_v_normals(ob, type=np.float32):
mod = False
m_count = len(ob.modifiers)
if m_count > 0:
show = np.zeros(m_count, dtype=np.bool)
ren_set = np.copy(show)
ob.modifiers.foreach_get('show_render', show)
ob.modifiers.foreach_set('show_render', ren_set)
mod = True
mesh = ob.to_mesh(bpy.context.scene, True, 'RENDER')
v_count = len(mesh.vertices)
normal = np.zeros(v_count * 3)#, dtype=type)
mesh.vertices.foreach_get('normal', normal)
normal.shape = (v_count, 3)
bpy.data.meshes.remove(mesh)
if mod:
ob.modifiers.foreach_set('show_render', show)
return normal
def basic_unwrap():
ob = bpy.context.object
mode = ob.mode
data = ob.data
key = ob.active_shape_key_index
bpy.ops.object.mode_set(mode='OBJECT')
layers = [i.name for i in ob.data.uv_layers]
if "UV_Shape_key" not in layers:
bpy.ops.mesh.uv_texture_add()
ob.data.uv_layers[len(ob.data.uv_layers) - 1].name = 'UV_Shape_key'
ob.data.uv_layers.active_index = len(ob.data.uv_layers) - 1
ob.active_shape_key_index = 0
data.vertices.foreach_set('select', np.ones(len(data.vertices), dtype=np.bool))
bpy.ops.object.mode_set(mode='EDIT')
bpy.ops.uv.unwrap(method='ANGLE_BASED', margin=0.0635838)
bpy.ops.object.mode_set(mode=mode)
ob.active_shape_key_index = key
def _iter_test_masks(self, frame, y=None):
"""Generates boolean masks corresponding to the tests set.
Parameters
----------
frame : H2OFrame
The h2o frame to split
y : string, optional (default=None)
The column to stratify.
Returns
-------
test_mask : np.ndarray, shape=(n_samples,)
The indices for the test split
"""
for test_index in self._iter_test_indices(frame, y):
test_mask = np.zeros(frame.shape[0], dtype=np.bool)
test_mask[test_index] = True
yield test_mask
def is_iterable(x):
"""Python 3.x adds the ``__iter__`` attribute
to strings. Thus, our previous tests for iterable
will fail when using ``hasattr``.
Parameters
----------
x : object
The object or primitive to test whether
or not is an iterable.
Returns
-------
bool
True if ``x`` is an iterable
"""
if isinstance(x, six.string_types):
return False
return hasattr(x, '__iter__')
def _is_integer(x):
"""Determine whether some object ``x`` is an
integer type (int, long, etc). This is part of the
``fixes`` module, since Python 3 removes the long
datatype, we have to check the version major.
Parameters
----------
x : object
The item to assess whether is an integer.
Returns
-------
bool
True if ``x`` is an integer type
"""
return (not isinstance(x, (bool, np.bool))) and \
isinstance(x, (numbers.Integral, int, np.int, np.long, long)) # no long type in python 3
def is_entirely_numeric(X):
"""Determines whether an entire pandas frame
is numeric in dtypes.
Parameters
----------
X : Pandas ``DataFrame`` or ``H2OFrame``, shape=(n_samples, n_features)
The dataframe to test
Returns
-------
bool
True if the entire pd.DataFrame
is numeric else False
"""
return X.shape[1] == len(get_numeric(X))
def is_float(x):
"""Determine whether some object ``x`` is a
float type (float, np.float, etc).
Parameters
----------
x : object
The item to assess
Returns
-------
bool
True if ``x`` is a float type
"""
return isinstance(x, (float, np.float)) or \
(not isinstance(x, (bool, np.bool)) and isinstance(x, numbers.Real))
def is_numeric(x):
"""Determine whether some object ``x`` is a
numeric type (float, int, etc).
Parameters
----------
x : object
The item to assess
Returns
-------
bool
True if ``x`` is a float or integer type
"""
return is_float(x) or is_integer(x)
def __init__(self, config, model_dir, ob_shape_list):
self.model_dir = model_dir
self.cnn_format = config.cnn_format
self.memory_size = config.memory_size
self.actions = np.empty(self.memory_size, dtype = np.uint8)
self.rewards = np.empty(self.memory_size, dtype = np.integer)
# print(self.memory_size, config.screen_height, config.screen_width)
# self.screens = np.empty((self.memory_size, config.screen_height, config.screen_width), dtype = np.float16)
self.screens = np.empty([self.memory_size] + ob_shape_list, dtype = np.float16)
self.terminals = np.empty(self.memory_size, dtype = np.bool)
self.history_length = config.history_length
# self.dims = (config.screen_height, config.screen_width)
self.dims = tuple(ob_shape_list)
self.batch_size = config.batch_size
self.count = 0
self.current = 0
# pre-allocate prestates and poststates for minibatch
self.prestates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
self.poststates = np.empty((self.batch_size, self.history_length) + self.dims, dtype = np.float16)
# self.prestates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16)
# self.poststates = np.empty((self.batch_size, self.history_length, self.dims), dtype = np.float16)
def __make_net(self, input_images, input_measure, input_actions, reuse=False):
if reuse:
tf.get_variable_scope().reuse_variables()
fc_val_params = copy.deepcopy(self.__fc_joint_params)
fc_val_params[-1]['out_dims'] = self.__target_dim
fc_adv_params = copy.deepcopy(self.__fc_joint_params)
fc_adv_params[-1]['out_dims'] = len(self.__net_discrete_actions) * self.__target_dim
if self.verbose:
print 'fc_val_params:', fc_val_params
print 'fc_adv_params:', fc_adv_params
p_img_conv = ly.conv_encoder(input_images, self.__conv_params, 'p_img_conv', msra_coeff=0.9)
p_img_fc = ly.fc_net(ly.flatten(p_img_conv), self.__fc_img_params, 'p_img_fc', msra_coeff=0.9)
p_meas_fc = ly.fc_net(input_measure, self.__fc_measure_params, 'p_meas_fc', msra_coeff=0.9)
p_val_fc = ly.fc_net(tf.concat([p_img_fc, p_meas_fc], 1),
fc_val_params, 'p_val_fc', last_linear=True, msra_coeff=0.9)
p_adv_fc = ly.fc_net(tf.concat([p_img_fc, p_meas_fc], 1),
fc_adv_params, 'p_adv_fc', last_linear=True, msra_coeff=0.9)
p_adv_fc_nomean = p_adv_fc - tf.reduce_mean(p_adv_fc, reduction_indices=1, keep_dims=True)
self.__pred_all_nomean = tf.reshape(p_adv_fc_nomean, [-1, len(self.__net_discrete_actions), self.__target_dim])
self.__pred_all = self.__pred_all_nomean + tf.reshape(p_val_fc, [-1, 1, self.__target_dim])
self.__pred_relevant = tf.boolean_mask(self.__pred_all, tf.cast(input_actions, tf.bool))
def setUp(self):
self.f = np.ones(256, dtype=np.float32)
self.ef = np.ones(self.f.size, dtype=np.bool)
self.d = np.ones(128, dtype=np.float64)
self.ed = np.ones(self.d.size, dtype=np.bool)
# generate values for all permutation of 256bit simd vectors
s = 0
for i in range(32):
self.f[s:s+8] = [i & 2**x for x in range(8)]
self.ef[s:s+8] = [(i & 2**x) != 0 for x in range(8)]
s += 8
s = 0
for i in range(16):
self.d[s:s+4] = [i & 2**x for x in range(4)]
self.ed[s:s+4] = [(i & 2**x) != 0 for x in range(4)]
s += 4
self.nf = self.f.copy()
self.nd = self.d.copy()
self.nf[self.ef] = np.nan
self.nd[self.ed] = np.nan
def test_float(self):
# offset for alignment test
for i in range(4):
assert_array_equal(self.f[i:] > 0, self.ef[i:])
assert_array_equal(self.f[i:] - 1 >= 0, self.ef[i:])
assert_array_equal(self.f[i:] == 0, ~self.ef[i:])
assert_array_equal(-self.f[i:] < 0, self.ef[i:])
assert_array_equal(-self.f[i:] + 1 <= 0, self.ef[i:])
r = self.f[i:] != 0
assert_array_equal(r, self.ef[i:])
r2 = self.f[i:] != np.zeros_like(self.f[i:])
r3 = 0 != self.f[i:]
assert_array_equal(r, r2)
assert_array_equal(r, r3)
# check bool == 0x1
assert_array_equal(r.view(np.int8), r.astype(np.int8))
assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
# isnan on amd64 takes the same code path
assert_array_equal(np.isnan(self.nf[i:]), self.ef[i:])
def test_double(self):
# offset for alignment test
for i in range(2):
assert_array_equal(self.d[i:] > 0, self.ed[i:])
assert_array_equal(self.d[i:] - 1 >= 0, self.ed[i:])
assert_array_equal(self.d[i:] == 0, ~self.ed[i:])
assert_array_equal(-self.d[i:] < 0, self.ed[i:])
assert_array_equal(-self.d[i:] + 1 <= 0, self.ed[i:])
r = self.d[i:] != 0
assert_array_equal(r, self.ed[i:])
r2 = self.d[i:] != np.zeros_like(self.d[i:])
r3 = 0 != self.d[i:]
assert_array_equal(r, r2)
assert_array_equal(r, r3)
# check bool == 0x1
assert_array_equal(r.view(np.int8), r.astype(np.int8))
assert_array_equal(r2.view(np.int8), r2.astype(np.int8))
assert_array_equal(r3.view(np.int8), r3.astype(np.int8))
# isnan on amd64 takes the same code path
assert_array_equal(np.isnan(self.nd[i:]), self.ed[i:])
def test_array_equal(self):
res = np.array_equal(np.array([1, 2]), np.array([1, 2]))
assert_(res)
assert_(type(res) is bool)
res = np.array_equal(np.array([1, 2]), np.array([1, 2, 3]))
assert_(not res)
assert_(type(res) is bool)
res = np.array_equal(np.array([1, 2]), np.array([3, 4]))
assert_(not res)
assert_(type(res) is bool)
res = np.array_equal(np.array([1, 2]), np.array([1, 3]))
assert_(not res)
assert_(type(res) is bool)
res = np.array_equal(np.array(['a'], dtype='S1'), np.array(['a'], dtype='S1'))
assert_(res)
assert_(type(res) is bool)
res = np.array_equal(np.array([('a', 1)], dtype='S1,u4'),
np.array([('a', 1)], dtype='S1,u4'))
assert_(res)
assert_(type(res) is bool)
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
def test_basic(self):
dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger']
dt_complex = np.typecodes['Complex']
# test real
a = np.eye(3)
for dt in dt_numeric + 'O':
b = a.astype(dt)
res = np.vdot(b, b)
assert_(np.isscalar(res))
assert_equal(np.vdot(b, b), 3)
# test complex
a = np.eye(3) * 1j
for dt in dt_complex + 'O':
b = a.astype(dt)
res = np.vdot(b, b)
assert_(np.isscalar(res))
assert_equal(np.vdot(b, b), 3)
# test boolean
b = np.eye(3, dtype=np.bool)
res = np.vdot(b, b)
assert_(np.isscalar(res))
assert_equal(np.vdot(b, b), True)
def test_basic(self):
dts = [np.bool, np.int16, np.int32, np.int64, np.double, np.complex128,
np.longdouble, np.clongdouble]
for dt in dts:
c = np.ones(53, dtype=np.bool)
assert_equal(np.where( c, dt(0), dt(1)), dt(0))
assert_equal(np.where(~c, dt(0), dt(1)), dt(1))
assert_equal(np.where(True, dt(0), dt(1)), dt(0))
assert_equal(np.where(False, dt(0), dt(1)), dt(1))
d = np.ones_like(c).astype(dt)
e = np.zeros_like(d)
r = d.astype(dt)
c[7] = False
r[7] = e[7]
assert_equal(np.where(c, e, e), e)
assert_equal(np.where(c, d, e), r)
assert_equal(np.where(c, d, e[0]), r)
assert_equal(np.where(c, d[0], e), r)
assert_equal(np.where(c[::2], d[::2], e[::2]), r[::2])
assert_equal(np.where(c[1::2], d[1::2], e[1::2]), r[1::2])
assert_equal(np.where(c[::3], d[::3], e[::3]), r[::3])
assert_equal(np.where(c[1::3], d[1::3], e[1::3]), r[1::3])
assert_equal(np.where(c[::-2], d[::-2], e[::-2]), r[::-2])
assert_equal(np.where(c[::-3], d[::-3], e[::-3]), r[::-3])
assert_equal(np.where(c[1::-3], d[1::-3], e[1::-3]), r[1::-3])
def test_dtype_mix(self):
c = np.array([False, True, False, False, False, False, True, False,
False, False, True, False])
a = np.uint32(1)
b = np.array([5., 0., 3., 2., -1., -4., 0., -10., 10., 1., 0., 3.],
dtype=np.float64)
r = np.array([5., 1., 3., 2., -1., -4., 1., -10., 10., 1., 1., 3.],
dtype=np.float64)
assert_equal(np.where(c, a, b), r)
a = a.astype(np.float32)
b = b.astype(np.int64)
assert_equal(np.where(c, a, b), r)
# non bool mask
c = c.astype(np.int)
c[c != 0] = 34242324
assert_equal(np.where(c, a, b), r)
# invert
tmpmask = c != 0
c[c == 0] = 41247212
c[tmpmask] = 0
assert_equal(np.where(c, b, a), r)
def test_allany_oddities(self):
# Some fun with all and any
store = empty((), dtype=bool)
full = array([1, 2, 3], mask=True)
self.assertTrue(full.all() is masked)
full.all(out=store)
self.assertTrue(store)
self.assertTrue(store._mask, True)
self.assertTrue(store is not masked)
store = empty((), dtype=bool)
self.assertTrue(full.any() is masked)
full.any(out=store)
self.assertTrue(not store)
self.assertTrue(store._mask, True)
self.assertTrue(store is not masked)