Python numpy 模块,size() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.size()。
def __imul__(self, factor):
"""define ``self *= factor``.
As a shortcut for::
self = self.__imul__(factor)
"""
try:
if factor == 1:
return self
except: pass
try:
if (np.size(factor) == np.size(self.scaling) and
all(factor == 1)):
return self
except: pass
if self.is_identity and np.size(self.scaling) == 1:
self.scaling = np.ones(np.size(factor))
self.is_identity = False
self.scaling *= factor
self.dim = np.size(self.scaling)
return self
def fixed_label_diversity(model, config,step=''):
sample_dir=make_sample_dir(model)
str_step=str(step) or guess_model_step(model)
N=64#per image
n_combo=5#n label combinations
#0,1 label combinations
fixed_labels=model.attr.sample(n_combo)[model.cc.node_names]
size=infer_grid_image_shape(N)
for j, fx_label in enumerate(fixed_labels.values):
fx_label=np.reshape(fx_label,[1,-1])
fx_label=np.tile(fx_label,[N,1])
do_dict={model.cc.labels: fx_label}
images, feed_dict= sample(model, do_dict=do_dict)
fx_file=os.path.join(sample_dir, str_step+'fxlab'+str(j)+'.pdf')
save_figure_images(model.model_type,images['G'],fx_file,size=size)
#which image is what label
fixed_labels=fixed_labels.reset_index(drop=True)
fixed_labels.to_csv(os.path.join(sample_dir,str_step+'fxlab'+'.csv'))
def unscentedTransform(X, Wm, Wc, f):
Y = None
Ymean = None
fdim = None
N = np.shape(X)[1]
for j in range(0,N):
fImage = f(X[:,j])
if Y is None:
fdim = np.size(fImage)
Y = np.zeros((fdim, np.shape(X)[1]))
Ymean = np.zeros(fdim)
Y[:,j] = fImage
Ymean += Wm[j] * Y[:,j]
Ycov = np.zeros((fdim, fdim))
for j in range(0, N):
meanAdjustedYj = Y[:,j] - Ymean
Ycov += np.outer(Wc[j] * meanAdjustedYj, meanAdjustedYj)
return Y, Ymean, Ycov
def nufft_T(N, J, K, alpha, beta):
'''
equation (29) and (26)Fessler's paper
create the overlapping matrix CSSC (diagonal dominent matrix)
of J points
and then find out the pseudo-inverse of CSSC '''
# import scipy.linalg
L = numpy.size(alpha) - 1
# print('L = ', L, 'J = ',J, 'a b', alpha,beta )
cssc = numpy.zeros((J, J))
[j1, j2] = numpy.mgrid[1:J + 1, 1:J + 1]
overlapping_mat = j2 - j1
for l1 in range(-L, L + 1):
for l2 in range(-L, L + 1):
alf1 = alpha[abs(l1)]
# if l1 < 0: alf1 = numpy.conj(alf1)
alf2 = alpha[abs(l2)]
# if l2 < 0: alf2 = numpy.conj(alf2)
tmp = overlapping_mat + beta * (l1 - l2)
tmp = dirichlet(1.0 * tmp / (1.0 * K / N))
cssc = cssc + alf1 * numpy.conj(alf2) * tmp
return mat_inv(cssc)
def nufft_r(om, N, J, K, alpha, beta):
'''
equation (30) of Fessler's paper
'''
M = numpy.size(om) # 1D size
gam = 2.0 * numpy.pi / (K * 1.0)
nufft_offset0 = nufft_offset(om, J, K) # om/gam - nufft_offset , [M,1]
dk = 1.0 * om / gam - nufft_offset0 # om/gam - nufft_offset , [M,1]
arg = outer_sum(-numpy.arange(1, J + 1) * 1.0, dk)
L = numpy.size(alpha) - 1
# print('alpha',alpha)
rr = numpy.zeros((J, M), dtype=numpy.float32)
rr = iterate_l1(L, alpha, arg, beta, K, N, rr)
return (rr, arg)
def test_multidimension():
for ndims in range(1, 6):
Nd= ()
Kd=()
Jd=()
om = numpy.random.randn(2,ndims)
for pp in range(0, ndims):
Nd += (128,)
Kd += (256,)
Jd += (4,)
# Nd =tuple([slice(0, 16) for ss in range(0, ndims)]) # image size
# print('setting image dimension Nd...', Nd)
# Kd = tuple([slice(0, 32) for ss in range(0, ndims)]) # k-space size
# print('setting spectrum dimension Kd...', Kd)
# Jd = tuple([slice(0, 6) for ss in range(0, ndims)]) # interpolation size
# print('setting interpolation size Jd...', Jd)
NufftObj = NUFFT()
NufftObj.plan(om, Nd, Kd, Jd)
print(ndims,'-dimensional NUFFT created!')
# y = NufftObj.forward(image)
def nufft_T(N, J, K, alpha, beta):
'''
The Equation (29) and (26) in Fessler and Sutton 2003.
Create the overlapping matrix CSSC (diagonal dominent matrix)
of J points and find out the pseudo-inverse of CSSC '''
# import scipy.linalg
L = numpy.size(alpha) - 1
# print('L = ', L, 'J = ',J, 'a b', alpha,beta )
cssc = numpy.zeros((J, J))
[j1, j2] = numpy.mgrid[1:J + 1, 1:J + 1]
overlapping_mat = j2 - j1
for l1 in range(-L, L + 1):
for l2 in range(-L, L + 1):
alf1 = alpha[abs(l1)]
# if l1 < 0: alf1 = numpy.conj(alf1)
alf2 = alpha[abs(l2)]
# if l2 < 0: alf2 = numpy.conj(alf2)
tmp = overlapping_mat + beta * (l1 - l2)
tmp = dirichlet(1.0 * tmp / (1.0 * K / N))
cssc = cssc + alf1 * alf2 * tmp
return mat_inv(cssc)
def computePolarVecs(self,karg=False):
N = len(self.times)
L = np.reshape(self.L,(3,N))
if karg is False:
A = self.computeRotMatrix()
elif np.size(karg) is 3:
A = self.computeRotMatrix(karg)
elif np.size(karg) is 9:
A = karg
q = np.zeros((6,N))
for pp in range(0,N):
Lpp = np.diag(L[:,pp])
p = np.dot(A,np.dot(Lpp,A.T))
q[:,pp] = np.r_[p[:,0],p[[1,2],1],p[2,2]]
return q
def computeMisfit(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
Phi = np.dot(v.T,v)
return Phi/N
def computeVecFcn(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
return v
def computeMisfit(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
Phi = np.dot(v.T,v)
return Phi/N
def computeVecFcn(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
return v
def get_dobs_dunc(self,dpre,FloorVal,Pct):
# Floor is a fraction of the largest amplitude anomaly for the earliest time channel
M = np.shape(dpre)[0]
# Floor = np.zeros(np.shape(dpre))
# Floor[0:M:3,:] = FloorVal*np.max(np.abs(dpre[0:M:3,:]))
# Floor[1:M:3,:] = FloorVal*np.max(np.abs(dpre[1:M:3,:]))
# Floor[2:M:3,:] = FloorVal*np.max(np.abs(dpre[2:M:3,:]))
Floor = FloorVal*np.max(np.abs(dpre))*np.ones(np.shape(dpre))
if len(Pct) is 1:
dunc = Floor + Pct*np.abs(dpre)
else:
dunc = Floor
for ii in range(0,3):
dunc[ii:M:3] = dunc[ii:M:3] + Pct[ii]*np.abs(dpre[ii:M:3])
dobs = dpre + dunc*np.random.normal(size=np.shape(dpre))
self.dunc = dunc
self.dobs = dobs
return dobs,dunc
def computeMisfit(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
Phi = np.dot(v.T,v)
return Phi/N
def computeVecFcn(self,r0):
assert self.q is not None, "Must have current estimate of polarizations"
assert self.dunc is not None, "Must have set uncertainties"
assert self.dobs is not None, "Must have observed data"
dunc = self.dunc
dobs = self.dobs
q = self.q
Hp = self.computeHp(r0=r0,update=False)
Brx = self.computeBrx(r0=r0,update=False)
P = self.computeP(Hp,Brx)
N = np.size(dobs)
dpre = np.dot(P,q)
v = mkvc((dpre-dobs)/dunc)
return v
def setUp(self):
self.f = np.ones(256, dtype=np.float32)
self.ef = np.ones(self.f.size, dtype=np.bool)
self.d = np.ones(128, dtype=np.float64)
self.ed = np.ones(self.d.size, dtype=np.bool)
# generate values for all permutation of 256bit simd vectors
s = 0
for i in range(32):
self.f[s:s+8] = [i & 2**x for x in range(8)]
self.ef[s:s+8] = [(i & 2**x) != 0 for x in range(8)]
s += 8
s = 0
for i in range(16):
self.d[s:s+4] = [i & 2**x for x in range(4)]
self.ed[s:s+4] = [(i & 2**x) != 0 for x in range(4)]
s += 4
self.nf = self.f.copy()
self.nd = self.d.copy()
self.nf[self.ef] = np.nan
self.nd[self.ed] = np.nan
def __getitem__(self, indx):
"""
Get the index.
"""
m = self._mask
if isinstance(m[indx], ndarray):
# Can happen when indx is a multi-dimensional field:
# A = ma.masked_array(data=[([0,1],)], mask=[([True,
# False],)], dtype=[("A", ">i2", (2,))])
# x = A[0]; y = x["A"]; then y.mask["A"].size==2
# and we can not say masked/unmasked.
# The result is no longer mvoid!
# See also issue #6724.
return masked_array(
data=self._data[indx], mask=m[indx],
fill_value=self._fill_value[indx],
hard_mask=self._hardmask)
if m is not nomask and m[indx]:
return masked
return self._data[indx]
def plot_policy_learned(data_unpickle, color, fig_dir=None):
#recover the policy
poli = data_unpickle['policy']
#range to plot it
x = np.arange(-3,3,0.01)
means = np.zeros(np.size(x))
logstd = np.zeros(np.size(x))
for i,s in enumerate(x):
means[i] = poli.get_action(np.array((s,)))[1]['mean']
logstd[i] = poli.get_action(np.array((s,)))[1]['log_std']
# means[i] = poli.get_action(np.array([s,]))[1]['mean']
# logstd[i] = poli.get_action(np.array([s,]))[1]['log_std']
plt.plot(x, means, color=color, label = 'mean')
plt.plot(x, logstd, color=color * 0.7, label = 'logstd')
plt.legend(loc = 5)
plt.title('Final policy')
plt.xlabel('state')
plt.ylabel('Action')
if fig_dir:
plt.savefig(os.path.join(fig_dir,'policy_learned'))
else:
print("No directory for saving plots")
def distance_function(values, medians):
"""This function calculates the distance metric.
N.B. Only uses the non-NaN values.
dist = sum( (s - m)^2 )
s is the vector of sample values
m is the vector of probe medians
Args:
values (numpy array of floats)
medians (numpy array of floats)
Returns:
dist (float)
"""
non_nan_idx = ~np.isnan(values)
assert np.size(non_nan_idx) != 0, "All values in this sample are NaN!"
non_nan_values = values[non_nan_idx]
non_nan_medians = medians[non_nan_idx]
dist = sum(np.square(non_nan_values - non_nan_medians))
return dist
# tested #
def update(self, es, function_values, **kwargs):
"""the first and second value in ``function_values``
must reflect two mirrored solutions sampled
in direction / in opposite direction of
the previous mean shift, respectively.
"""
# TODO: on the linear function, the two mirrored samples lead
# to a sharp increase of condition of the covariance matrix.
# They should not be used to update the covariance matrix,
# if the step-size inreases quickly. This should be fine with
# negative updates though.
if not self.initialized:
self.initialize(es.N, es.opts)
if 1 < 3:
# use the ranking difference of the mirrors for adaptation
# damp = 5 should be fine
z = np.where(es.fit.idx == 1)[0][0] - np.where(es.fit.idx == 0)[0][0]
z /= es.popsize - 1 # z in [-1, 1]
self.s = (1 - self.sp.c) * self.s + self.sp.c * np.sign(z) * np.abs(z)**self.sp.z_exponent
if self.s > 0:
es.sigma *= exp(self.s / self.sp.dampup)
else:
es.sigma *= exp(self.s / self.sp.dampdown)
#es.more_to_write.append(10**z)
def F1(tested, truth):
tested = (tested-0.5)*2
truth = (truth-0.5)*2
truth[truth<=0] = -1.
truth[truth>0] = 1.
res = tested+truth
true_pos = np.size(np.where(res==2))/2.
pos = np.size(np.where(truth ==1))/2.
found_pos = np.size(np.where(tested ==1))/2.
precision = true_pos/found_pos
recall = true_pos/pos
F1 = 2.*precision*recall/(precision+recall)
return F1
# PRE-PROCESSING FUNCTIONS
# TRAINING SET FUNCTIONS
def mk_rotations(img):
#
# DESCRIPTION
# This function create 8 roatation image fro an input image 4 rotation from the raw image and 4 rotation form the transposed
#
# INPUTS
# img np.array
#
# OUTPUTS
# rotated_image_img, img90, img180, img270, imgT, imgT90, imgT180,imgT270
#
#
img90 = np.rot90(img)
img180 = np.rot90(img,k=2)
img270 = np.rot90(img,k=3)
imgT = np.zeros(img.shape)
if np.size(img.shape)>2:
for i in range(3):
imgT[:,:,i] =img[:,:,i].T
else:
imgT = img.T
imgT90 = np.rot90(imgT)
imgT180 = np.rot90(imgT, k=2)
imgT270 = np.rot90(imgT, k=3)
return img, img90, img180, img270, imgT, imgT90, imgT180,imgT270
def mk_rotations(img):
##INPUT:
## img: a 3D RGB array
##OUTPUT
## 8 rotated and transposed versions of img
img90 = np.rot90(img)
img180 = np.rot90(img,k=2)
img270 = np.rot90(img,k=3)
imgT = np.zeros(img.shape)
if np.size(img.shape)>2:
for i in range(3):
imgT[:,:,i] =img[:,:,i].T
else:
imgT = img.T
imgT90 = np.rot90(imgT)
imgT180 = np.rot90(imgT, k=2)
imgT270 = np.rot90(imgT, k=3)
return img, img90, img180, img270, imgT, imgT90, imgT180,imgT270
## Formats an image to save format
def calc_stoi_from_spec(clean_spec, degraded_spec, analysis_len=30):
freq_bins = np.size(clean_spec, 0)
frames = np.size(clean_spec, 1)
x = np.zeros((freq_bins, frames - analysis_len + 1, analysis_len), dtype=np.float32)
y = np.zeros((freq_bins, frames - analysis_len + 1, analysis_len), dtype=np.float32)
for j in range(0, freq_bins):
for m in range(analysis_len - 1, frames, 1):
x[j, m] = clean_spec[j, m - analysis_len + 1:m + 1]
y[j, m] = degraded_spec[j, m - analysis_len + 1:m + 1]
y[j, m] = np.minimum(np.linalg.norm(x[j,m,:])/np.linalg.norm(y[j,m,:])*y[j,m,:],
(1.+np.power(10., 15./20.))*x[j,m,:]) # y is normalized and clipped
x_mean = np.mean(x, axis=(0, 1))
y_mean = np.mean(y, axis=(0, 1))
score = 0.
for j in range(0, freq_bins):
for m in range(analysis_len - 1, frames, 1):
score += np.dot(x[j, m, :] - x_mean, y[j, m, :] - y_mean) / \
(np.linalg.norm(x[j, m, :] - x_mean) * np.linalg.norm(y[j, m, :] - y_mean))
score /= (freq_bins * analysis_len)
return score
def cochleagram_extractor(xx, sr, win_len, shift_len, channel_number, win_type):
fcoefs, f = make_erb_filters(sr, channel_number, 50)
fcoefs = np.flipud(fcoefs)
xf = erb_frilter_bank(xx, fcoefs)
if win_type == 'hanning':
window = np.hanning(channel_number)
elif win_type == 'hamming':
window = np.hamming(channel_number)
elif win_type == 'triangle':
window = (1 - (np.abs(channel_number - 1 - 2 * np.arange(1, channel_number + 1, 1)) / (channel_number + 1)))
else:
window = np.ones(channel_number)
window = window.reshape((channel_number, 1))
xe = np.power(xf, 2.0)
frames = 1 + ((np.size(xe, 1)-win_len) // shift_len)
cochleagram = np.zeros((channel_number, frames))
for i in range(frames):
one_frame = np.multiply(xe[:, i*shift_len:i*shift_len+win_len], np.repeat(window, win_len, 1))
cochleagram[:, i] = np.sqrt(np.mean(one_frame, 1))
cochleagram = np.where(cochleagram == 0.0, np.finfo(float).eps, cochleagram)
return cochleagram
def postaud(x, fmax, fbtype=None):
if fbtype is None:
fbtype = 'bark'
nbands = x.shape[0]
nframes = x.shape[1]
nfpts = nbands
if fbtype == 'bark':
bancfhz = bark2freq(np.linspace(0, freq2bark(fmax), nfpts))
fsq = bancfhz * bancfhz
ftmp = fsq + 1.6e5
eql = ((fsq/ftmp)**2) * ((fsq + 1.44e6)/(fsq + 9.61e6))
eql = eql.reshape(np.size(eql), 1)
z = np.repeat(eql, nframes, axis=1) * x
z = z ** (1./3.)
y = np.vstack((z[1, :], z[1:nbands-1, :], z[nbands-2, :]))
return y
def lpc2cep(a, nout=None):
nin = np.size(a, 0)
ncol = np.size(a, 1)
order = nin - 1
if nout is None:
nout = order + 1
c = np.zeros((nout, ncol))
c[0, :] = -1. * np.log(a[0, :])
renormal_coef = np.reshape(a[0,:], (1, ncol))
renormal_coef = np.repeat(renormal_coef, nin, axis=0)
a = a / renormal_coef
for n in range(1, nout):
sumn = np.zeros(ncol)
for m in range(1, n+1):
sumn = sumn + (n-m) * a[m, :] * c[n-m, :]
c[n, :] = -1. * (a[n, :] + 1. / n * sumn)
return c
def lpc2cep(a, nout=None):
nin = np.size(a, 0)
ncol = np.size(a, 1)
order = nin - 1
if nout is None:
nout = order + 1
c = np.zeros((nout, ncol))
c[0, :] = -1. * np.log(a[0, :])
renormal_coef = np.reshape(a[0,:], (1, ncol))
renormal_coef = np.repeat(renormal_coef, nin, axis=0)
a = a / renormal_coef
for n in range(1, nout):
sumn = np.zeros(ncol)
for m in range(1, n+1):
sumn = sumn + (n-m) * a[m, :] * c[n-m, :]
c[n, :] = -1. * (a[n, :] + 1. / n * sumn)
return c
def _run_TR_from_scan_onsets(self, n_T, scan_onsets=None):
if scan_onsets is None:
# assume that all data are acquired within the same scan.
n_run = 1
run_TRs = np.array([n_T], dtype=int)
else:
# Each value in the scan_onsets tells the index at which
# a new scan starts. For example, if n_T = 500, and
# scan_onsets = [0,100,200,400], this means that the time points
# of 0-99 are from the first scan, 100-199 are from the second,
# 200-399 are from the third and 400-499 are from the fourth
run_TRs = np.int32(np.diff(np.append(scan_onsets, n_T)))
run_TRs = np.delete(run_TRs, np.where(run_TRs == 0))
n_run = run_TRs.size
# delete run length of 0 in case of duplication in scan_onsets.
logger.info('I infer that the number of volumes'
' in each scan are: {}'.format(run_TRs))
return run_TRs, n_run
def _sum_loglike_marginalized(self, L_vec, s2XTAcorrX, YTAcorrY_diag,
sXTAcorrY, half_log_det_X0TAX0,
log_weights, log_fixed_terms,
l_idx, n_C, n_T, n_V, n_X0,
n_grid, rank=None):
sum_LL_total = 0
sum_grad_L = np.zeros(np.size(l_idx[0]))
for subj in range(len(YTAcorrY_diag)):
LL_total, grad_L = self._loglike_marginalized(
L_vec, s2XTAcorrX[subj], YTAcorrY_diag[subj],
sXTAcorrY[subj], half_log_det_X0TAX0[subj], log_weights,
log_fixed_terms[subj], l_idx, n_C, n_T[subj],
n_V[subj], n_X0[subj], n_grid, rank)
sum_LL_total += LL_total
sum_grad_L += grad_L
return sum_LL_total, sum_grad_L
def unRollImagesForConv(self,index):
'''?????index?????
?? ?width*?height, ?????*?channel? ????size??????
'''
i = index
old_images = self.last_layer.images
m,old_channel,old_height,old_width = old_images.shape
newData = []
#Process unroll the data
for h in range(0,old_height-self.squareSize+1,self.stride):
for w in range(0,old_width-self.squareSize+1,self.stride):
tmp = []
for c in range(old_channel):
tmp.append(old_images[i,c,h:h+self.squareSize,w:w+self.squareSize].reshape(1,self.squareSize**2))
#h,w?????,??????????,??old_channel * squaireSize?????
tmp = np.array(tmp).reshape(1,self.squareSize**2*old_channel)
#?????reshape,????????,????newData
newData.append(tmp)
#??????????????????,?????????
newData = np.array(newData).reshape(self.width*self.height,self.squareSize**2*old_channel)
return newData
def backward_compute(self):
m = np.size(self.images,0)
self.delta = self.delta.reshape(m,self.channel,self.height,self.width)
newDelta = np.zeros([m,self.last_layer.channel,self.last_layer.height,self.last_layer.width])
for i in range(m):
for j in range(self.channel):
for h in range(self.height):
for w in range(self.width):
tmpLoc = self.maxIndex[i,j,h*self.width+w]
relativeH = tmpLoc//self.squareSize
relativeW = tmpLoc - relativeH * self.squareSize
lastW = w*self.stride+relativeW
lastH = h*self.stride+relativeH
newDelta[i,j,lastH,lastW] += self.delta[i,j,h,w]
self.last_layer.delta = newDelta
pass
def bestMap(L1, L2):
if L1.__len__() != L2.__len__():
print('size(L1) must == size(L2)')
Label1 = np.unique(L1)
nClass1 = Label1.__len__()
Label2 = np.unique(L2)
nClass2 = Label2.__len__()
nClass = max(nClass1, nClass2)
G = np.zeros((nClass, nClass))
for i in range(nClass1):
for j in range(nClass2):
G[i][j] = np.nonzero((L1 == Label1[i]) * (L2 == Label2[j]))[0].__len__()
c = linear_assignment_.linear_assignment(-G.T)[:, 1]
newL2 = np.zeros(L2.__len__())
for i in range(nClass2):
for j in np.nonzero(L2 == Label2[i])[0]:
if len(Label1) > c[i]:
newL2[j] = Label1[c[i]]
return accuracy_score(L1, newL2)
def entropy(pk, *args, **kwargs):
"""Proxy for scipy.stats.entropy, with normalized Shannon entropy."""
if 'normalize' in kwargs:
normalize = kwargs['normalize']
del kwargs['normalize']
else:
normalize = False
e = scipy.stats.entropy(pk, *args, **kwargs)
if normalize:
num_classes = np.size(pk)
base = kwargs['base'] if 'base' in kwargs else None
maximum_entropy = np.log(num_classes)
if base:
maximum_entropy /= np.log(base)
e /= maximum_entropy
return e
def is_grid(self, grid, image):
"""
Checks the "gridness" by analyzing the results of a hough transform.
:param grid: binary image
:return: wheter the object in the image might be a grid or not
"""
# - Distance resolution = 1 pixel
# - Angle resolution = 1° degree for high line density
# - Threshold = 144 hough intersections
# 8px digit + 3*2px white + 2*1px border = 16px per cell
# => 144x144 grid
# 144 - minimum number of points on the same line
# (but due to imperfections in the binarized image it's highly
# improbable to detect a 144x144 grid)
lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)
if lines is not None and np.size(lines) >= 20:
lines = lines.reshape((lines.size / 2), 2)
# theta in [0, pi] (theta > pi => rho < 0)
# normalise theta in [-pi, pi] and negatives rho
lines[lines[:, 0] < 0, 1] -= np.pi
lines[lines[:, 0] < 0, 0] *= -1
criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
# split lines into 2 groups to check whether they're perpendicular
if cv2.__version__[0] == '2':
density, clmap, centers = cv2.kmeans(
lines[:, 1], 2, criteria, 5, cv2.KMEANS_RANDOM_CENTERS)
else:
density, clmap, centers = cv2.kmeans(
lines[:, 1], 2, None, criteria,
5, cv2.KMEANS_RANDOM_CENTERS)
if self.debug:
self.save_hough(lines, clmap)
# Overall variance from respective centers
var = density / np.size(clmap)
sin = abs(np.sin(centers[0] - centers[1]))
# It is probably a grid only if:
# - centroids difference is almost a 90° angle (+-15° limit)
# - variance is less than 5° (keeping in mind surface distortions)
return sin > 0.99 and var <= (5*np.pi / 180) ** 2
else:
return False
def save_hough(self, lines, clmap):
"""
:param lines: (rho, theta) pairs
:param clmap: clusters assigned to lines
:return: None
"""
height, width = self.image.shape
ratio = 600. * (self.step+1) / min(height, width)
temp = cv2.resize(self.image, None, fx=ratio, fy=ratio,
interpolation=cv2.INTER_CUBIC)
temp = cv2.cvtColor(temp, cv2.COLOR_GRAY2BGR)
colors = [(0, 127, 255), (255, 0, 127)]
for i in range(0, np.size(lines) / 2):
rho = lines[i, 0]
theta = lines[i, 1]
color = colors[clmap[i, 0]]
if theta < np.pi / 4 or theta > 3 * np.pi / 4:
pt1 = (rho / np.cos(theta), 0)
pt2 = (rho - height * np.sin(theta) / np.cos(theta), height)
else:
pt1 = (0, rho / np.sin(theta))
pt2 = (width, (rho - width * np.cos(theta)) / np.sin(theta))
pt1 = (int(pt1[0]), int(pt1[1]))
pt2 = (int(pt2[0]), int(pt2[1]))
cv2.line(temp, pt1, pt2, color, 5)
self.save2image(temp)
def morph(roi):
ratio = min(28. / np.size(roi, 0), 28. / np.size(roi, 1))
roi = cv2.resize(roi, None, fx=ratio, fy=ratio,
interpolation=cv2.INTER_NEAREST)
dx = 28 - np.size(roi, 1)
dy = 28 - np.size(roi, 0)
px = ((int(dx / 2.)), int(np.ceil(dx / 2.)))
py = ((int(dy / 2.)), int(np.ceil(dy / 2.)))
squared = np.pad(roi, (py, px), 'constant', constant_values=0)
return squared
def is_grid(self, grid, image):
"""
Checks the "gridness" by analyzing the results of a hough transform.
:param grid: binary image
:return: wheter the object in the image might be a grid or not
"""
# - Distance resolution = 1 pixel
# - Angle resolution = 1° degree for high line density
# - Threshold = 144 hough intersections
# 8px digit + 3*2px white + 2*1px border = 16px per cell
# => 144x144 grid
# 144 - minimum number of points on the same line
# (but due to imperfections in the binarized image it's highly
# improbable to detect a 144x144 grid)
lines = cv2.HoughLines(grid, 1, np.pi / 180, 144)
if lines is not None and np.size(lines) >= 20:
lines = lines.reshape((lines.size/2), 2)
# theta in [0, pi] (theta > pi => rho < 0)
# normalise theta in [-pi, pi] and negatives rho
lines[lines[:, 0] < 0, 1] -= np.pi
lines[lines[:, 0] < 0, 0] *= -1
criteria = (cv2.TERM_CRITERIA_EPS, 0, 0.01)
# split lines into 2 groups to check whether they're perpendicular
if cv2.__version__[0] == '2':
density, clmap, centers = cv2.kmeans(
lines[:, 1], 2, criteria,
5, cv2.KMEANS_RANDOM_CENTERS)
else:
density, clmap, centers = cv2.kmeans(
lines[:, 1], 2, None, criteria,
5, cv2.KMEANS_RANDOM_CENTERS)
# Overall variance from respective centers
var = density / np.size(clmap)
sin = abs(np.sin(centers[0] - centers[1]))
# It is probably a grid only if:
# - centroids difference is almost a 90° angle (+-15° limit)
# - variance is less than 5° (keeping in mind surface distortions)
return sin > 0.99 and var <= (5*np.pi / 180) ** 2
else:
return False
def prewhiten(x):
mean = np.mean(x)
std = np.std(x)
std_adj = np.maximum(std, 1.0/np.sqrt(x.size))
y = np.multiply(np.subtract(x, mean), 1/std_adj)
return y
def get_label_batch(label_data, batch_size, batch_index):
nrof_examples = np.size(label_data, 0)
j = batch_index*batch_size % nrof_examples
if j+batch_size<=nrof_examples:
batch = label_data[j:j+batch_size]
else:
x1 = label_data[j:nrof_examples]
x2 = label_data[0:nrof_examples-j]
batch = np.vstack([x1,x2])
batch_int = batch.astype(np.int64)
return batch_int
def get_batch(image_data, batch_size, batch_index):
nrof_examples = np.size(image_data, 0)
j = batch_index*batch_size % nrof_examples
if j+batch_size<=nrof_examples:
batch = image_data[j:j+batch_size,:,:,:]
else:
x1 = image_data[j:nrof_examples,:,:,:]
x2 = image_data[0:nrof_examples-j,:,:,:]
batch = np.vstack([x1,x2])
batch_float = batch.astype(np.float32)
return batch_float
def calculate_accuracy(threshold, dist, actual_issame):
predict_issame = np.less(dist, threshold)
tp = np.sum(np.logical_and(predict_issame, actual_issame))
fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame)))
tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame)))
fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame))
tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn)
fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn)
acc = float(tp+tn)/dist.size
return tpr, fpr, acc
def test_field2d_init():
# create a field where the main material is 5
fld = fls.Field2D(100, 0.1, 100, 0.1, 100, 0.1, int(5))
# check if the "material parameter" 'real' for the complete field is 5
assert np.allclose(fld.material_vector('real'), 5)
assert np.size(fld.material_vector('real')) == 10000
def heap_size(self):
"""Gets the heap size maintained in the class."""
return len(self._heap)
def accumulate(self, predictions, actuals, num_positives=None):
"""Accumulate the predictions and their ground truth labels.
After the function call, we may call peek_ap_at_n to actually calculate
the average precision.
Note predictions and actuals must have the same shape.
Args:
predictions: a list storing the prediction scores.
actuals: a list storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
then it's possible some true positives were missed in them. In that case,
you can provide 'num_positives' in order to accurately track recall.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
if len(predictions) != len(actuals):
raise ValueError("the shape of predictions and actuals does not match.")
if not num_positives is None:
if not isinstance(num_positives, numbers.Number) or num_positives < 0:
raise ValueError("'num_positives' was provided but it wan't a nonzero number.")
if not num_positives is None:
self._total_positives += num_positives
else:
self._total_positives += numpy.size(numpy.where(actuals > 0))
topk = self._top_n
heap = self._heap
for i in range(numpy.size(predictions)):
if topk is None or len(heap) < topk:
heapq.heappush(heap, (predictions[i], actuals[i]))
else:
if predictions[i] > heap[0][0]: # heap[0] is the smallest
heapq.heappop(heap)
heapq.heappush(heap, (predictions[i], actuals[i]))
def heap_size(self):
"""Gets the heap size maintained in the class."""
return len(self._heap)
def accumulate(self, predictions, actuals, num_positives=None):
"""Accumulate the predictions and their ground truth labels.
After the function call, we may call peek_ap_at_n to actually calculate
the average precision.
Note predictions and actuals must have the same shape.
Args:
predictions: a list storing the prediction scores.
actuals: a list storing the ground truth labels. Any value
larger than 0 will be treated as positives, otherwise as negatives.
num_positives = If the 'predictions' and 'actuals' inputs aren't complete,
then it's possible some true positives were missed in them. In that case,
you can provide 'num_positives' in order to accurately track recall.
Raises:
ValueError: An error occurred when the format of the input is not the
numpy 1-D array or the shape of predictions and actuals does not match.
"""
if len(predictions) != len(actuals):
raise ValueError("the shape of predictions and actuals does not match.")
if not num_positives is None:
if not isinstance(num_positives, numbers.Number) or num_positives < 0:
raise ValueError("'num_positives' was provided but it wan't a nonzero number.")
if not num_positives is None:
self._total_positives += num_positives
else:
self._total_positives += numpy.size(numpy.where(actuals > 0))
topk = self._top_n
heap = self._heap
for i in range(numpy.size(predictions)):
if topk is None or len(heap) < topk:
heapq.heappush(heap, (predictions[i], actuals[i]))
else:
if predictions[i] > heap[0][0]: # heap[0] is the smallest
heapq.heappop(heap)
heapq.heappush(heap, (predictions[i], actuals[i]))
def heap_size(self):
"""Gets the heap size maintained in the class."""
return len(self._heap)
def getPosteriorMeanAndVar(self, diagKTestTest, KtrainTest, post, intercept=0):
L = post['L']
if (np.size(L) == 0): raise Exception('L is an empty array') #possible to compute it here
Lchol = np.all((np.all(np.tril(L, -1)==0, axis=0) & (np.diag(L)>0)) & np.isreal(np.diag(L)))
ns = diagKTestTest.shape[0]
nperbatch = 5000
nact = 0
#allocate mem
fmu = np.zeros(ns) #column vector (of length ns) of predictive latent means
fs2 = np.zeros(ns) #column vector (of length ns) of predictive latent variances
while (nact<(ns-1)):
id = np.arange(nact, np.minimum(nact+nperbatch, ns))
kss = diagKTestTest[id]
Ks = KtrainTest[:, id]
if (len(post['alpha'].shape) == 1):
try: Fmu = intercept[id] + Ks.T.dot(post['alpha'])
except: Fmu = intercept + Ks.T.dot(post['alpha'])
fmu[id] = Fmu
else:
try: Fmu = intercept[id][:, np.newaxis] + Ks.T.dot(post['alpha'])
except: Fmu = intercept + Ks.T.dot(post['alpha'])
fmu[id] = Fmu.mean(axis=1)
if Lchol:
V = la.solve_triangular(L, Ks*np.tile(post['sW'], (id.shape[0], 1)).T, trans=1, check_finite=False, overwrite_b=True)
fs2[id] = kss - np.sum(V**2, axis=0) #predictive variances
else:
fs2[id] = kss + np.sum(Ks * (L.dot(Ks)), axis=0) #predictive variances
fs2[id] = np.maximum(fs2[id],0) #remove numerical noise i.e. negative variances
nact = id[-1] #set counter to index of last processed data point
return fmu, fs2