Python numpy 模块,polyfit() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.polyfit()。
def fit(self):
# Quadratic fit to get an initial guess for the parameters.
# Thanks: https://github.com/materialsproject/pymatgen
# -> pymatgen/io/abinitio/eos.py
a, b, c = np.polyfit(self.volume, self.energy, 2)
v0 = -b/(2*a)
e0 = a*v0**2 + b*v0 + c
b0 = 2*a*v0
b1 = 4 # b1 is usually a small number like 4
if not self.volume.min() < v0 and v0 < self.volume.max():
raise StandardError('The minimum volume of a fitted parabola is not in the input volumes')
# need to use lst2dct and dct2lst here to keep the order of parameters
pp0_dct = dict(e0=e0, b0=b0, b1=b1, v0=v0)
target = lambda pp, v: self.energy - self.func(v, self.func.lst2dct(pp))
pp_opt, ierr = leastsq(target,
self.func.dct2lst(pp0_dct),
args=(self.volume,))
self.params = self.func.lst2dct(pp_opt)
def draw_bs_pairs_linreg(x, y, size=1):
"""Perform pairs bootstrap for linear regression."""
# Set up array of indices to sample from: inds
inds = np.arange(len(x))
# Initialize replicates: bs_slope_reps, bs_intercept_reps
bs_slope_reps = np.empty(size)
bs_intercept_reps = np.empty(size)
# Generate replicates
for i in range(size):
bs_inds = np.random.choice(inds, size=len(inds))
bs_x, bs_y = x[bs_inds], y[bs_inds]
# noinspection PyTupleAssignmentBalance
bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1)
return bs_slope_reps, bs_intercept_reps
def SLOPE(self, param):
class Context:
def __init__(self, N):
self.N = N
self.q = deque([], self.N)
self.x = [i for i in range(self.N)]
def handleInput(self, value):
if len(self.q) < self.N:
self.q.append(value)
return 0
self.q.append(value)
z1 = np.polyfit(self.x, self.q, 1)
return z1[0]
ctx = Context(param[1])
result = param[0].apply(ctx.handleInput)
return result
def FORCAST(self, param):
class Context:
def __init__(self, N):
self.N = N
self.q = deque([], self.N)
self.x = [i for i in range(self.N)]
def handleInput(self, value):
if len(self.q) < self.N:
self.q.append(value)
return np.NaN
z1 = np.polyfit(self.x, self.q, 1)
fn = np.poly1d(z1)
y = fn(self.N + 1)
self.q.append(value)
return y
ctx = Context(param[1])
result = param[0].apply(ctx.handleInput)
return result
#????
def minScalErr(stec,el,z,thisBias):
"""
this determines the slope of the vTEC vs. Elevation line, which
should be minimized in the minimum scalloping technique for
receiver bias removal
inputs:
stec - time indexed Series of slant TEC values
el - corresponding elevation values, also Series
z - mapping function values to convert to vTEC from entire file, may
contain nans, Series
thisBias - the bias to be tested and minimized
"""
intel=np.asarray(el[stec.index],int) # bin the elevation values into int
sTEC=np.asarray(stec,float)
zmap = z[stec.index]
c=np.array([(i,np.average((sTEC[intel==i]-thisBias)
/zmap[intel==i])) for i in np.unique(intel) if i>30])
return np.polyfit(c[:,0],c[:,1],1)[0]
def draw_bs_pairs_linreg(x, y, size=1):
"""Perform pairs bootstrap for linear regression."""
# Set up array of indices to sample from: inds
inds = np.arange(len(x))
# Initialize replicates: bs_slope_reps, bs_intercept_reps
bs_slope_reps = np.empty(size)
bs_intercept_reps = np.empty(size)
# Generate replicates
for i in range(size):
bs_inds = np.random.choice(inds, size=len(inds))
bs_x, bs_y = x[bs_inds], y[bs_inds]
bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1)
return bs_slope_reps, bs_intercept_reps
def draw_bs_pairs_linreg(x, y, size=1):
"""Perform pairs bootstrap for linear regression."""
# Set up array of indices to sample from: inds
inds = np.arange(len(x))
# Initialize replicates: bs_slope reps, bs_intercept_reps
bs_slope_reps = np.empty(size)
bs_intercept_reps = np.empty(size)
# Generate replicates
for i in range(size):
bs_inds = np.random.choice(inds, size=len(inds))
bs_x, bs_y = x[bs_inds], y[bs_inds]
bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1)
return bs_slope_reps, bs_intercept_reps
def draw_bs_pairs(x, y, func, size=1):
"""Perform pairs bootstrap for linear regression."""
# Set up array of indices to sample from: inds
inds = np.arange(len(x))
# Initialize replicates
bs_replicates = np.empty(size)
# bs_intercept_reps = ____
# Generate replicates
for i in range(size):
bs_inds = np.random.choice(inds, len(inds))
bs_x, bs_y = x[bs_inds], y[bs_inds]
bs_replicates[i] = func(bs_x, bs_y)
# bs_slope_reps[i], bs_intercept_reps[i] = np.polyfit(bs_x, bs_y, 1)
return bs_replicates
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def calculateKDP(phiDP, ran):
# smooth phiDP field and take derivative
numRan = ran.shape[0]
kdp = np.ma.masked_all(phiDP.shape)
smoothPhiDP = smPhiDP(phiDP, ran)
# take derivative of kdp field
winLen = 11
rprof = ran[0:winLen*2-1]/1000.
for i in range(numRan-winLen*3):
numvalid = smoothPhiDP[:,i:i+winLen*2-1].count(axis=1)
max_numv = np.max(numvalid)
if max_numv==(winLen*2-1):
kdp[numvalid==(winLen*2-1),i+winLen] = 0.5*np.polyfit(rprof,
smoothPhiDP[numvalid==(winLen*2-1),i:i+winLen*2-1].transpose(), 1)[0]
return kdp
# function for creating color map
#----------------------------------
def hplot(name, h, err, xlab="", ylab="", hstr="h", rate=None, fit=True, fig=True):
from matplotlib.pyplot import figure, loglog, xlabel, ylabel, legend, show
if fig is True:
figure()
loglog(h, err, 's-', label=name)
if fit:
p = numpy.polyfit(numpy.log(h), numpy.log(err), 1)
C = numpy.exp(p[1])
alpha = p[0]
alg = [C*n**alpha for n in h]
loglog(h, alg, '--', label="%.3f*%s^(%.3f)" %(C, hstr, alpha))
if rate and h[0] != 0:
alg = [err[0]/(h[0]**rate)*n**rate for n in h]
loglog(h, alg, '--', label="%s^(%.3f)" %(hstr, rate))
xlabel(xlab)
ylabel(ylab)
legend(loc='best')
# --- create interpolation for different h and orders ---
def default1():
numRadialPts = 144;
rhoMin = 0.1
rhoMax = 0.9
rho = np.linspace(rhoMin, rhoMax, numRadialPts);
qbar = 0.854 + 2.184 * rho**2;
minorRadius = 0.28; # a
majorRadius = 0.71; # R0
r = rho * minorRadius;
safetyFactor = qbar / np.sqrt(1 - (r/majorRadius)**2);
# fit
polynomialDegree = 3;
p = np.polyfit(rho, safetyFactor, polynomialDegree)
qCoeffs = p[::-1]
return qCoeffs
def PCSCH3(self,row):
actuals=[];read=[]
resistance = float(self.tbl.item(row,0).text())
for a in np.linspace(.2e-3,1.5e-3,20):
actuals.append( self.I.DAC.setCurrent(a) )
time.sleep(0.001)
read.append (self.I.get_average_voltage('CH3',samples=5))
read = np.array(read)/resistance
actuals = np.array(actuals)
sread = read*1e3
sactuals = actuals*1e3
self.DacCurves['PCS'].setData(sactuals,sread-sactuals)
self.tbl.item(row,1).setText(string.join(['%.3f'%a for a in sread-sactuals],' '))
if np.any(abs(read-actuals)>10e-6):self.setSuccess(self.tbl.item(row,1),0)
else: self.setSuccess(self.tbl.item(row,1),1)
fitvals = np.polyfit(self.I.DAC.CHANS['PCS'].VToCode(read),self.I.DAC.CHANS['PCS'].VToCode(actuals),1)
print (fitvals)
if list(fitvals):
self.PCS_SLOPE = fitvals[0] #slope
self.PCS_OFFSET = fitvals[1] #offset
def PCSCH3(self,row):
actuals=[];read=[]
resistance = float(self.tbl.item(row,0).text())
for a in np.linspace(.2e-3,1.5e-3,20):
actuals.append( self.I.DAC.setCurrent(a) )
time.sleep(0.001)
read.append (self.I.get_voltage('CH3',samples=5))
read = np.array(read)/resistance
actuals = np.array(actuals)
sread = read*1e3
sactuals = actuals*1e3
self.DacCurves['PCS'].setData(sactuals,sread-sactuals)
self.tbl.item(row,1).setText(string.join(['%.3f'%a for a in sread-sactuals],' '))
if np.any(abs(read-actuals)>10e-6):self.setSuccess(self.tbl.item(row,1),0)
else: self.setSuccess(self.tbl.item(row,1),1)
fitvals = np.polyfit(self.I.DAC.CHANS['PCS'].VToCode(read),self.I.DAC.CHANS['PCS'].VToCode(actuals),1)
print (fitvals)
if list(fitvals):
self.PCS_SLOPE = fitvals[0] #slope
self.PCS_OFFSET = fitvals[1] #offset
def get_linear_regression(xdata, ydata):
""" Calculate the coefficients of the linear equation corresponding
to the linear regression of a series of points. """
try:
import numpy
return tuple(numpy.polyfit(xdata, ydata, 1))
except ImportError:
# numpy not available
# try something approximate and simple
datasize = len(xdata)
sum_x = float(sum(xdata))
sum_y = float(sum(ydata))
sum_xx = float(sum(map(lambda x: x * x, xdata)))
sum_products = float(sum([xdata[i] * ydata[i]
for i in range(datasize)]))
a = (sum_products - sum_x * sum_y / datasize) / (
sum_xx - (sum_x * sum_x) / datasize)
b = (sum_y - a * sum_x) / datasize
return a, b
def polyfit_baseline(bands, intensities, poly_order=5, num_stdv=3.,
max_iter=200):
'''Iteratively fits a polynomial, discarding far away points as peaks.
Similar in spirit to ALS and related methods.
Automated method for subtraction of fluorescence from biological Raman spectra
Lieber & Mahadevan-Jansen 2003
'''
fit_pts = intensities.copy()
# precalculate [x^p, x^p-1, ..., x^1, x^0]
poly_terms = bands[:, None] ** np.arange(poly_order, -1, -1)
for _ in range(max_iter):
coefs = np.polyfit(bands, fit_pts.T, poly_order)
baseline = poly_terms.dot(coefs).T
diff = fit_pts - baseline
thresh = diff.std(axis=-1) * num_stdv
mask = diff > np.array(thresh, copy=False)[..., None]
unfitted = np.count_nonzero(mask)
if unfitted == 0:
break
fit_pts[mask] = baseline[mask] # these points are peaks, discard
else:
print("Warning: polyfit_baseline didn't converge in %d iters" % max_iter)
return baseline
def band_center(spectrum, low_endmember=None, high_endmember=None, degree=3):
x = spectrum.index
y = spectrum
if not low_endmember:
low_endmember = x[0]
if not high_endmember:
high_endmember = x[-1]
ny = y[low_endmember:high_endmember]
fit = np.polyfit(ny.index, ny, degree)
center_fit = Series(np.polyval(fit, ny.index), ny.index)
center = band_minima(center_fit)
return center, center_fit
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def trendLine(self, axis_choose=None):
stable_sec= int(self.record_sec_le.text())
stable_count = int(stable_sec * (1/0.007))
if axis_choose:
axis = axis_choose
else:
axis = str(self.axis_combobox.currentText())
x = self.raw_data['time'][:stable_count]
y = self.raw_data[axis][:stable_count]
coefficients = np.polyfit(x,y,1)
p = np.poly1d(coefficients)
coefficient_of_dermination = r2_score(y, p(x))
self.trendLine_content1_label.setText("Trendline: " + str(p))
self.trendLine_content2_label.setText("R: " + str(coefficient_of_dermination))
return coefficients
def FitPolynomial(fig, x, y, n):
#solution, res = np.polynomial.polynomial.polyfit(x,y,order,full=True)
solution, C_p = np.polyfit(x, y, n, cov=True) # C_z is estimated covariance matrix
# Do the interpolation for plotting:
xrange = fig.get_xlim()
t = np.linspace(xrange[0],xrange[1],100)
# Matrix with rows 1, t, t**2, ...:
TT = np.vstack([t**(n-i) for i in range(n+1)]).T
yi = np.dot(TT, solution) # matrix multiplication calculates the polynomial values
C_yi = np.dot(TT, np.dot(C_p, TT.T)) # C_y = TT*C_z*TT.T
sig_yi = np.sqrt(np.diag(C_yi)) # Standard deviations are sqrt of diagonal
fig.plot(t,yi, 'k-')
# fig.plot(t,yi+sig_yi, 'k--')
# fig.plot(t,yi-sig_yi, 'k--')
return solution
# Take the log of the y value
def compute_xvvr(self):
""" Return xvv(r) matrix """
r = np.array([i*self.dr for i in range(self.ngrid)])
k = self.get_k()
xvvr = [["" for i in range(self.nsites)] for j in range(self.nsites)]
for i in range(self.nsites):
for j in range(self.nsites):
xvvk_ij = self.xvv_data[:,i,j]
xvvr_ij = pubfft.sinfti(xvvk_ij*k, self.dr, -1)/r
# n_pots_for_interp = 6
# r_for_interp = r[1:n_pots_for_interp+1]
# xvvr_for_interp = xvvr_ij[:n_pots_for_interp]
# poly_coefs = np.polyfit(r_for_interp, xvvr_for_interp, 3)
# poly_f = np.poly1d(poly_coefs)
# xvvr[i][j] = [poly_f(0)]
xvvr[i][j] = xvvr_ij
return r, np.swapaxes(xvvr, 0, 2)
def compute_zr(self):
""" Return z(r) matrix """
r = np.array([i*self.dr for i in range(self.ngrid)])
k, zk = self.compute_zk()
print 'computed zk',zk.shape
zr = [["" for i in range(self.nsites)] for j in range(self.nsites)]
for i in range(self.nsites):
for j in range(self.nsites):
zk_ij = zk[1:,i,j]
zr_ij = pubfft.sinfti(zk_ij*k[1:], self.dr, -1)/r[1:]
#zr_ij = np.abs(fftpack.fft(zk_ij))
n_pots_for_interp = 6
r_for_interp = r[1:n_pots_for_interp+1]
zr_for_interp = zr_ij[:n_pots_for_interp]
poly_coefs = np.polyfit(r_for_interp, zr_for_interp, 3)
poly_f = np.poly1d(poly_coefs)
zr[i][j] = [poly_f(0)]
zr[i][j].extend(zr_ij)
return r, np.swapaxes(zr, 0, 2)
def smooth(x, y, weights):
'''
in case the NLF cannot be described by
a square root function
commit bounded polynomial interpolation
'''
# Spline hard to smooth properly, therefore solfed with
# bounded polynomal interpolation
# ext=3: no extrapolation, but boundary value
# return UnivariateSpline(x, y, w=weights,
# s=len(y)*weights.max()*100, ext=3)
# return np.poly1d(np.polyfit(x,y,w=weights,deg=2))
p = np.polyfit(x, y, w=weights, deg=2)
if np.any(np.isnan(p)):
# couldn't even do polynomial fit
# as last option: assume constant noise
my = np.average(y, weights=weights)
return lambda x: my
return lambda xint: np.poly1d(p)(np.clip(xint, x[0], x[-1]))
def __init__(self,xpixel,ypixel,library,zoomLevel):
self.xpixel=xpixel
self.ypixel=ypixel
#load csv data. Rows are zoom levels, column are latitude
#and values are meters per pixel
with open(library,'rb') as csvfile:
metersperpixel = list(csv.reader(csvfile,delimiter=","))
latitudes=[]
#convert to floats
for element in metersperpixel[0][1:]:
latitudes.append(float(element))
for row in range(1,len(metersperpixel)):
res_values=[]
if int(metersperpixel[row][0])==zoomLevel:
#convert to floats
for element in metersperpixel[row][1:]:
res_values.append(float(element))
self.fitvalues=\
numpy.polyfit(latitudes, #fit to latitutde values
res_values, 3) #3rd degree polynomial fit
print "Fit done."
break
def callback_click_ok(self,data):
points = np.array(self.interal_data) #[(1, 1), (2, 2), (3, 3), (7, 3), (9, 3)]
# get x and y vectors
x = points[:,0]
y = points[:,1]
# calculate polynomial
terms=int(self.sp.value())
self.ret = np.polyfit(x, y, terms)
f = np.poly1d(self.ret)
tot=""
val=0
for i in range(0,len(self.ret)):
p=len(self.ret)-1-i
tot=tot+str(self.ret[i])+"*pow(w,"+str(p)+")"+"+"
tot=tot[:-1]
self.ret_math=tot
self.close()
def build_model_poly(detection_pairs, beacon_sdoa, nominal_sample_rate, deg=2):
if len(detection_pairs) < deg + 1:
# not enough beacon transmissions
return None
soa0 = np.array([d[0].soa for d in detection_pairs])
soa1 = np.array([d[1].soa for d in detection_pairs])
soa1at0 = soa1 + np.array(beacon_sdoa)
coef = np.polyfit(soa1at0, soa0, deg)
fit = np.poly1d(coef)
# residuals = soa0 - fit(soa1at0)
# print(np.mean(residuals))
def evaluate(det0, det1):
return (det0.soa - fit(det1.soa)) / nominal_sample_rate
return evaluate
def ExpLine(*args, **kwargs):
rate = kwargs.pop('rate', None)
log_data = kwargs.pop('log_data', True)
data = kwargs.pop('data', None)
const = kwargs.pop('const', 1)
if rate is None:
assert data is not None and len(data) > 0, "rate or data must be given"
x = np.array([d[0] for d in data])
y = np.array([d[1] for d in data])
if len(x) > 0 and len(y) > 0:
if log_data:
rate = np.polyfit(np.log(x), np.log(y), 1)[0]
else:
rate = np.polyfit(x, y, 1)[0]
if "label" in kwargs:
kwargs["label"] = kwargs.pop("label").format(rate=rate)
return FunctionLine2D(*args, fn=lambda x, r=rate:
const*np.array(x)**r, data=data,
log_data=log_data, **kwargs)
def redo_fit(self):
lx0, lx1 = self.power_plot_lr.getRegion()
x0, x1 = 10**lx0, 10**lx1
X = self.dat['power_meter_power']
n = len(X)
ii0 = np.argmin(np.abs(X[:n//2+1]-x0))
ii1 = np.argmin(np.abs(X[:n//2+1]-x1))
print(ii0,ii1)
m, b = np.polyfit(np.log10(X[ii0:ii1]), np.log10(self.power_plot_y[ii0:ii1]), deg=1)
print("fit", m,b)
fit_data = 10**(np.poly1d((m,b))(np.log10(X)))
print("fit_data", fit_data)
self.power_fit_plotcurve.setData(X, fit_data)
self.fit_text.setHtml("<h1>I<sup>{:1.2f}</sup></h1>".format(m))
self.fit_text.setPos(0.5*(lx0+lx1), np.log10(fit_data[(ii0+ii1)//2]))
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def scatter_crimes_population():
"""creates a scatter plot using the values of Population and Crimes Per 100000.
iterates through the database and reads all the data in the given headers and creates plots for each data point
"""
x = df["Number of Crimes"].values
y = df["Population"].values
assert len(x) == len(y)
df["Crimes Per 100000"] = np.array([(x[i] / y[i]) * 100000.0 for i in range(len(x))], dtype="float32")
ax = df.plot.scatter(y="Population", x="Crimes Per 100000")
for index, row in df.iterrows():
ax.annotate(row["Community Name"], (row["Crimes Per 100000"], row["Population"]),
size=7,
color='darkslategrey')
x = df["Crimes Per 100000"].values
y = df["Population"].values
m, b = np.polyfit(x, y, 1)
line = plt.plot(x, m * x + b, 'b--')
plt.setp(line, color='orange', alpha=0.5, linewidth=2.0)
plt.show()
def linbleeched_F0(data):
"""
Calculate a linear fit (:math:`y(t)=m t+y_0)` for each pixel, which is assumed to correct for bleeching effects.
:param data: he video data of shape (M,N,T).
:return: tuple (m,y0) with two images each with shape (M,N).
"""
# generate c coordinates
x = numpy.arange(data.shape[-1])
# reshape the data to two d array, first dimension is pixel index, second dimension is time
d = numpy.reshape(data, (data.shape[0] * data.shape[1], data.shape[-1]))
# find fit parameters
m, y0 = numpy.polyfit(x, d.T, 1)
# reshape fit parameters back to image shape
return m.reshape(data.shape[0:2]), y0.reshape(data.shape[0:2])
def RotatePoints(self, x_in, y_in):
#Rotational matrix
angle = np.pi/1.065
rot = np.array([[np.cos(angle),-np.sin(angle)],[np.sin(angle),np.cos(angle)]])
#Rotation Stuff
x = 0.
y = np.log(1000.)*-self.rd
d1 = np.array([[x],[y]])
V1 = np.dot(rot,d1)
B1 = np.linspace(d1[0],V1[0],100)
B2 = np.linspace(d1[1],V1[1],100)
p = np.polyfit(B1,B2,1)
#Skew-T y-axis
y_out = -self.rd*np.log(y_in)
#Skew-T x-axis
B = (x_in + (-y/p[0]))*p[0]
x_out = (y_out+B)/p[0]
return x_out, y_out
#Process winds for the hodograph
def build_batch_lstsq_estimates(self, asset_returns, benchmark_returns):
if not len(asset_returns) == len(benchmark_returns):
raise '*WTF*'
# Run Kalman filter on returns data
beta = np.zeros(len(asset_returns))
alpha = np.zeros(len(asset_returns))
for enum_i, elem in enumerate(asset_returns):
lookback = min(self.lookback, enum_i)
# print '==> ', enum_i, len(asset_returns), len(beta)
beta[enum_i], alpha[enum_i] = np.polyfit(benchmark_returns[enum_i - lookback:enum_i + 1],
asset_returns[enum_i - lookback:enum_i + 1], 1)
# don't wanna do a line fit for less than 3 points, really
beta[0], alpha[0] = 0, 0
beta[1], alpha[1] = 0, 0
self.alpha_betas_lstsq = np.array(zip(alpha, beta))
def early_stop_by_valid(valid_auc, k):
'''Early stop"
'''
if k > len(valid_auc):
return False
print k, valid_auc
x = range(k)
y = valid_auc[-k:]
# print x, y
slop, bias = np.polyfit(x, y, 1)
print "slop: {0:f}".format(slop)
stopflag = False
if slop <= FLAGS.slope:
stopflag = True
return stopflag
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def plot_scatter_charts(data, file_name):
scatters = []
for lang, values in data.items():
s = figure(width=300, plot_height=300, title=lang)
s.yaxis.formatter = NumeralTickFormatter(format="0.0a")
s.circle(values[0], values[1], size=10, color="navy", alpha=0.5)
x = np.linspace(1, 100, 10)
# noinspection PyTupleAssignmentBalance
m, b = np.polyfit(values[0], values[1], 1)
y = m * x + b
corr_coef = round(pearsonr(values[0], values[1])[0], 1)
s.line(x, y, legend=f'PCC = {corr_coef}')
scatters.append(s)
split_scatters = split(scatters, 3)
p = gridplot(split_scatters)
output_file(file_name)
show(p)
def defineRegionOfInterest(img, left_bottom = [0, 539], right_bottom = [900, 539], apex = [475, 320]):
xsize = img.shape[1]
ysize = img.shape[0]
# Perform a linear fit (y=Ax+B) to each of the three sides of the triangle
# np.polyfit returns the coefficients [A, B] of the fit
fit_left = np.polyfit((left_bottom[0], apex[0]), (left_bottom[1], apex[1]), 1)
fit_right = np.polyfit((right_bottom[0], apex[0]), (right_bottom[1], apex[1]), 1)
fit_bottom = np.polyfit((left_bottom[0], right_bottom[0]), (left_bottom[1], right_bottom[1]), 1)
# Find the region inside the lines
XX, YY = np.meshgrid(np.arange(0, xsize), np.arange(0, ysize))
region_thresholds = (YY > (XX*fit_left[0] + fit_left[1])) & \
(YY > (XX*fit_right[0] + fit_right[1])) & \
(YY < (XX*fit_bottom[0] + fit_bottom[1]))
return region_thresholds
def testEncodeDecodeShift(self):
x = np.linspace(-1, 1, 1000).astype(np.float32)
with self.test_session() as sess:
encoded = mu_law_encode(x, QUANT_LEVELS)
decoded = mu_law_decode(encoded, QUANT_LEVELS)
roundtripped = sess.run(decoded)
# Detect non-unity scaling and non-zero shift in the roundtripped
# signal by asserting that slope = 1 and y-intercept = 0 of line fit to
# roundtripped vs x values.
coeffs = np.polyfit(x, roundtripped, 1)
slope = coeffs[0]
y_intercept = coeffs[1]
EPSILON = 1e-4
self.assertNear(slope, 1.0, EPSILON)
self.assertNear(y_intercept, 0.0, EPSILON)
def test_polyfit_build(self):
# Ticket #628
ref = [-1.06123820e-06, 5.70886914e-04, -1.13822012e-01,
9.95368241e+00, -3.14526520e+02]
x = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 129,
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,
158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169,
170, 171, 172, 173, 174, 175, 176]
y = [9.0, 3.0, 7.0, 4.0, 4.0, 8.0, 6.0, 11.0, 9.0, 8.0, 11.0, 5.0,
6.0, 5.0, 9.0, 8.0, 6.0, 10.0, 6.0, 10.0, 7.0, 6.0, 6.0, 6.0,
13.0, 4.0, 9.0, 11.0, 4.0, 5.0, 8.0, 5.0, 7.0, 7.0, 6.0, 12.0,
7.0, 7.0, 9.0, 4.0, 12.0, 6.0, 6.0, 4.0, 3.0, 9.0, 8.0, 8.0,
6.0, 7.0, 9.0, 10.0, 6.0, 8.0, 4.0, 7.0, 7.0, 10.0, 8.0, 8.0,
6.0, 3.0, 8.0, 4.0, 5.0, 7.0, 8.0, 6.0, 6.0, 4.0, 12.0, 9.0,
8.0, 8.0, 8.0, 6.0, 7.0, 4.0, 4.0, 5.0, 7.0]
tested = np.polyfit(x, y, 4)
assert_array_almost_equal(ref, tested)
def hurst(ts):
# Create the range of lag values
window_len = 30
hurst_ts = np.zeros((0,), dtype=np.int)
for tail in range(window_len, len(ts)):
lags = range(1, window_len // 2)
# print(lags)
# Calculate the array of the variances of the lagged differences
cur_ts = ts[max(1, tail - window_len):tail]
# cur_ts = ts[:tail]
tau = [sqrt(std(subtract(cur_ts[lag:], cur_ts[:-lag]))) for lag in lags]
# print("Time series slice len: ",len(cur_ts),len(tau),lags)
# Use a linear fit to estimate the Hurst Exponent
poly = polyfit(log(lags), log(tau), 1)
# Return the Hurst exponent from the polyfit output
# print(poly[0]*2.0)
hurst_ts = np.append(hurst_ts, poly[0] * 2.0)
return hurst_ts
def fit_dimensions(self, data, fit_TTmax = True):
"""
if fit_max is True, use blade length profile to adjust dHS_max
"""
if (fit_TTmax and 'L_blade' in data.columns):
dat = data.dropna(subset=['L_blade'])
xn = self.xn(dat['rank'])
fit = numpy.polyfit(xn,dat['L_blade'],7)
x = numpy.linspace(min(xn), max(xn), 500)
y = numpy.polyval(fit,x)
self.xnmax = x[numpy.argmax(y)]
self.TTmax = self.TTxn(self.xnmax)
self.scale = {k: numpy.mean(data[k] / self.predict(k,data['rank'], data['nff'])) for k in data.columns if k in self.ref.columns}
return self.scale
def horner(circulation_time, times, temp):
'''
horner_bht_temp (circulation_time, times, temp)
*Input parameters:
- circulation_time - hours from last circulation;
- times - total time since circulation stopped at 1st Run, 2nd Run and so on ...
- temp - a list o temperatures coresponding to 1st Run, 2nd Run and so on ...
*Returns:
- horner_temp - formation temperature estimated by Horner method (thermometer readings
from different runs)
*Exemple of usage:
horner(6, (7.0,11.5,19.5), (100,105,108))
where:
circulation_time = 6 # time since circulation stopped (hours)
times = (7.0,11.5,19.5) # total time since circulation stopped at 1st, 2nd, 3rd RUN (hours)
temp=(100,105,108) # temperatures recorded at 1st, 2nd, 3rd RUN (Celsius degrees)
'''
horner_time = np.array(times) / (circulation_time + np.array(times))
slope,intercept = np.polyfit (np.log(horner_time), temp, 1)
horner_temp=round(slope*np.log(1) +intercept,2)
return horner_temp
def vander(points, deg):
"""N-dim Vandermonde matrix for data `points` and a polynomial of degree
`deg`.
Parameters
----------
points : see polyfit()
deg : int
Degree of the poly (e.g. 3 for cubic).
Returns
-------
vander : 2d array (npoints, (deg+1)**ndim)
"""
powers = poly_powers(points.shape[1], deg)
# low memory version, slower
##npoints = points.shape[0]
##vand = np.empty((npoints, (deg+1)**ndim), dtype=float)
##for ipoint in range(npoints):
## vand[ipoint,:] = (points[ipoint]**powers).prod(axis=1)
tmp = (points[...,None] ** np.swapaxes(powers, 0, 1)[None,...])
return tmp.prod(axis=1)
def build_scatter_plot(dframe):
#build scatter plot: stock1 vs. stock2
daily_ret = get_daily_returns(dframe)
symbols = []
for symbol in dframe[0:]:
symbols.append(symbol)
daily_ret.plot(kind='scatter', x=symbols[0], y=symbols[1])
#use ployfit() which needs x-coords and y-coords to fit a line -- y-coords are daily return values
#polyfit() returns first the polynomial coefficient (beta) and second the y intercept (alpha) -- in the form y = mx + b -- m is coefficient and b is intercept
#the idea for plotting is for every value of x we find a value of y using the line equation y = mx +b
beta_stock1, alpha_stock1 = np.polyfit(daily_ret[symbols[1]], daily_ret[symbols[0]], 1)
beta_stock2, alpha_stock2 = np.polyfit(daily_ret[symbols[0]], daily_ret[symbols[1]], 1)
print "beta of ", symbols[0], "= ", beta_stock1
print "alpha of ", symbols[0], "= ", alpha_stock1
print "beta of ", symbols[1], "= ", beta_stock2
print "alpha of ", symbols[1], "= ", alpha_stock2
plt.plot(daily_ret[symbols[0]], beta_stock2 * daily_ret[symbols[0]] + alpha_stock2, '-', color='r')
plt.show()
def fourierExtrapolation(x, n_predict):
n = len(x)
n_harm = 10 # number of harmonics in model
t = np.arange(0, n)
p = np.polyfit(t, x, 1) # find linear trend in x
x_notrend = x - p[0] * t # detrended x
x_freqdom = fft.fft(x_notrend) # detrended x in frequency domain
f = fft.fftfreq(n) # frequencies
indexes = list(range(n))
# sort indexes by frequency, lower -> higher
indexes.sort(key = lambda i: np.absolute(f[i]))
t = np.arange(0, n + n_predict)
restored_sig = np.zeros(t.size)
for i in indexes[:1 + n_harm * 2]:
ampli = np.absolute(x_freqdom[i]) / n # amplitude
phase = np.angle(x_freqdom[i]) # phase
restored_sig += ampli * np.cos(2 * np.pi * f[i] * t + phase)
return restored_sig + p[0] * t
def __call__(self, words, weights, vocabulary_max):
if len(words) < vocabulary_max * self.trigger_ratio:
return words, weights
if not isinstance(words, numpy.ndarray):
words = numpy.array(words)
# Tail optimization does not help with very large vocabularies
if len(words) > vocabulary_max * 2:
indices = numpy.argpartition(weights, len(weights) - vocabulary_max)
indices = indices[-vocabulary_max:]
words = words[indices]
weights = weights[indices]
return words, weights
# Vocabulary typically consists of these three parts:
# 1) the core - we found it's border - `core_end` - 15%
# 2) the body - 70%
# 3) the minor tail - 15%
# (1) and (3) are roughly the same size
# (3) can be safely discarded, (2) can be discarded with care,
# (1) shall never be discarded.
sorter = numpy.argsort(weights)[::-1]
weights = weights[sorter]
trend_start = int(len(weights) * 0.2)
trend_finish = int(len(weights) * 0.8)
z = numpy.polyfit(numpy.arange(trend_start, trend_finish),
numpy.log(weights[trend_start:trend_finish]),
1)
exp_z = numpy.exp(z[1] + z[0] * numpy.arange(len(weights)))
avg_error = numpy.abs(weights[trend_start:trend_finish] -
exp_z[trend_start:trend_finish]).mean()
tail_size = numpy.argmax((numpy.abs(weights - exp_z) < avg_error)[::-1])
weights = weights[:-tail_size][:vocabulary_max]
words = words[sorter[:-tail_size]][:vocabulary_max]
return words, weights
def fit(self, X):
_X = self.__aggregate_dataset(X)
self.polynomial = np.polyfit(_X['expenses'].astype(np.long),
_X['distance_traveled'].astype(np.long),
3)
self._polynomial_fn = np.poly1d(self.polynomial)
return self
def minScalErr(stec,el,z,thisBias):
intel=np.asarray(el[stec.index],int)
sTEC=np.asarray(stec,float)
zmap = z[stec.index]
c=np.array([(i,np.average((sTEC[intel==i]-thisBias)
/zmap[intel==i])) for i in np.unique(intel) if i>30])
return np.polyfit(c[:,0],c[:,1],1)[0]
def trendline(xd, yd, order=1, c='r', alpha=1, plot_r=False, text_pos=None):
"""Make a line of best fit"""
#Calculate trendline
coeffs = np.polyfit(xd, yd, order)
intercept = coeffs[-1]
slope = coeffs[-2]
if order == 2: power = coeffs[0]
else: power = 0
minxd = np.min(xd)
maxxd = np.max(xd)
xl = np.array([minxd, maxxd])
yl = power * xl ** 2 + slope * xl + intercept
#Plot trendline
plt.plot(xl, yl, color=c, alpha=alpha)
#Calculate R Squared
r = sp.stats.pearsonr(xd, yd)[0]
if plot_r == False:
#Plot R^2 value
if text_pos == None:
text_pos = (0.9 * maxxd + 0.1 * minxd, 0.9 * np.max(yd) + 0.1 * np.min(yd),)
plt.text(text_pos[0], text_pos[1], '$R = %0.2f$' % r)
else:
#Return the R^2 value:
return r