Python numpy 模块,logical_and() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.logical_and()。
def _resolve_spec(im1, im2):
im = im1.copy()
img1 = cv.cvtColor(im1, cv.COLOR_BGR2GRAY)
img2 = cv.cvtColor(im2, cv.COLOR_BGR2GRAY)
# Best pixel selection criteria
# 1. Pixel difference should be more than 20. (just an experimentally value. Free to change!)
# 2. Best pixel should have less intensity
# 3. pixel should not be pure black. (just an additional constraint
# to remove black background created by warping)
mask = np.logical_and((img1 - img2) > DIFF_THRESHOLD, img1 > img2)
mask = np.logical_and(mask, img2 != 0)
im[mask] = im2[mask]
return im
def action_label_counts(directory, data_loader, n_actions=18, n=None):
episode_paths = frame.episode_paths(directory)
label_counts = [0, 0]
action_label_counts = [[0, 0] for i in range(n_actions)]
if n is not None:
np.random.shuffle(episode_paths)
episode_paths = episode_paths[:n]
for episode_path in tqdm.tqdm(episode_paths):
try:
features, labels = data_loader.load_features_and_labels([episode_path])
except:
traceback.print_exc()
else:
for label in range(len(label_counts)):
label_counts[label] += np.count_nonzero(labels == label)
for action in range(n_actions):
actions = np.reshape(np.array(features["action"]), [-1])
action_label_counts[action][label] += np.count_nonzero(
np.logical_and(labels == label, actions == action))
return label_counts, action_label_counts
def iall(arrays, axis = -1):
"""
Test whether all array elements along a given axis evaluate to True
Parameters
----------
arrays : iterable
Arrays to be reduced.
axis : int or None, optional
Axis along which a logical AND reduction is performed. The default
is to perform a logical AND along the 'stream axis', as if all arrays in ``array``
were stacked along a new dimension. If ``axis = None``, arrays in ``arrays`` are flattened
before reduction.
Yields
------
all : ndarray, dtype bool
"""
yield from ireduce_ufunc(arrays, ufunc = np.logical_and, axis = axis)
def _classify_gems(counts0, counts1):
""" Infer number of distinct transcriptomes present in each GEM (1 or 2) and
report cr_constants.GEM_CLASS_GENOME0 for a single cell w/ transcriptome 0,
report cr_constants.GEM_CLASS_GENOME1 for a single cell w/ transcriptome 1,
report cr_constants.GEM_CLASS_MULTIPLET for multiple transcriptomes """
# Assumes that most of the GEMs are single-cell; model counts independently
thresh0, thresh1 = [cr_constants.DEFAULT_MULTIPLET_THRESHOLD] * 2
if sum(counts0 > counts1) >= 1 and sum(counts1 > counts0) >= 1:
thresh0 = np.percentile(counts0[counts0 > counts1], cr_constants.MULTIPLET_PROB_THRESHOLD)
thresh1 = np.percentile(counts1[counts1 > counts0], cr_constants.MULTIPLET_PROB_THRESHOLD)
doublet = np.logical_and(counts0 >= thresh0, counts1 >= thresh1)
dtype = np.dtype('|S%d' % max(len(cls) for cls in cr_constants.GEM_CLASSES))
result = np.where(doublet, cr_constants.GEM_CLASS_MULTIPLET, cr_constants.GEM_CLASS_GENOME0).astype(dtype)
result[np.logical_and(np.logical_not(result == cr_constants.GEM_CLASS_MULTIPLET), counts1 > counts0)] = cr_constants.GEM_CLASS_GENOME1
return result
def reg2bin_vector(begin, end):
'''Vectorized tabix reg2bin -- much faster than reg2bin'''
result = np.zeros(begin.shape)
# Entries filled
done = np.zeros(begin.shape, dtype=np.bool)
for (bits, bins) in rev_bit_bins:
begin_shift = begin >> bits
new_done = (begin >> bits) == (end >> bits)
mask = np.logical_and(new_done, np.logical_not(done))
offset = ((1 << (29 - bits)) - 1) / 7
result[mask] = offset + begin_shift[mask]
done = new_done
return result.astype(np.int32)
def compute_test_accuracy(X_test, Y_test, model, prediction_type, cellgroup_map_array):
prediction = model.predict(X_test)
auc = []
if prediction_type=="cellgroup":
prediction = np.dot(prediction, cellgroup_map_array)
Y_test = np.dot(Y_test, cellgroup_map_array)
mask = ~np.logical_or(Y_test.sum(1)==0, Y_test.sum(1)==Y_test.shape[1])
for y,pred in zip(Y_test.T,prediction.T):
pos = np.logical_and(mask, y==1)
neg = np.logical_and(mask, y==0)
try:
U = stats.mannwhitneyu(pred[pos], pred[neg])[0]
auc.append(1.-U/(np.count_nonzero(pos)*np.count_nonzero(neg)))
except ValueError:
auc.append(0.5)
return auc
def ignore_data(self, xmin=None, xmax=None, unit=None):
"""
Ignore the data points within range [xmin, xmax].
If xmin is None, then xmin=min(xdata);
if xmax is None, then xmax=max(xdata).
if unit is None, then assume the same unit as `self.xunit'.
"""
if unit is None:
unit = self.xunit
if xmin is not None:
xmin = self.convert_unit(xmin, unit=unit)
else:
xmin = np.min(self.xdata)
if xmax is not None:
xmax = self.convert_unit(xmax, unit=unit)
else:
xmax = np.max(self.xdata)
ignore_idx = np.logical_and(self.xdata >= xmin, self.xdata <= xmax)
self.mask[ignore_idx] = False
# reset `f_residual'
self.f_residual = None
def notice_data(self, xmin=None, xmax=None, unit=None):
"""
Notice the data points within range [xmin, xmax].
If xmin is None, then xmin=min(xdata);
if xmax is None, then xmax=max(xdata).
if unit is None, then assume the same unit as `self.xunit'.
"""
if unit is None:
unit = self.xunit
if xmin is not None:
xmin = self.convert_unit(xmin, unit=unit)
else:
xmin = np.min(self.xdata)
if xmax is not None:
xmax = self.convert_unit(xmax, unit=unit)
else:
xmax = np.max(self.xdata)
notice_idx = np.logical_and(self.xdata >= xmin, self.xdata <= xmax)
self.mask[notice_idx] = True
# reset `f_residual'
self.f_residual = None
def overlap_ratio(boxes1, boxes2):
# find intersection bbox
x_int_bot = np.maximum(boxes1[:, 0], boxes2[0])
x_int_top = np.minimum(boxes1[:, 0] + boxes1[:, 2], boxes2[0] + boxes2[2])
y_int_bot = np.maximum(boxes1[:, 1], boxes2[1])
y_int_top = np.minimum(boxes1[:, 1] + boxes1[:, 3], boxes2[1] + boxes2[3])
# find intersection area
dx = x_int_top - x_int_bot
dy = y_int_top - y_int_bot
area_int = np.where(np.logical_and(dx>0, dy>0), dx * dy, np.zeros_like(dx))
# find union
area_union = boxes1[:,2] * boxes1[:,3] + boxes2[2] * boxes2[3] - area_int
# find overlap ratio
ratio = np.where(area_union > 0, area_int/area_union, np.zeros_like(area_int))
return ratio
###########################################################################
# overlap_ratio of two bboxes #
###########################################################################
def overlap_ratio_pair(boxes1, boxes2):
# find intersection bbox
x_int_bot = np.maximum(boxes1[:, 0], boxes2[:, 0])
x_int_top = np.minimum(boxes1[:, 0] + boxes1[:, 2], boxes2[:, 0] + boxes2[:, 2])
y_int_bot = np.maximum(boxes1[:, 1], boxes2[:, 1])
y_int_top = np.minimum(boxes1[:, 1] + boxes1[:, 3], boxes2[:, 1] + boxes2[:, 3])
# find intersection area
dx = x_int_top - x_int_bot
dy = y_int_top - y_int_bot
area_int = np.where(np.logical_and(dx>0, dy>0), dx * dy, np.zeros_like(dx))
# find union
area_union = boxes1[:,2] * boxes1[:,3] + boxes2[:, 2] * boxes2[:, 3] - area_int
# find overlap ratio
ratio = np.where(area_union > 0, area_int/area_union, np.zeros_like(area_int))
return ratio
def _create_drop_path_choices(self):
if not self._drop_path: # Drop path was turned off.
return np.zeros(shape=[len(self._choices)], dtype='int32')
elif np.random.uniform() < self._p_local_drop_path:
# Local drop-path (make each choice independantly at random.)
choices = np.random.uniform(size=[len(self._choices)])
drop_base = choices < self._p_drop_base_case
drop_recursive = np.logical_and(
choices < (self._p_drop_base_case + self._p_drop_recursive_case),
np.logical_not(drop_base))
return (np.int32(drop_base)*self._JUST_RECURSE +
np.int32(drop_recursive)*self._JUST_BASE)
else:
# Global (pick a single column.)
column = np.random.randint(self._fractal_block_depth)
return np.array(
[self._JUST_RECURSE if len(binary_seq) < column else self._JUST_BASE
for _, binary_seq in self._choices],
dtype='int32')
def __act_manual(self, state_meas):
if len(self.__measure_for_manual):
# [AMMO2, AMMO3, AMMO4, AMMO5, AMMO6, AMMO7, WEAPON2,
# WEAPON3 WEAPON4 WEAPON5 WEAPON6 WEAPON7 SELECTED_WEAPON]
assert len(self.__measure_for_manual) == 13
# [SELECT_WEAPON2 SELECT_WEAPON3 SELECT_WEAPON4 SELECT_WEAPON5 SELECT_WEAPON6 SELECT_WEAPON7]
curr_action = np.zeros((state_meas.shape[0], self.__num_manual_controls), dtype=np.int)
for ns in range(state_meas.shape[0]):
curr_ammo = state_meas[ns, self.__measure_for_manual[:6]]
curr_weapons = state_meas[ns, self.__measure_for_manual[6:12]]
if self.verbose:
print 'current ammo:', curr_ammo
print 'current weapons:', curr_weapons
available_weapons = np.logical_and(curr_ammo >= np.array([1, 2, 1, 1, 1, 40]), curr_weapons)
if any(available_weapons):
best_weapon = np.nonzero(available_weapons)[0][-1]
if not state_meas[ns, self.__measure_for_manual[12]] == best_weapon + 2:
curr_action[ns, best_weapon] = 1
return curr_action
else:
return []
def anamVertexRegionSize(vor, L, typical=6):
"""
Given a set of centroids (voronoi generators),
for each vertex in the tessellation, return 1 if the vertex is part of a region that
is not of the 'typical' size
"""
# vertices
v = vor.vertices
sizeFlag = numpy.zeros(len(v)) # flag for anamolous region size
# regSize = [[]]*len(v) # list of region sizes
for reg in vor.regions:
if len(reg) > 0 and -1 not in reg: # Non-empty and non-open region
size = len(reg)
if size != typical:
for vert in reg: # update size of all vertices that are in the region
# regSize[vert].append(size)
sizeFlag[vert] = 1
# Choose all in box
sizeFlag = sizeFlag[numpy.logical_and(*[numpy.logical_and(v[:, i] >= 0, v[:, i] <= L[i]) for i in range(2)])]
sizeFlag = sizeFlag.astype('int')
return sizeFlag
def anamVertexRegionSize(vor, L, typical=6):
"""
Given a set of centroids (voronoi generators),
for each vertex in the tessellation, return 1 if the vertex is part of a region that
is not of the 'typical' size
"""
# vertices
v = vor.vertices
sizeFlag = numpy.zeros(len(v)) # flag for anamolous region size
#regSize = [[]]*len(v) # list of region sizes
for reg in vor.regions:
if len(reg) > 0 and -1 not in reg: # Non-empty and non-open region
size = len(reg)
if size != typical:
for vert in reg: # update size of all vertices that are in the region
#regSize[vert].append(size)
sizeFlag[vert] = 1
# Choose all in box
sizeFlag = sizeFlag[ numpy.logical_and(* [ numpy.logical_and(v[:,i]>=0, v[:,i] <= L[i]) for i in range(2) ] )]
sizeFlag = sizeFlag.astype('int')
return sizeFlag
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
def test_object_logical(self):
a = np.array([3, None, True, False, "test", ""], dtype=object)
assert_equal(np.logical_or(a, None),
np.array([x or None for x in a], dtype=object))
assert_equal(np.logical_or(a, True),
np.array([x or True for x in a], dtype=object))
assert_equal(np.logical_or(a, 12),
np.array([x or 12 for x in a], dtype=object))
assert_equal(np.logical_or(a, "blah"),
np.array([x or "blah" for x in a], dtype=object))
assert_equal(np.logical_and(a, None),
np.array([x and None for x in a], dtype=object))
assert_equal(np.logical_and(a, True),
np.array([x and True for x in a], dtype=object))
assert_equal(np.logical_and(a, 12),
np.array([x and 12 for x in a], dtype=object))
assert_equal(np.logical_and(a, "blah"),
np.array([x and "blah" for x in a], dtype=object))
assert_equal(np.logical_not(a),
np.array([not x for x in a], dtype=object))
assert_equal(np.logical_or.reduce(a), 3)
assert_equal(np.logical_and.reduce(a), None)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def get_metrics(predictions, targets):
assert(np.logical_or(predictions == 1, predictions == 0).all())
assert(np.logical_or(targets == 1, targets == 0).all())
TP = np.logical_and(predictions == 1, targets == 1).sum()
FP = np.logical_and(predictions == 1, targets == 0).sum()
FN = np.logical_and(predictions == 0, targets == 1).sum()
TN = np.logical_and(predictions == 0, targets == 0).sum()
N = TP + FP + FN + TN
PPV = float(TP) / float(TP + FP) if TP != 0.0 else 0.0
FPV = float(TN) / float(TN + FN) if TN != 0.0 else 0.0
ACC = float(TP + TN) / float(N)
TPR = float(TP) / float(TP + FN) if TP != 0.0 else 0.0
FPR = float(FP) / float(FP + TN) if FP != 0.0 else 0.0
tp, tn, fp, fn = float(TP) / N, float(TN) / N, float(FP) / N, float(FN) / N
MCC = float(tp*tn - fp*fn) / (np.sqrt(tp+fp)*np.sqrt(tp+fn)*np.sqrt(tn+fp)*np.sqrt(tn+fn))
F1 = 2 * TP / float(2 * TP + FP + FN)
metrics = {
"TP": TP, "FP": FP, "FN": FN, "TN": TN, "N": N,
"PPV": PPV, "FPV": FPV, "MCC": MCC, "ACC": ACC,
"F1": F1
}
return metrics
def simOnePrd(self):
'''
Simulate one period of the fashion victom model for this type. Each
agent receives an idiosyncratic preference shock and chooses whether to
change styles (using the optimal decision rule).
Parameters
----------
none
Returns
-------
none
'''
pNow = self.pNow
sPrev = self.sNow
J2Pprob = self.switchFuncJock(pNow)
P2Jprob = self.switchFuncPunk(pNow)
Shks = self.RNG.rand(self.pop_size)
J2P = np.logical_and(sPrev == 0,Shks < J2Pprob)
P2J = np.logical_and(sPrev == 1,Shks < P2Jprob)
sNow = copy(sPrev)
sNow[J2P] = 1
sNow[P2J] = 0
self.sNow = sNow
def _shrink(v, gamma):
"""Soft-shrinkage of an array with parameter gamma.
Parameters
----------
v : array
Array containing the values to be applied to the shrinkage operator
gamma : float
Shrinkage parameter.
Returns
-------
v : array
The same input array after the shrinkage operator was applied.
"""
pos = v > gamma
neg = v < -gamma
v[pos] -= gamma
v[neg] += gamma
v[np.logical_and(~pos, ~neg)] = .0
return v
def __split_apply(self, func_y_lt_f, func_y_gt_f, func_f_lt_0, y, f):
# Make sure all arrays are of a compatible type
y, f = np.broadcast_arrays(y, f)
y = y.astype(float, copy=False)
f = f.astype(float, copy=False)
if any(y < 0):
raise ValueError("y has to be > 0!")
# get indicators of which likelihoods to apply where
y_lt_f = np.logical_and(y <= f, f > 0)
y_gt_f = np.logical_and(y > f, f > 0)
f_lt_0 = f <= 0
result = np.zeros_like(y)
result[y_lt_f] = func_y_lt_f(y[y_lt_f], f[y_lt_f])
result[y_gt_f] = func_y_gt_f(y[y_gt_f], f[y_gt_f])
result[f_lt_0] = func_f_lt_0(y[f_lt_0], f[f_lt_0])
return result
def _global_lonlat2pix(self, lonlat):
x = np.searchsorted(self._coords_x, lonlat[:, 0], side='right') - 1
x = x.astype(int)
ycoords = self._coords_y
y = np.searchsorted(ycoords, lonlat[:, 1], side='right') - 1
y = y.astype(int)
# We want the *closed* interval, which means moving
# points on the end back by 1
on_end_x = lonlat[:, 0] == self._coords_x[-1]
on_end_y = lonlat[:, 1] == self._coords_y[-1]
x[on_end_x] -= 1
y[on_end_y] -= 1
if (not all(np.logical_and(x >= 0, x < self._full_res[0]))) or \
(not all(np.logical_and(y >= 0, y < self._full_res[1]))):
raise ValueError("Queried location is not "
"in the image {}!".format(self.source._filename))
result = np.concatenate((x[:, np.newaxis], y[:, np.newaxis]), axis=1)
return result
# @contract(lonlat='array[Nx2](float64),N>0')
def load_switching_data(filename_or_fileobject, start_state=None, group="main", failure=False, threshold=None,
voltage_scale_factor=1.0, duration_scale_factor=1.0, data_name='voltage', data_filter=None, display=False):
data, desc = load_from_HDF5(filename_or_fileobject, reshape=False)
# Regular axes
states = desc[group].axis("state").points
reps = desc[group].axis("attempt").points
# Main data array, possibly unstructured
dat = data[group][:].reshape((-1, reps.size, states.size))
# Filter data if desired
# e.g. filter_func = lambda dat: np.logical_and(dat['field'] == 0.04, dat['temperature'] == 4.0)
if data_filter:
dat = dat[np.where(data_filter(dat))]
Vs = dat[data_name]
durs = dat['pulse_duration'][:,0,0]
amps = dat['pulse_voltage'][:,0,0]
points = np.array([durs, amps]).transpose()
if failure:
return points, reset_failure(Vs, start_state=start_state)
else:
return points, switching_phase(Vs, start_state=start_state, threshold=threshold, display=display)
def _pfp(pha, amp, phabin, binsize):
"""Sub prefered phase function
"""
nbin, nt = len(phabin), pha.shape[1]
ampbin = np.zeros((len(phabin), nt), dtype=float)
# Binarize amplitude accros all trials :
for t in range(nt):
curpha, curamp = pha[:, t], amp[:, t]
for i, p in enumerate(phabin):
idx = np.logical_and(curpha >= p, curpha < p+binsize)
if idx.astype(int).sum() != 0:
ampbin[i, t] = curamp[idx].mean()
else:
ampbin[i, t] = 0
ampbin[:, t] /= ampbin[:, t].sum()
# Find prefered phase and p-values :
pfp = np.array([phabin[k]+binsize/2 for k in ampbin.argmax(axis=0)])
pvalue = circ_rtest(pfp)[0]
prf = phabin[ampbin.mean(axis=1).argmax()]+binsize/2
return pfp, prf, pvalue, ampbin
def get_snippet_idx(snippet, full_array):
""" Find the indices of ``full_array`` where ``snippet`` is present.
Assumes both ``snippet`` and ``full_array`` are ordered.
Parameters
----------
snippet : np.array
Array of ordered time stamps
full_array : np.array
Array of ordered time stamps
Returns
-------
idx : np.array
Array of booleans indicating where in ``full_array`` ``snippet``
is present.
"""
idx = np.logical_and(
full_array >= snippet[0], full_array <= snippet[-1]
)
return idx
def get_signal_mask(df):
masks = []
# Select waveforms whose DOMs are close to both interaction
# vertices and still suficiently separated in time
masks.append(df['GeometricalSelection'] == 1)
# Apply a light set of cuts on the remaining waveforms
masks.append(df['Bins_ToT_Pulse1'] >= 2)
masks.append(df['Bins_ToT_Pulse2'] >= 3)
masks.append(df['Bins_TbT'] >= 2)
masks.append(df['Amplitude_Pulse1'] >= 10)
masks.append(df['Amplitude_Pulse2'] >= 10)
# Combine all the masks
selection_mask = masks[0]
for i in range(1, len(masks)):
selection_mask = np.logical_and(selection_mask, masks[i])
return selection_mask
def get_edge_mask(self, subdomain=None):
'''Get faces which are fully in subdomain.
'''
if subdomain is None:
# http://stackoverflow.com/a/42392791/353337
return numpy.s_[:]
if subdomain not in self.subdomains:
self._mark_vertices(subdomain)
# A face is inside if all its edges are in.
# An edge is inside if all its nodes are in.
is_in = self.subdomains[subdomain]['vertices'][self.idx_hierarchy]
# Take `all()` over the first index
is_inside = numpy.all(is_in, axis=tuple(range(1)))
if subdomain.is_boundary_only:
# Filter for boundary
is_inside = numpy.logical_and(is_inside, self.is_boundary_edge)
return is_inside
def get_face_mask(self, subdomain):
'''Get faces which are fully in subdomain.
'''
if subdomain is None:
# http://stackoverflow.com/a/42392791/353337
return numpy.s_[:]
if subdomain not in self.subdomains:
self._mark_vertices(subdomain)
# A face is inside if all its edges are in.
# An edge is inside if all its nodes are in.
is_in = self.subdomains[subdomain]['vertices'][self.idx_hierarchy]
# Take `all()` over all axes except the last two (face_ids, cell_ids).
n = len(is_in.shape)
is_inside = numpy.all(is_in, axis=tuple(range(n-2)))
if subdomain.is_boundary_only:
# Filter for boundary
is_inside = numpy.logical_and(is_inside, self.is_boundary_face)
return is_inside
def _mark_vertices(self, subdomain):
'''Mark faces/edges which are fully in subdomain.
'''
if subdomain is None:
is_inside = numpy.ones(len(self.node_coords), dtype=bool)
else:
is_inside = subdomain.is_inside(self.node_coords.T).T
if subdomain.is_boundary_only:
# Filter boundary
self.mark_boundary()
is_inside = numpy.logical_and(is_inside, self.is_boundary_node)
self.subdomains[subdomain] = {
'vertices': is_inside,
}
return
def _filter_image_with_no_gt(self):
"""
filter images that have no ground-truth labels.
use case: when you wish to work only on a subset of pascal classes, you have 2 options:
1. use only the sub-dataset that contains the subset of classes
2. use all images, and images with no ground-truth will count as true-negative images
:return:
self object with filtered information
"""
# filter images that do not have any of the specified classes
self.labels = [f[np.logical_and(f[:, 0] >= 0, f[:, 0] <= self.num_classes-1), :] for f in self.labels]
# find indices of images with ground-truth labels
gt_indices = [idx for idx, f in enumerate(self.labels) if not f.size == 0]
self.labels = [self.labels[idx] for idx in gt_indices]
self.image_set_index = [self.image_set_index[idx] for idx in gt_indices]
old_num_images = self.num_images
self.num_images = len(self.labels)
print ('filtering images with no gt-labels. can abort filtering using *true_negative* flag')
print ('... remaining {0}/{1} images. '.format(self.num_images, old_num_images))
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
def test_object_logical(self):
a = np.array([3, None, True, False, "test", ""], dtype=object)
assert_equal(np.logical_or(a, None),
np.array([x or None for x in a], dtype=object))
assert_equal(np.logical_or(a, True),
np.array([x or True for x in a], dtype=object))
assert_equal(np.logical_or(a, 12),
np.array([x or 12 for x in a], dtype=object))
assert_equal(np.logical_or(a, "blah"),
np.array([x or "blah" for x in a], dtype=object))
assert_equal(np.logical_and(a, None),
np.array([x and None for x in a], dtype=object))
assert_equal(np.logical_and(a, True),
np.array([x and True for x in a], dtype=object))
assert_equal(np.logical_and(a, 12),
np.array([x and 12 for x in a], dtype=object))
assert_equal(np.logical_and(a, "blah"),
np.array([x and "blah" for x in a], dtype=object))
assert_equal(np.logical_not(a),
np.array([not x for x in a], dtype=object))
assert_equal(np.logical_or.reduce(a), 3)
assert_equal(np.logical_and.reduce(a), None)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def _make_counts(emin, emax):
def _counts(field, data):
e = data["event_energy"].in_units("keV")
mask = np.logical_and(e >= emin, e < emax)
x = data["event_x"][mask]
y = data["event_y"][mask]
z = np.ones(x.shape)
pos = np.array([x,y,z]).transpose()
img = data.deposit(pos, method="count")
if data.has_field_parameter("sigma"):
sigma = data.get_field_parameter("sigma")
else:
sigma = None
if sigma is not None and sigma > 0.0:
kern = _astropy.conv.Gaussian2DKernel(stddev=sigma)
img[:,:,0] = _astropy.conv.convolve(img[:,:,0], kern)
return data.ds.arr(img, "counts/pixel")
return _counts
def test_particle_filter_dependency():
"""
Test dataset add_particle_filter which should automatically add
the dependency of the filter.
"""
@particle_filter(filtered_type='all', requires=['particle_type'])
def stars(pfilter, data):
filter = data[(pfilter.filtered_type, "particle_type")] == 2
return filter
@particle_filter(filtered_type='stars', requires=['creation_time'])
def young_stars(pfilter, data):
age = data.ds.current_time - data[pfilter.filtered_type, "creation_time"]
filter = np.logical_and(age.in_units('Myr') <= 5, age >= 0)
return filter
ds = yt.load(iso_galaxy)
ds.add_particle_filter('young_stars')
assert 'young_stars' in ds.particle_types
assert 'stars' in ds.particle_types
assert ('deposit', 'young_stars_cic') in ds.derived_field_list
assert ('deposit', 'stars_cic') in ds.derived_field_list
def bbox_filter(left, right, domain_width):
def myfilter(chunk, mask=None):
pos = np.array([chunk['x'], chunk['y'], chunk['z']]).T
# This hurts, but is useful for periodicity. Probably should check
# first if it is even needed for a given left/right
for i in range(3):
pos[:, i] = np.mod(pos[:, i] - left[i], domain_width[i]) + left[i]
# Now get all particles that are within the bbox
if mask is None:
mask = np.all(pos >= left, axis=1)
np.logical_and(mask, np.all(pos < right, axis=1), mask)
else:
np.logical_and(mask, np.all(pos >= left, axis=1), mask)
np.logical_and(mask, np.all(pos < right, axis=1), mask)
return mask
return myfilter
def get_transitions(states):
"""
Computes transitions given a state array
Args:
states : numpy array
States array of the form
...,4,1,1,...,1,2,2,...,2,3,3,....,3,4,...,4,1,...
Returns:
transitions : numpy array
Contains indices of all the transitions in the states array
"""
states = np.squeeze(states)
# Edge cases when starts in 1 and/or ends in 4
if states[0] == 1:
states = np.concatenate(([4], states))
if states[-1] == 4:
states = np.concatenate((states, [1]))
transitions = np.where(np.diff(states) != 0)[0] + 1
first = np.where(states == 1)[0][0]
last = np.where(states == 4)[0][-1] + 1
transitions = transitions[np.logical_and(transitions >= first, transitions <= last)]
return transitions
def get_transitions(states):
"""
Computes transitions given a state array
Args:
states : numpy array
States array of the form
...,4,1,1,...,1,2,2,...,2,3,3,....,3,4,...,4,1,...
Returns:
transitions : numpy array
Contains indices of all the transitions in the states array
"""
states = np.squeeze(states)
# Edge cases when starts in 1 and/or ends in 4
if states[0] == 1:
states = np.concatenate(([4], states))
if states[-1] == 4:
states = np.concatenate((states, [1]))
transitions = np.where(np.diff(states) != 0)[0] + 1
first = np.where(states == 1)[0][0]
last = np.where(states == 4)[0][-1] + 1
transitions = transitions[np.logical_and(transitions >= first, transitions <= last)]
return transitions
def _compute_count_purity(counts0, counts1):
""" Compute fraction of counts in putative single-cell GEMs
originating from the non-cell transcriptome """
gem_occupancy = MultiGenomeAnalysis._classify_gems(counts0, counts1)
frac0 = counts0.astype(float) / (counts0 + counts1).astype(float)
purity0 = frac0[gem_occupancy == cr_constants.GEM_CLASS_GENOME0]
purity1 = 1 - frac0[gem_occupancy == cr_constants.GEM_CLASS_GENOME1]
overall_purity = np.concatenate([purity0, purity1])
# Compute number of purity outliers
threshold0, threshold1 = 1.0, 1.0
fit_purity0 = purity0[np.logical_and(purity0 > 0, purity0 < 1)]
fit_purity1 = purity1[np.logical_and(purity1 > 0, purity1 < 1)]
if len(fit_purity0) > 1 and len(fit_purity1) > 1:
try:
alpha0, beta0, _, _ = scipy.stats.beta.fit(fit_purity0, floc=0, fscale=1)
alpha1, beta1, _, _ = scipy.stats.beta.fit(fit_purity1, floc=0, fscale=1)
threshold0 = scipy.stats.beta.ppf(cr_constants.COUNT_PURITY_OUTLIER_PROB_THRESHOLD, alpha0, beta0)
threshold1 = scipy.stats.beta.ppf(cr_constants.COUNT_PURITY_OUTLIER_PROB_THRESHOLD, alpha1, beta1)
except scipy.stats._continuous_distns.FitSolverError as e:
print >> sys.stderr, e
threshold0, threshold1 = 1.0, 1.0
except scipy.stats._continuous_distns.FitDataError as e:
print >> sys.stderr, e
threshold0, threshold1 = 1.0, 1.0
outlier0 = np.logical_and(gem_occupancy == cr_constants.GEM_CLASS_GENOME0,
frac0 < threshold0)
outlier1 = np.logical_and(gem_occupancy == cr_constants.GEM_CLASS_GENOME1,
(1-frac0) < threshold1)
n_outlier0 = sum(outlier0)
n_outlier1 = sum(outlier1)
frac_outlier0 = tk_stats.robust_divide(n_outlier0, len(purity0))
frac_outlier1 = tk_stats.robust_divide(n_outlier1, len(purity1))
is_outlier = np.logical_or(outlier0, outlier1).astype(int)
return (purity0.mean(), purity1.mean(), overall_purity.mean(),
n_outlier0, n_outlier1, frac_outlier0, frac_outlier1,
is_outlier)
def numpy_logical_and_list(list_of_logicals):
assert(len(list_of_logicals) >= 2)
output = list_of_logicals[0]
for i in range(1,len(list_of_logicals)):
output = np.logical_and(output, list_of_logicals[i])
return output
def clean_contour(in_contour, is_prob=False):
if is_prob:
pred = (in_contour >= 0.5).astype(np.float32)
else:
pred = in_contour
labels = measure.label(pred)
area = []
for l in range(1, np.amax(labels) + 1):
area.append(np.sum(labels == l))
out_contour = in_contour
out_contour[np.logical_and(labels > 0, labels != np.argmax(area) + 1)] = 0
return out_contour
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return (2. * intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + np.finfo('float').eps)
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return 2. * (intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + 2*np.finfo('float').eps)
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return 2. * (intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + 2*np.finfo('float').eps)
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return 2. * (intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + 2 * np.finfo('float').eps)
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return 2. * (intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + 2*np.finfo('float').eps)
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return 2. * intersection.sum() / (im1.sum() + im2.sum())
def dice(im1, im2):
"""
Computes the Dice coefficient, a measure of set similarity.
Parameters
----------
im1 : array-like, bool
Any array of arbitrary size. If not boolean, will be converted.
im2 : array-like, bool
Any other array of identical size. If not boolean, will be converted.
Returns
-------
dice : float
Dice coefficient as a float on range [0,1].
Maximum similarity = 1
No similarity = 0
Notes
-----
The order of inputs for `dice` is irrelevant. The result will be
identical if `im1` and `im2` are switched.
"""
im1 = np.asarray(im1).astype(np.bool)
im2 = np.asarray(im2).astype(np.bool)
if im1.shape != im2.shape:
raise ValueError("Shape mismatch: im1 and im2 must have the same shape.")
# Compute Dice coefficient
intersection = np.logical_and(im1, im2)
return (2. * intersection.sum() + np.finfo('float').eps) / (im1.sum() + im2.sum() + np.finfo('float').eps)
def __indexs_select_pk2(self,pk2_roi_pos):
x_min = pk2_roi_pos[:,0].min()
x_max = pk2_roi_pos[:,0].max()
y_min = pk2_roi_pos[:,1].min()
y_max = pk2_roi_pos[:,1].max()
pca_1,pca_2 = self.PCAusedList.currentText().split("-")
pca_1 = np.int(pca_1)-1
pca_2 = np.int(pca_2)-1
x = np.logical_and(self.wavePCAs[:,pca_1]>x_min, \
self.wavePCAs[:,pca_1]<x_max)
y = np.logical_and(self.wavePCAs[:,pca_2]>y_min, \
self.wavePCAs[:,pca_2]<y_max)
ind_0 = np.logical_and(x, y)
ind_0 = np.where(ind_0 == True)[0]
ind_0 = np.array(ind_0,dtype=np.int32)
if ind_0.shape[0]>0:
segments = []
for i in range(pk2_roi_pos.shape[0]-1):
segments.append([pk2_roi_pos[i],pk2_roi_pos[i+1]])
segments.append([pk2_roi_pos[-1],pk2_roi_pos[0]])
segments = np.array(segments)
temp_pcas = self.wavePCAs[ind_0]
temp_pcas = temp_pcas[:,[pca_1,pca_2]]
is_intersect = np.apply_along_axis(self.__intersect_roi2,1,temp_pcas,segments,pca_1)
return ind_0[is_intersect]
else:
return np.array([],dtype=np.int32)
def __indexs_select_pk2(self,pk2_roi_pos):
x_min = pk2_roi_pos[:,0].min()
x_max = pk2_roi_pos[:,0].max()
y_min = pk2_roi_pos[:,1].min()
y_max = pk2_roi_pos[:,1].max()
pca_1,pca_2 = self.PCAusedList.currentText().split("-")
pca_1 = np.int(pca_1)-1
pca_2 = np.int(pca_2)-1
x = np.logical_and(self.wavePCAs[:,pca_1]>x_min, \
self.wavePCAs[:,pca_1]<x_max)
y = np.logical_and(self.wavePCAs[:,pca_2]>y_min, \
self.wavePCAs[:,pca_2]<y_max)
ind_0 = np.logical_and(x, y)
ind_0 = np.where(ind_0 == True)[0]
ind_0 = np.array(ind_0,dtype=np.int32)
if ind_0.shape[0]>0:
segments = []
for i in range(pk2_roi_pos.shape[0]-1):
segments.append([pk2_roi_pos[i],pk2_roi_pos[i+1]])
segments.append([pk2_roi_pos[-1],pk2_roi_pos[0]])
segments = np.array(segments)
temp_pcas = self.wavePCAs[ind_0]
temp_pcas = temp_pcas[:,[pca_1,pca_2]]
is_intersect = np.apply_along_axis(self.__intersect_roi2,1,temp_pcas,segments,pca_1)
return ind_0[is_intersect]
else:
return np.array([],dtype=np.int32)