Python numpy 模块,frombuffer() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.frombuffer()。
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def test_tile_symmetry(self):
'''
Make sure that tiles are symmetric
'''
upload_file = open('data/Dixon2012-J1-NcoI-R1-filtered.100kb.multires.cool', 'rb')
tileset = tm.Tileset.objects.create(
datafile=dcfu.SimpleUploadedFile(upload_file.name, upload_file.read()),
filetype='cooler',
datatype='matrix',
owner=self.user1,
uuid='aa')
ret = self.client.get('/api/v1/tiles/?d=aa.0.0.0')
contents = json.loads(ret.content.decode('utf-8'))
import base64
r = base64.decodestring(contents['aa.0.0.0']['dense'].encode('utf-8'))
q = np.frombuffer(r, dtype=np.float16)
q = q.reshape((256,256))
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def unpack_packet(stream,vertex_type,size):
# The entire packet is read into memory at once for speed
packet = stream.read(size)
primitives = []
i = 0
while i < size:
opcode = packet[i]
if opcode == 0x00:
i += 1
continue
primitive_type = gx.PrimitiveType(opcode)
vertex_count = uint16.unpack_from(packet,i + 1)
vertices = numpy.frombuffer(packet,vertex_type,vertex_count,i + 3)
primitives.append(Primitive(primitive_type,vertices))
i += 3 + vertex_count*vertex_type.itemsize
return primitives
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None):
"""
Return list of bytes contained
in the specified set of blocks.
NB : load all data as files cannot exceed 4Gb
find later other solutions to spare memory.
"""
chunks = list()
raw = ''
# keep only data blocks having
# a size greater than zero
blocks = [k for k in data_blocks if k.size > 0]
for data_block in blocks :
self.file.seek(data_block.start)
raw = self.file.read(data_block.size)[0:expected_size]
databytes = np.frombuffer(raw, dtype=dtype)
chunks.append(databytes)
# concatenate all chunks and return
# the specified slice
if len(chunks)>0 :
databytes = np.concatenate(chunks)
return databytes[start:end]
else :
return np.array([])
def load_channel_data(self, ep, ch):
"""
Return a numpy array containing the
list of bytes corresponding to the
specified episode and channel.
"""
#memorise the sample size and symbol
sample_size = self.sample_size(ep, ch)
sample_symbol = self.sample_symbol(ep, ch)
#create a bit mask to define which
#sample to keep from the file
bit_mask = self.create_bit_mask(ep, ch)
#load all bytes contained in an episode
data_blocks = self.get_data_blocks(ep)
databytes = self.load_bytes(data_blocks)
raw = self.filter_bytes(databytes, bit_mask)
#reshape bytes from the sample size
dt = np.dtype(numpy_map[sample_symbol])
dt.newbyteorder('<')
return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
def load_bytes(self, data_blocks, dtype='<i1', start=None, end=None, expected_size=None):
"""
Return list of bytes contained
in the specified set of blocks.
NB : load all data as files cannot exceed 4Gb
find later other solutions to spare memory.
"""
chunks = list()
raw = ''
# keep only data blocks having
# a size greater than zero
blocks = [k for k in data_blocks if k.size > 0]
for data_block in blocks :
self.file.seek(data_block.start)
raw = self.file.read(data_block.size)[0:expected_size]
databytes = np.frombuffer(raw, dtype=dtype)
chunks.append(databytes)
# concatenate all chunks and return
# the specified slice
if len(chunks)>0 :
databytes = np.concatenate(chunks)
return databytes[start:end]
else :
return np.array([])
def load_channel_data(self, ep, ch):
"""
Return a numpy array containing the
list of bytes corresponding to the
specified episode and channel.
"""
#memorise the sample size and symbol
sample_size = self.sample_size(ep, ch)
sample_symbol = self.sample_symbol(ep, ch)
#create a bit mask to define which
#sample to keep from the file
bit_mask = self.create_bit_mask(ep, ch)
#load all bytes contained in an episode
data_blocks = self.get_data_blocks(ep)
databytes = self.load_bytes(data_blocks)
raw = self.filter_bytes(databytes, bit_mask)
#reshape bytes from the sample size
dt = np.dtype(numpy_map[sample_symbol])
dt.newbyteorder('<')
return np.frombuffer(raw.reshape([len(raw) / sample_size, sample_size]), dt)
def load_encoded_spikes(self, episode, evt_channel, identifier):
"""
Return times stored as a 4-bytes integer
in the specified spike channel.
NB: it is meant for Blackrock-type, having an additional byte for each event time as spike sorting label.
These additiona bytes are appended trailing the times.
"""
# to load the requested spikes for the specified episode and event channel:
# get all the elphy blocks having as identifier 'RSPK' (or whatever)
all_rspk_blocks = [k for k in self.blocks if k.identifier == identifier]
rspk_block = all_rspk_blocks[episode-1]
# RDATA(h?dI) REVT(NbVeV:I, NbEv:256I ... spike data are 4byte integers
rspk_header = 4*( rspk_block.size - rspk_block.data_size-2 + len(rspk_block.n_events))
pre_events = np.sum(rspk_block.n_events[0:evt_channel-1], dtype=int, axis=0)
# the real start is after header, preceeding events (which are 4byte) and preceeding labels (1byte)
start = rspk_header + (4*pre_events) + pre_events
end = start + 4*rspk_block.n_events[evt_channel-1]
raw = self.load_bytes( [rspk_block], dtype='<i1', start=start, end=end, expected_size=rspk_block.size )
# re-encoding after reading byte by byte
res = np.frombuffer(raw[0:(4*rspk_block.n_events[evt_channel-1])], dtype='<i4')
res.sort() # sometimes timings are not sorted
#print "load_encoded_data() - spikes:",res
return res
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
log = logger.get()
log.info('Extracting {}'.format(filename))
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
log = logger.get()
log.info('Extracting {}'.format(filename))
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
def read_pgm(filename, byteorder='>'):
"""Return image data from a raw PGM file as numpy array.
Format specification: http://netpbm.sourceforge.net/doc/pgm.html
"""
with open(filename, 'rb') as f:
buffer = f.read()
try:
header, width, height, maxval = re.search(
b"(^P5\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", buffer).groups()
except AttributeError:
raise ValueError("Not a raw PGM file: '%s'" % filename)
return np.frombuffer(buffer,
dtype='u1' if int(maxval) < 256 else byteorder + 'u2',
count=int(width) * int(height),
offset=len(header)
).reshape((int(height), int(width)))
def extract_images(filename, verbose=True):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
if verbose:
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def test_buffer_numpy(self):
"""test non-copying numpy array messages"""
try:
import numpy
except ImportError:
raise SkipTest("numpy required")
rand = numpy.random.randint
shapes = [ rand(2,16) for i in range(5) ]
for i in range(1,len(shapes)+1):
shape = shapes[:i]
A = numpy.random.random(shape)
m = zmq.Frame(A)
if view.__name__ == 'buffer':
self.assertEqual(A.data, m.buffer)
B = numpy.frombuffer(m.buffer,dtype=A.dtype).reshape(A.shape)
else:
self.assertEqual(memoryview(A), m.buffer)
B = numpy.array(m.buffer,dtype=A.dtype).reshape(A.shape)
self.assertEqual((A==B).all(), True)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with tf.gfile.Open(filename, 'rb') as f, gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def pickle_transitions_matrix_data():
transitions = pickle.load( open( "/ssd/ddimitrov/pickle/transitions", "rb" ) )
vocab = pickle.load( open( "/ssd/ddimitrov/pickle/vocab", "rb" ) )
i_indices = array.array(str("l"))
j_indices = array.array(str("l"))
values = array.array(str("d"))
for s, targets in transitions.iteritems():
for t, v in targets.iteritems():
i_indices.append(vocab[s])
j_indices.append(vocab[t])
values.append(v)
i_indices = np.frombuffer(i_indices, dtype=np.int_)
j_indices = np.frombuffer(j_indices, dtype=np.int_)
values = np.frombuffer(values, dtype=np.float64)
transition_matrix=[i_indices,j_indices,values]
pickle.dump(transition_matrix, open("/ssd/ddimitrov/pickle/transition_matrix", "wb"), protocol=pickle.HIGHEST_PROTOCOL)
print "transition_matrix"
def _read_datafile(self, path, expected_dims):
"""Helper function to read a file in IDX format."""
base_magic_num = 2048
with gzip.GzipFile(path) as f:
magic_num = struct.unpack('>I', f.read(4))[0]
expected_magic_num = base_magic_num + expected_dims
if magic_num != expected_magic_num:
raise ValueError('Incorrect MNIST magic number (expected '
'{}, got {})'
.format(expected_magic_num, magic_num))
dims = struct.unpack('>' + 'I' * expected_dims,
f.read(4 * expected_dims))
buf = f.read(reduce(operator.mul, dims))
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(*dims)
return data
def _ungzip(save_path, extract_path, database_name, _):
"""
Unzip a gzip file and extract it to extract_path
:param save_path: The path of the gzip files
:param extract_path: The location to extract the data to
:param database_name: Name of database
:param _: HACK - Used to have to same interface as _unzip
"""
# Get data from save_path
with open(save_path, 'rb') as f:
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number {} in file: {}'.format(magic, f.name))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols)
# Save data to extract_path
for image_i, image in enumerate(
tqdm(data, unit='File', unit_scale=True, miniters=1, desc='Extracting {}'.format(database_name))):
Image.fromarray(image, 'L').save(os.path.join(extract_path, 'image_{}.jpg'.format(image_i)))
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def receive_data(self, channel, oc):
# push data from a socket into an OutputConnector (oc)
self.last_timestamp = datetime.datetime.now()
# wire format is just: [size, buffer...]
sock = self._chan_to_rsocket[channel]
# TODO receive 4 or 8 bytes depending on sizeof(size_t)
msg = sock.recv(8)
# reinterpret as int (size_t)
msg_size = struct.unpack('n', msg)[0]
buf = sock.recv(msg_size, socket.MSG_WAITALL)
if len(buf) != msg_size:
logger.error("Channel %s socket msg shorter than expected" % channel.channel)
logger.error("Expected %s bytes, received %s bytes" % (msg_size, len(buf)))
# assume that we cannot recover, so stop listening.
loop = asyncio.get_event_loop()
loop.remove_reader(sock)
return
data = np.frombuffer(buf, dtype=channel.dtype)
asyncio.ensure_future(oc.push(data))
def receive_data(self, channel, oc):
# push data from a socket into an OutputConnector (oc)
self.last_timestamp = datetime.datetime.now()
self.fetch_count += 1
# wire format is just: [size, buffer...]
sock = self._chan_to_rsocket[channel]
# TODO receive 4 or 8 bytes depending on sizeof(size_t)
msg = sock.recv(8)
# reinterpret as int (size_t)
msg_size = struct.unpack('n', msg)[0]
buf = sock.recv(msg_size, socket.MSG_WAITALL)
if len(buf) != msg_size:
logger.error("Channel %s socket msg shorter than expected" % channel.channel)
logger.error("Expected %s bytes, received %s bytes" % (msg_size, len(buf)))
# assume that we cannot recover, so stop listening.
loop = asyncio.get_event_loop()
loop.remove_reader(sock)
return
data = np.frombuffer(buf, dtype=np.float32)
asyncio.ensure_future(oc.push(data))
def loop(self):
while self.running:
evts = dict(self.poller.poll(50))
if self.socket in evts and evts[self.socket] == zmq.POLLIN:
msg = self.socket.recv_multipart()
msg_type = msg[0].decode()
name = msg[1].decode()
if msg_type == "done":
self.finished.emit(True)
elif msg_type == "data":
result = [name]
# How many pairs of metadata and data are there?
num_arrays = int((len(msg) - 2)/2)
for i in range(num_arrays):
md, data = msg[2+2*i:4+2*i]
md = json.loads(md.decode())
A = np.frombuffer(data, dtype=md['dtype'])
result.append(A)
self.message.emit(tuple(result))
self.socket.close()
def _reads(self, addr, length):
if length > 65535:
length = 65535
self.logger.warning("Maximum read-length is %d", length)
header = b'r' + bytes(bytearray([0,
length & 0xFF, (length >> 8) & 0xFF,
addr & 0xFF, (addr >> 8) & 0xFF, (addr >> 16) & 0xFF, (addr >> 24) & 0xFF]))
self.socket.send(header)
data = self.socket.recv(length * 4 + 8)
while (len(data) < length * 4 + 8):
data += self.socket.recv(length * 4 - len(data) + 8)
if data[:8] == header: # check for in-sync transmission
return np.frombuffer(data[8:], dtype=np.uint32)
else: # error handling
self.logger.error("Wrong control sequence from server: %s", data[:8])
self.emptybuffer()
return None
def read(self):
"""Return audio file as array of integer.
Returns:
audio_data: np.ndarray, shape of (frame_num,)
"""
# Read wav file
with wave.open(self.file_path, "r") as wav:
# Move to head of the audio file
wav.rewind()
self.frame_num = wav.getnframes()
self.sampling_rate = wav.getframerate() # 16,000 Hz
self.channels = wav.getnchannels()
self.sample_size = wav.getsampwidth() # 2
# Read to buffer as binary format
buf = wav.readframes(self.frame_num)
if self.channels == 1:
audio_data = np.frombuffer(buf, dtype="int16")
elif self.channels == 2:
audio_data = np.frombuffer(buf, dtype="int32")
return audio_data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def make_array(shape=(1,), dtype=np.float32, shared=False, fill_val=None):
np_type_to_ctype = {np.float32: ctypes.c_float,
np.float64: ctypes.c_double,
np.bool: ctypes.c_bool,
np.uint8: ctypes.c_ubyte,
np.uint64: ctypes.c_ulonglong}
if not shared:
np_arr = np.empty(shape, dtype=dtype)
else:
numel = np.prod(shape)
arr_ctypes = sharedctypes.RawArray(np_type_to_ctype[dtype], numel)
np_arr = np.frombuffer(arr_ctypes, dtype=dtype, count=numel)
np_arr.shape = shape
if not fill_val is None:
np_arr[...] = fill_val
return np_arr
def __call__(self, bytez):
output = np.zeros((16, 16), dtype=np.int)
a = np.frombuffer(bytez, dtype=np.uint8)
if a.shape[0] < self.window:
Hbin, c = self._entropy_bin_counts(a)
output[Hbin, :] += c
else:
# strided trick from here: http://www.rigtorp.se/2011/01/01/rolling-statistics-numpy.html
shape = a.shape[:-1] + (a.shape[-1] - self.window + 1, self.window)
strides = a.strides + (a.strides[-1],)
blocks = np.lib.stride_tricks.as_strided(
a, shape=shape, strides=strides)[::self.step, :]
# from the blocks, compute histogram
for block in blocks:
Hbin, c = self._entropy_bin_counts(block)
output[Hbin, :] += c
return output.flatten().astype(self.dtype)
def _unpack_ndarray(cls, buf, offset):
dtype, offset = cls._unpack_string(buf, offset)
shape_len = unpack_from("I", buf, offset)[0]
offset += 4
shape = []
for i in range(0, shape_len):
item = unpack_from("I", buf, offset)[0]
offset += 4
shape.append(item)
reslen = unpack_from("I", buf, offset)[0]
offset += 4
res = np.frombuffer(buf[offset:offset+reslen], dtype=np.dtype(dtype))
res = res.reshape(shape)
offset += reslen
return res, offset
def _extract_images(filename, num_images):
"""Extract the images into a numpy array.
Args:
filename: The path to an MNIST images file.
num_images: The number of images in the file.
Returns:
A numpy array of shape [number_of_images, height, width, channels].
"""
print('Extracting images from: ', filename)
with gzip.open(filename) as bytestream:
bytestream.read(16)
buf = bytestream.read(
_IMAGE_SIZE * _IMAGE_SIZE * num_images * _NUM_CHANNELS)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, _IMAGE_SIZE, _IMAGE_SIZE, _NUM_CHANNELS)
return data
def _extract_labels(filename, num_labels):
"""Extract the labels into a vector of int64 label IDs.
Args:
filename: The path to an MNIST labels file.
num_labels: The number of labels in the file.
Returns:
A numpy array of shape [number_of_labels]
"""
print('Extracting labels from: ', filename)
with gzip.open(filename) as bytestream:
bytestream.read(8)
buf = bytestream.read(1 * num_labels)
labels = np.frombuffer(buf, dtype=np.uint8).astype(np.int64)
return labels
def read_pgm(filename, byteorder='>'):
"""Return image data from a raw PGM file as numpy array.
Format specification: http://netpbm.sourceforge.net/doc/pgm.html
"""
with open(filename, 'rb') as f:
buffer = f.read()
try:
header, width, height, maxval = re.search(
b"(^P5\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n])*"
b"(\d+)\s(?:\s*#.*[\r\n]\s)*)", buffer).groups()
except AttributeError:
raise ValueError("Not a raw PGM file: '%s'" % filename)
return np.frombuffer(buffer,
dtype='u1' if int(maxval) < 256 else byteorder+'u2',
count=int(width)*int(height),
offset=len(header)
).reshape((int(height), int(width)))
def mpraw_as_np(shape, dtype):
"""Construct a numpy array of the specified shape and dtype for which the
underlying storage is a multiprocessing RawArray in shared memory.
Parameters
----------
shape : tuple
Shape of numpy array
dtype : data-type
Data type of array
Returns
-------
arr : ndarray
Numpy array
"""
sz = int(np.product(shape))
csz = sz * np.dtype(dtype).itemsize
raw = mp.RawArray('c', csz)
return np.frombuffer(raw, dtype=dtype, count=sz).reshape(shape)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def native_to_builtin(value, native_type, data_count):
'''Convert from a native EPICS DBR type to a builtin Python type
Notes:
- A waveform of characters is just a bytestring.
- A waveform of strings is an array whose elements are fixed-length (40-
character) strings.
- Enums are just integers that happen to have special significance.
- Everything else is, straightforwardly, an array of numbers.
'''
if USE_NUMPY:
# Return an ndarray
dt = _numpy_map[native_type]
if native_type == ChannelType.STRING and len(value) < MAX_STRING_SIZE:
# caput behaves this way
return numpy.frombuffer(
bytes(value).ljust(MAX_STRING_SIZE, b'\x00'), dtype=dt)
return numpy.frombuffer(value, dtype=dt)
else:
# TODO
raise NotImplementedError("the non-numpy version has not been "
"written yet")
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting %s' % filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def test_history_recording_simple_model(self):
"""Test that history in memory matches with that recorded for test one-dimensional model."""
self.param, self.like = onedmodel()
model = Model(self.like, self.param)
step = Dream(model=model, model_name='test_history_recording')
history_arr = mp.Array('d', [0]*4*step.total_var_dimension)
n = mp.Value('i', 0)
nchains = mp.Value('i', 3)
pydream.Dream_shared_vars.history = history_arr
pydream.Dream_shared_vars.count = n
pydream.Dream_shared_vars.nchains = nchains
test_history = np.array([[1], [3], [5], [7]])
for chainpoint in test_history:
for point in chainpoint:
step.record_history(nseedchains=0, ndimensions=step.total_var_dimension, q_new=point, len_history=len(history_arr))
history_arr_np = np.frombuffer(pydream.Dream_shared_vars.history.get_obj())
history_arr_np_reshaped = history_arr_np.reshape(np.shape(test_history))
self.assertIs(np.array_equal(history_arr_np_reshaped, test_history), True)
remove('test_history_recording_DREAM_chain_history.npy')
remove('test_history_recording_DREAM_chain_adapted_crossoverprob.npy')
remove('test_history_recording_DREAM_chain_adapted_gammalevelprob.npy')
def test_history_recording_multidim_model(self):
"""Test that history in memory matches with that recorded for test multi-dimensional model."""
self.param, self.like = multidmodel()
model = Model(self.like, self.param)
dream = Dream(model=model, model_name='test_history_recording')
history_arr = mp.Array('d', [0]*4*dream.total_var_dimension*3)
n = mp.Value('i', 0)
nchains = mp.Value('i', 3)
pydream.Dream_shared_vars.history = history_arr
pydream.Dream_shared_vars.count = n
pydream.Dream_shared_vars.nchains = nchains
test_history = np.array([[[1, 2, 3, 4], [3, 4, 5, 6], [5, 6, 7, 8]], [[7, 8, 9, 10], [9, 12, 18, 20], [11, 14, 18, 8]], [[13, 14, 18, 4], [15, 17, 11, 8], [17, 28, 50, 4]], [[19, 21, 1, 18], [21, 19, 19, 11], [23, 4, 3, 2]]])
for chainpoint in test_history:
for point in chainpoint:
dream.record_history(nseedchains=0, ndimensions=dream.total_var_dimension, q_new=point, len_history=len(history_arr))
history_arr_np = np.frombuffer(pydream.Dream_shared_vars.history.get_obj())
history_arr_np_reshaped = history_arr_np.reshape(np.shape(test_history))
self.assertIs(np.array_equal(history_arr_np_reshaped, test_history), True)
remove('test_history_recording_DREAM_chain_history.npy')
remove('test_history_recording_DREAM_chain_adapted_crossoverprob.npy')
remove('test_history_recording_DREAM_chain_adapted_gammalevelprob.npy')
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)
def decode_raw(bytestring, shape=(64,64,64), dtype=np.uint32):
return np.frombuffer(bytestring, dtype=dtype).reshape(shape[::-1]).T
def capture(self, initial_sleep=0.01, poll=0.01, buffer_=None,
filename=None):
"""Capture a still image. Type :class:`numpy.ndarray`."""
self.start_exposure()
if initial_sleep:
time.sleep(initial_sleep)
while self.get_exposure_status() == ASI_EXP_WORKING:
if poll:
time.sleep(poll)
pass
status = self.get_exposure_status()
if status != ASI_EXP_SUCCESS:
raise ZWO_CaptureError('Could not capture image', status)
data = self.get_data_after_exposure(buffer_)
whbi = self.get_roi_format()
shape = [whbi[1], whbi[0]]
if whbi[3] == ASI_IMG_RAW8 or whbi[3] == ASI_IMG_Y8:
img = np.frombuffer(data, dtype=np.uint8)
elif whbi[3] == ASI_IMG_RAW16:
img = np.frombuffer(data, dtype=np.uint16)
elif whbi[3] == ASI_IMG_RGB24:
img = np.frombuffer(data, dtype=np.uint8)
shape.append(3)
else:
raise ValueError('Unsupported image type')
img = img.reshape(shape)
if filename is not None:
from PIL import Image
mode = None
if len(img.shape) == 3:
img = img[:, :, ::-1] # Convert BGR to RGB
if whbi[3] == ASI_IMG_RAW16:
mode = 'I;16'
image = Image.fromarray(img, mode=mode)
image.save(filename)
logger.debug('wrote %s', filename)
return img
def capture_video_frame(self, buffer_=None, filename=None, timeout=None):
"""Capture a single frame from video. Type :class:`numpy.ndarray`.
Video mode must have been started previously otherwise a :class:`ZWO_Error` will be raised. A new buffer
will be used to store the image unless one has been supplied with the `buffer` keyword argument.
If `filename` is not ``None`` the image is saved using :py:meth:`PIL.Image.Image.save()`.
:func:`capture_video_frame()` will wait indefinitely unless a `timeout` has been given.
The SDK suggests that the `timeout` value, in milliseconds, should be twice the exposure plus 500 ms."""
data = self.get_video_data(buffer_=buffer_, timeout=timeout)
whbi = self.get_roi_format()
shape = [whbi[1], whbi[0]]
if whbi[3] == ASI_IMG_RAW8 or whbi[3] == ASI_IMG_Y8:
img = np.frombuffer(data, dtype=np.uint8)
elif whbi[3] == ASI_IMG_RAW16:
img = np.frombuffer(data, dtype=np.uint16)
elif whbi[3] == ASI_IMG_RGB24:
img = np.frombuffer(data, dtype=np.uint8)
shape.append(3)
else:
raise ValueError('Unsupported image type')
img = img.reshape(shape)
if filename is not None:
from PIL import Image
mode = None
if len(img.shape) == 3:
img = img[:, :, ::-1] # Convert BGR to RGB
if whbi[3] == ASI_IMG_RAW16:
mode = 'I;16'
image = Image.fromarray(img, mode=mode)
image.save(filename)
logger.debug('wrote %s', filename)
return img
def __init__(self, buf, offset = 0, idmap = None, idmap_size = 1024):
if idmap is None:
idmap = Cache(idmap_size)
self.offset = offset
if offset != 0:
self.buf = buf = buffer(buf, offset)
else:
self.buf = buf
self.total_size, self.index_offset, self.index_elements = self._Header.unpack_from(buf, 0)
self.index = numpy.frombuffer(buf,
offset = self.index_offset,
dtype = numpy.uint64,
count = self.index_elements)
self.idmap = idmap
if self.index_elements > 0 and self.index[0] >= (self._Header.size + self._NewHeader.size):
# New version, most likely
self.version, min_reader_version, self.schema_offset, self.schema_size = self._NewHeader.unpack_from(
buf, self._Header.size)
if self._CURRENT_VERSION < min_reader_version:
raise ValueError((
"Incompatible buffer, this buffer needs a reader with support for version %d at least, "
"this reader supports up to version %d") % (
min_reader_version,
self._CURRENT_VERSION
))
if self.schema_offset and self.schema_size:
if self.schema_offset > len(buf) or (self.schema_size + self.schema_offset) > len(buf):
raise ValueError("Corrupted input - bad schema location")
stored_schema = cPickle.loads(bytes(buffer(buf, self.schema_offset, self.schema_size)))
if not isinstance(stored_schema, Schema):
raise ValueError("Corrupted input - unrecognizable schema")
if self.schema is None or not self.schema.compatible(stored_schema):
self.schema = stored_schema
elif self.schema is None:
raise ValueError("Cannot map schema-less buffer without specifying schema")
elif self.index_elements > 0:
raise ValueError("Cannot reliably map version-0 buffers")
def imageToArray(img, copy=False, transpose=True):
"""
Convert a QImage into numpy array. The image must have format RGB32, ARGB32, or ARGB32_Premultiplied.
By default, the image is not copied; changes made to the array will appear in the QImage as well (beware: if
the QImage is collected before the array, there may be trouble).
The array will have shape (width, height, (b,g,r,a)).
"""
fmt = img.format()
ptr = img.bits()
if USE_PYSIDE:
arr = np.frombuffer(ptr, dtype=np.ubyte)
else:
ptr.setsize(img.byteCount())
arr = np.asarray(ptr)
if img.byteCount() != arr.size * arr.itemsize:
# Required for Python 2.6, PyQt 4.10
# If this works on all platforms, then there is no need to use np.asarray..
arr = np.frombuffer(ptr, np.ubyte, img.byteCount())
arr = arr.reshape(img.height(), img.width(), 4)
if fmt == img.Format_RGB32:
arr[...,3] = 255
if copy:
arr = arr.copy()
if transpose:
return arr.transpose((1,0,2))
else:
return arr