Python numpy 模块,matmul() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.matmul()。
def svgd_kernel(self, h = -1):
sq_dist = pdist(self.theta)
pairwise_dists = squareform(sq_dist)**2
if h < 0: # if h < 0, using median trick
h = np.median(pairwise_dists)
h = np.sqrt(0.5 * h / np.log(self.theta.shape[0]+1))
# compute the rbf kernel
Kxy = np.exp( -pairwise_dists / h**2 / 2)
dxkxy = -np.matmul(Kxy, self.theta)
sumkxy = np.sum(Kxy, axis=1)
for i in range(self.theta.shape[1]):
dxkxy[:, i] = dxkxy[:,i] + np.multiply(self.theta[:,i],sumkxy)
dxkxy = dxkxy / (h**2)
return (Kxy, dxkxy)
def KeyGen(**kwargs):
'''
Appendix B of BLISS paper
m_bar = m + n
o/p:
A: Public Key n x m' numpy array
S: Secret Key m'x n numpy array
'''
q, n, m, alpha = kwargs['q'], kwargs['n'], kwargs['m'], kwargs['alpha']
Aq_bar = util.crypt_secure_matrix(-(q-1)/2, (q-1)/2, n, m)
S_bar = util.crypt_secure_matrix(-(2)**alpha, (2)**alpha, m, n) # alpha is small enough, we need not reduce (modq)
S = np.vstack((S_bar, np.eye(n, dtype = int))) # dimension is m_bar x n, Elements are in Z mod(2q)
A = np.hstack((2*Aq_bar, q * np.eye(n, dtype = int) - 2*np.matmul(Aq_bar,S_bar))) # dimension is n x m_bar , Elements are in Z mod(2q)
#return util.matrix_to_Zq(A, 2*q), S, Aq_bar, S_bar
return util.matrix_to_Zq(A, 2*q), S
def test():
# Classical SIS parameters
n, m, alpha, q = 128, 872, 1, 114356107
kappa = 20
#Discrete Gaussian Parameters
sd = 300
eta = 1.2
A, S = KeyGen(q = q,n = n,m = m,alpha = alpha)
#print np.array(np.matmul(A,S) - q*np.eye(n),dtype=float)/(2*q) #to test AS = q mod(2q)
z, c = Sign(msg = "Hello Bob",A = A,S = S,m = m,n = n,sd = sd,q = q,M = 3.0,kappa = kappa)
print z
print c
print Verify(msg = "Hello Bob", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
print Verify(msg = "Hello Robert", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
print Verify(msg = "Hello Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
print Verify(msg = "Hola Roberto", A=A, m=m, n=n, sd=sd, q=q, eta=eta, z=z, c=c, kappa = kappa)
def Verify(**kwargs):
'''
Verification for the signature
i/p:
msg: the string sent by the sender
(z,c): vectors in Zq, the signature
A : numpy array, Verification Key dimension nxm
T : the matrix AS mod q ,it is used in the Verification of the signature
'''
msg, z, c, A, T, sd, eta, m, k, q = kwargs['msg'], kwargs['z'], kwargs['c'], kwargs['A'], kwargs['T'], kwargs['sd'], kwargs['eta'], kwargs['m'], kwargs['k'], kwargs['q']
norm_bound = eta * sd * np.sqrt(m)
# checks for norm of z being small and that H(Az-Tc mod q,msg) hashes to c
vec = util.vector_to_Zq(np.array(np.matmul(A,z) - np.matmul(T,c)), q)
hashedList = util.hash_to_baseb(vec, msg, 3, k)
print hashedList, c
if np.sqrt(z.dot(z)) <= norm_bound and np.array_equal(c, hashedList):
return True
else:
return False
def KeyGen(n, m, k, d, q):
'''
input:
q : polynomial size prime number
n, m, k : dimensions specifiers
d : SIS parameter, hardest instances are where d ~ q^(n/m)
output:
Signing Key S : Matrix of dimension mxk with coefficients in [-d.d]
Verification Key A : Matrix of dimension nxm with coefficients from [-(q-1)/2,(q-1)/2]
T : the matrix AS ,it is used in the Verification of the signature
'''
S = crypt_secure_matrix(d, m, k)
A = crypt_secure_matrix((q-1)/2, n, m)
T = np.matmul(A, S)
return S, A, T
def transfer_color(content, style):
import scipy.linalg as sl
# Mean and covariance of content
content_mean = np.mean(content, axis = (0, 1))
content_diff = content - content_mean
content_diff = np.reshape(content_diff, (-1, content_diff.shape[2]))
content_covariance = np.matmul(content_diff.T, content_diff) / (content_diff.shape[0])
# Mean and covariance of style
style_mean = np.mean(style, axis = (0, 1))
style_diff = style - style_mean
style_diff = np.reshape(style_diff, (-1, style_diff.shape[2]))
style_covariance = np.matmul(style_diff.T, style_diff) / (style_diff.shape[0])
# Calculate A and b
A = np.matmul(sl.sqrtm(content_covariance), sl.inv(sl.sqrtm(style_covariance)))
b = content_mean - np.matmul(A, style_mean)
# Construct new style
new_style = np.reshape(style, (-1, style.shape[2])).T
new_style = np.matmul(A, new_style).T
new_style = np.reshape(new_style, style.shape)
new_style = new_style + b
return new_style
def svgd_kernel(self, theta, h = -1):
sq_dist = pdist(theta)
pairwise_dists = squareform(sq_dist)**2
if h < 0: # if h < 0, using median trick
h = np.median(pairwise_dists)
h = np.sqrt(0.5 * h / np.log(theta.shape[0]+1))
# compute the rbf kernel
Kxy = np.exp( -pairwise_dists / h**2 / 2)
dxkxy = -np.matmul(Kxy, theta)
sumkxy = np.sum(Kxy, axis=1)
for i in range(theta.shape[1]):
dxkxy[:, i] = dxkxy[:,i] + np.multiply(theta[:,i],sumkxy)
dxkxy = dxkxy / (h**2)
return (Kxy, dxkxy)
def run_random_sim(sim, L):
"""
Run *L* simulations of the state space model specified by *sim*
(see :func:`setup_random_sim`). Each simulation is added to *sim*
index by an integer identifier.
"""
sim['L'] = L
for l in range(L):
sim[l] = defaultdict(list)
x_i = sim['mu'] + NP.matmul(sim['PI_sqrt'], NP.random.randn(sim['N']))
for i in range(sim['I']):
sim[l]['x'].append(x_i)
# measurement
v_i = NP.matmul(sim['R_sqrt'][i], NP.random.randn(sim['M']))
sim[l]['y'].append(NP.matmul(sim['H'][i], sim[l]['x'][i]) + v_i)
# time update
u_i = NP.matmul(sim['Q_sqrt'][i], NP.random.randn(sim['N']))
x_i = NP.matmul(sim['F'][i], x_i) + u_i
return sim
def sqrt_kf_sim(sim):
"""
Process each simulation trial generated with
:func:`setup_random_test` with a Kalman filter and return the
posterior state estimates and error covariances.
"""
post = defaultdict(dict)
for l in range(sim['L']):
x_hat_l, P_sqrt_l = sqrt_kalman_filter(sim[l]['y'],
sim['H'],
sim['R_sqrt'],
sim['F'],
sim['Q_sqrt'],
sim['mu'],
sim['PI_sqrt'])
post[l]['x_hat'] = x_hat_l
if l == 0:
post['P'] = [NP.matmul(x, x.T) for x in P_sqrt_l]
post[l]['error'] = []
for x_i, x_hat_i in izip(sim[l]['x'], post[l]['x_hat']):
post[l]['error'].append(x_hat_i - x_i)
return post
def sqrt_kf_tu(x_hat_posterior,
P_sqrt_posterior,
F_i,
Q_sqrt_i,
z_i=None):
"""
Square root Kalman filter time update. Given the following:
- *x_hat_posterior*: posterior state estimate (N)
- *P_sqrt_posterior*: posterior error covariance square root (NxN)
- *F_i*: time update operator (NxN)
- *Q_sqrt_i*: time update noise covariance square root (NxN)
- *z_i*: optional) systematic time update input (N)
Return the tuple containing the one time step prediction of the
state and the square root of the error covariance.
"""
N, _ = F_i.shape
x_hat_prior = NP.matmul(F_i, x_hat_posterior)
if z_i is not None:
x_hat_prior += z_i
A_T = NP.block([NP.matmul(F_i, P_sqrt_posterior), Q_sqrt_i])
R_T = NP.linalg.qr(A_T.T, mode='r')
P_sqrt_prior = R_T.T[:, :N]
return x_hat_prior, P_sqrt_prior
def rotate_ascii_stl(self, rotation_matrix, content, filename):
"""Rotate the mesh array and save as ASCII STL."""
mesh = np.array(content, dtype=np.float64)
# prefix area vector, if not already done (e.g. in STL format)
if len(mesh[0]) == 3:
row_number = int(len(content)/3)
mesh = mesh.reshape(row_number, 3, 3)
# upgrade numpy with: "pip install numpy --upgrade"
rotated_content = np.matmul(mesh, rotation_matrix)
v0 = rotated_content[:, 0, :]
v1 = rotated_content[:, 1, :]
v2 = rotated_content[:, 2, :]
normals = np.cross(np.subtract(v1, v0), np.subtract(v2, v0)) \
.reshape(int(len(rotated_content)), 1, 3)
rotated_content = np.hstack((normals, rotated_content))
tweaked = list("solid %s" % filename)
tweaked += list(map(self.write_facett, list(rotated_content)))
tweaked.append("\nendsolid %s\n" % filename)
tweaked = "".join(tweaked)
return tweaked
def test_exceptions(self):
dims = [
((1,), (2,)), # mismatched vector vector
((2, 1,), (2,)), # mismatched matrix vector
((2,), (1, 2)), # mismatched vector matrix
((1, 2), (3, 1)), # mismatched matrix matrix
((1,), ()), # vector scalar
((), (1)), # scalar vector
((1, 1), ()), # matrix scalar
((), (1, 1)), # scalar matrix
((2, 2, 1), (3, 1, 2)), # cannot broadcast
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
assert_raises(ValueError, self.matmul, a, b)
def test_shapes(self):
dims = [
((1, 1), (2, 1, 1)), # broadcast first argument
((2, 1, 1), (1, 1)), # broadcast second argument
((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
res = self.matmul(a, b)
assert_(res.shape == (2, 1, 1))
# vector vector returns scalars.
for dt in self.types:
a = np.ones((2,), dtype=dt)
b = np.ones((2,), dtype=dt)
c = self.matmul(a, b)
assert_(np.array(c).shape == ())
def test_numpy_ufunc_override(self):
# 2016-01-29: NUMPY_UFUNC_DISABLED
return
class A(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return "A"
class B(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return NotImplemented
a = A([1, 2])
b = B([1, 2])
c = np.ones(2)
assert_equal(self.matmul(a, b), "A")
assert_equal(self.matmul(b, a), "A")
assert_raises(TypeError, self.matmul, b, c)
def get_symmetry_permutation(self):
"""
This a object function to get the permutation group operators.
Represented as a table.
"""
sym_perm = []
numbers = [i for i in range(self.num_count)]
sym_mat = spglib.get_symmetry(self._spg_cell, symprec=self.symprec)
ops = [(r, t) for r, t in zip(sym_mat['rotations'],
sym_mat['translations'])]
for r, t in ops:
pos_new = np.transpose(np.matmul(r, self._positions.T)) + t
perm = self._get_new_id_seq(pos_new, numbers)
sym_perm.append(perm)
return sym_perm
def supercell(self, scale_mat):
"""
Get the supercell of the origin gcell
scale_mat is similar as H matrix in superlattice generator
"""
# return self.__class__(...)
sarr_lat = np.matmul(scale_mat, self.lattice)
# coor_conv_pos = np.matmul(self.positions, self.lattice)
# o_conv_pos = np.matmul(coor_conv_pos, np.linalg.inv(scale_mat))
o_conv_pos = np.matmul(self.positions, np.linalg.inv(scale_mat))
o_pos = self.get_frac_from_mat(scale_mat)
l_of_positions = [i for i in map(lambda x: x+o_pos, list(o_conv_pos))]
pos = np.concatenate(l_of_positions, axis=0)
n = scale_mat.diagonal().prod()
numbers = np.repeat(self.numbers, n)
return self.__class__(sarr_lat, pos, numbers)
def ams_extractor(x, sr, win_len, shift_len, order):
from scipy.signal import hilbert
envelope = np.abs(hilbert(x))
for i in range(order-1):
envelope = np.abs(hilbert(envelope))
envelope = envelope * 1./3.
frames = (len(envelope) - win_len) // shift_len
hanning_window = np.hanning(win_len)
ams_feature = np.zeros(shape=(15, frames))
wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
for i in range(frames):
one_frame = x[i*shift_len:i*shift_len+win_len]
one_frame = one_frame * hanning_window
frame_fft = np.abs(np.fft.fft(one_frame, win_len))
ams_feature[:,i] = np.matmul(wts, frame_fft)
return ams_feature
def ams_extractor(x, sr, win_len, shift_len, order=1, decimate_coef=1./4.):
from scipy.signal import hilbert
envelope = np.abs(hilbert(x))
for i in range(order-1):
envelope = np.abs(hilbert(envelope))
envelope = envelope * decimate_coef
frames = (len(envelope) - win_len) // shift_len
hanning_window = np.hanning(win_len)
ams_feature = np.zeros(shape=(15, frames))
wts = cal_triangle_window(0, sr//2, win_len, 15, 15.6, 400)
for i in range(frames):
one_frame = x[i*shift_len:i*shift_len+win_len]
one_frame = one_frame * hanning_window
frame_fft = np.abs(np.fft.fft(one_frame, win_len))
ams_feature[:,i] = np.matmul(wts, frame_fft)
return ams_feature
def unknown_feature_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
bark_spect = np.matmul(coef, x_spectrum)
ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
for i in range(barks):
channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
if method_version == 'v1':
ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
elif method_version == 'v2':
channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
else:
ams[i, :, :] = np.abs(channel_stft)
return ams
def ams_extractor(x, sr, win_len, shift_len, barks, inner_win, inner_shift, win_type, method_version):
x_spectrum = stft_extractor(x, win_len, shift_len, win_type)
coef = get_fft_bark_mat(sr, win_len, barks, 20, sr//2)
bark_spect = np.matmul(coef, x_spectrum)
ams = np.zeros((barks, inner_win//2+1, (bark_spect.shape[1] - inner_win)//inner_shift))
for i in range(barks):
channel_stft = stft_extractor(bark_spect[i, :], inner_win, inner_shift, 'hanning')
if method_version == 'v1':
ams[i, :, :] = 20 * np.log(np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift]))
elif method_version == 'v2':
channel_amplitude = np.abs(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
channel_angle = np.angle(channel_stft[:inner_win//2+1, :(bark_spect.shape[1] - inner_win)//inner_shift])
channel_angle = channel_angle - (np.floor(channel_angle / (2.*np.pi)) * (2.*np.pi))
ams[i, :, :] = np.power(channel_amplitude, 1./3.) * channel_angle
else:
ams[i, :, :] = np.abs(channel_stft)
return ams
def run_test_matmul_aa_ci8_shape(self, shape, transpose=False):
# **TODO: This currently never triggers the transpose path in the backend
shape_complex = shape[:-1] + (shape[-1] * 2,)
# Note: The xGPU-like correlation kernel does not support input values of -128 (only [-127:127])
a8 = ((np.random.random(size=shape_complex) * 2 - 1) * 127).astype(np.int8)
a_gold = a8.astype(np.float32).view(np.complex64)
if transpose:
a_gold = H(a_gold)
# Note: np.matmul seems to be slow and inaccurate when there are batch dims
c_gold = np.matmul(a_gold, H(a_gold))
triu = np.triu_indices(shape[-2] if not transpose else shape[-1], 1)
c_gold[..., triu[0], triu[1]] = 0
a = a8.view(bf.DataType.ci8)
a = bf.asarray(a, space='cuda')
if transpose:
a = H(a)
c = bf.zeros_like(c_gold, space='cuda')
self.linalg.matmul(1, a, None, 0, c)
c = c.copy('system')
np.testing.assert_allclose(c, c_gold, RTOL, ATOL)
def run_test_matmul_aa_dtype_shape(self, shape, dtype, axes=None, conj=False):
a = ((np.random.random(size=shape)) * 127).astype(dtype)
if axes is None:
axes = range(len(shape))
aa = a.transpose(axes)
if conj:
aa = aa.conj()
c_gold = np.matmul(aa, H(aa))
triu = np.triu_indices(shape[axes[-2]], 1)
c_gold[..., triu[0], triu[1]] = 0
a = bf.asarray(a, space='cuda')
aa = a.transpose(axes)
if conj:
aa = aa.conj()
c = bf.zeros_like(c_gold, space='cuda')
self.linalg.matmul(1, aa, None, 0, c)
c = c.copy('system')
np.testing.assert_allclose(c, c_gold, RTOL, ATOL)
def run_test_matmul_ab_ci8_shape(self, shape, k, transpose=False):
ashape_complex = shape[:-2] + (shape[-2], k * 2)
bshape_complex = shape[:-2] + (k, shape[-1] * 2)
a8 = (np.random.random(size=ashape_complex) * 255).astype(np.int8)
b8 = (np.random.random(size=bshape_complex) * 255).astype(np.int8)
a_gold = a8.astype(np.float32).view(np.complex64)
b_gold = b8.astype(np.float32).view(np.complex64)
if transpose:
a_gold, b_gold = H(b_gold), H(a_gold)
c_gold = np.matmul(a_gold, b_gold)
a = a8.view(bf.DataType.ci8)
b = b8.view(bf.DataType.ci8)
a = bf.asarray(a, space='cuda')
b = bf.asarray(b, space='cuda')
if transpose:
a, b = H(b), H(a)
c = bf.zeros_like(c_gold, space='cuda')
self.linalg.matmul(1, a, b, 0, c)
c = c.copy('system')
np.testing.assert_allclose(c, c_gold, RTOL, ATOL)
def run_benchmark_matmul_aa_correlator_kernel(self, ntime, nstand, nchan):
x_shape = (ntime, nchan, nstand*2)
perm = [1,0,2]
x8 = ((np.random.random(size=x_shape+(2,))*2-1)*127).astype(np.int8)
x = x8.astype(np.float32).view(np.complex64).reshape(x_shape)
x = x.transpose(perm)
b_gold = np.matmul(H(x[:,[0],:]), x[:,[0],:])
triu = np.triu_indices(x_shape[-1], 1)
b_gold[..., triu[0], triu[1]] = 0
x = x8.view(bf.DataType.ci8).reshape(x_shape)
x = bf.asarray(x, space='cuda')
x = x.transpose(perm)
b = bf.zeros_like(b_gold, space='cuda')
bf.device.stream_synchronize();
t0 = time.time()
nrep = 200
for _ in xrange(nrep):
self.linalg.matmul(1, None, x, 0, b)
bf.device.stream_synchronize();
dt = time.time() - t0
nflop = nrep * nchan * ntime * nstand*(nstand+1)/2 * 2*2 * 8
print nstand, '\t', nflop / dt / 1e9, 'GFLOP/s'
print '\t\t', nrep*ntime*nchan / dt / 1e6, 'MHz'
def select_negtive(self, i_feat, s_feat, sess, topN=50):
'''
Select the triplets with the largest losses \n
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
'''
feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
S = np.matmul(i_embed, s_embed.T)
i_feat_pos = i_feat.repeat(topN, axis=0)
s_feat_pos = s_feat.repeat(topN, axis=0)
N = S.shape[0]
np.fill_diagonal(S, -2*np.ones(N))
neg_s_idx = S.argsort(axis=1)[:, -topN:]
neg_i_idx = S.argsort(axis=0)[-topN:, :]
s_feat_neg = s_feat[neg_s_idx.flatten('C')]
i_feat_neg = i_feat[neg_i_idx.flatten('F')]
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
def top_K_loss(self, sentence, image, K=30, margin=0.5):
sim_matrix = tf.matmul(sentence, image, transpose_b=True)
s_square = tf.reduce_sum(tf.square(sentence), axis=1)
im_square = tf.reduce_sum(tf.square(image), axis=1)
d = tf.reshape(s_square,[-1,1]) - 2 * sim_matrix + tf.reshape(im_square, [1, -1])
positive = tf.stack([tf.matrix_diag_part(d)] * K, axis=1)
length = tf.shape(d)[-1]
d = tf.matrix_set_diag(d, 8 * tf.ones([length]))
sen_loss_K ,_ = tf.nn.top_k(-1.0 * d, K, sorted=False) # note: this is negative value
im_loss_K,_ = tf.nn.top_k(tf.transpose(-1.0 * d), K, sorted=False) # note: this is negative value
sentence_center_loss = tf.nn.relu(positive + sen_loss_K + margin)
image_center_loss = tf.nn.relu(positive + im_loss_K + margin)
self.d_neg = (sen_loss_K + im_loss_K)/-2.0
self.d_pos = positive
self.endpoint['debug/im_loss_topK'] = -1.0 * im_loss_K
self.endpoint['debug/sen_loss_topK'] = -1.0 * sen_loss_K
self.endpoint['debug/d_Matrix'] = d
self.endpoint['debug/positive'] = positive
self.endpoint['debug/s_center_loss'] = sentence_center_loss
self.endpoint['debug/i_center_loss'] = image_center_loss
self.endpoint['debug/S'] = sim_matrix
self.endpoint['debug/sentence_square'] = s_square
self.endpoint['debug/image_square'] = im_square
return tf.reduce_sum(sentence_center_loss), tf.reduce_sum(image_center_loss)
def select_negtive(self, i_feat, s_feat, sess, topN=50):
'''
Select the triplets with the largest losses \n
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
'''
feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
S = np.matmul(i_embed, s_embed.T)
i_feat_pos = i_feat.repeat(topN, axis=0)
s_feat_pos = s_feat.repeat(topN, axis=0)
N = S.shape[0]
np.fill_diagonal(S, -2*np.ones(N))
neg_s_idx = S.argsort(axis=1)[:, -topN:]
neg_i_idx = S.argsort(axis=0)[-topN:, :]
s_feat_neg = s_feat[neg_s_idx.flatten('C')]
i_feat_neg = i_feat[neg_i_idx.flatten('F')]
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
def top_K_loss(self, sentence, image, K=30, margin=0.5):
sim_matrix = tf.matmul(sentence, image, transpose_b=True)
s_square = tf.reduce_sum(tf.square(sentence), axis=1)
im_square = tf.reduce_sum(tf.square(image), axis=1)
d = tf.reshape(s_square,[-1,1]) - 2 * sim_matrix + tf.reshape(im_square, [1, -1])
positive = tf.stack([tf.matrix_diag_part(d)] * K, axis=1)
length = tf.shape(d)[-1]
d = tf.matrix_set_diag(d, 8 * tf.ones([length]))
sen_loss_K ,_ = tf.nn.top_k(-1.0 * d, K, sorted=False) # note: this is negative value
im_loss_K,_ = tf.nn.top_k(tf.transpose(-1.0 * d), K, sorted=False) # note: this is negative value
sentence_center_loss = tf.nn.relu(positive + sen_loss_K + margin)
image_center_loss = tf.nn.relu(positive + im_loss_K + margin)
self.d_neg = (sen_loss_K + im_loss_K)/-2.0
self.d_pos = positive
self.endpoint['debug/im_loss_topK'] = -1.0 * im_loss_K
self.endpoint['debug/sen_loss_topK'] = -1.0 * sen_loss_K
self.endpoint['debug/d_Matrix'] = d
self.endpoint['debug/positive'] = positive
self.endpoint['debug/s_center_loss'] = sentence_center_loss
self.endpoint['debug/i_center_loss'] = image_center_loss
self.endpoint['debug/S'] = sim_matrix
self.endpoint['debug/sentence_square'] = s_square
self.endpoint['debug/image_square'] = im_square
return tf.reduce_sum(sentence_center_loss), tf.reduce_sum(image_center_loss)
def conv_feat_map_tensor_gram(conv_fmap_tensor):
"""Compute Gram matrix of conv feature maps.
Used in style transfer.
"""
tf.assert_equal(tf.rank(conv_fmap_tensor), 4)
shape = tf.shape(conv_fmap_tensor)
num_images = shape[0]
width = shape[1]
height = shape[2]
num_filters = shape[3]
filters = tf.reshape(conv_fmap_tensor,
tf.stack([num_images, -1, num_filters]))
grams = tf.matmul(
filters, filters,
transpose_a=True) / tf.to_float(width * height * num_filters)
return grams
def abs_to_rel_f(vector, cell, pbc):
"""
Converts a position vector in absolut coordinates to relative coordinates
for a film system.
"""
# TODO this currently only works if the z-coordinate is the one with no pbc
# Therefore if a structure with x non pbc is given this should also work.
# maybe write a 'tranform film to fleur_film routine'?
if len(vector) == 3:
if pbc[2] == False:
# leave z coordinate absolut
# convert only x and y.
postionR = np.array(vector)
postionR_f = np.array(postionR[:2])
cell_np = np.array(cell)
cell_np = np.array(cell_np[0:2, 0:2])
inv_cell_np = np.linalg.inv(cell_np)
new_xy = [i for i in np.matmul(postionR_f, inv_cell_np)]#np.matmul(inv_cell_np, postionR_f)]
new_rel_pos_f = [new_xy[0], new_xy[1], postionR[2]]
return new_rel_pos_f
else:
print 'FLEUR can not handle this type of film coordinate'
else:
return False
def rel_to_abs_f(vector, cell):
"""
Converts a position vector in interal coordinates to absolut coordinates
in Angstroem for a film structure (2D).
"""
# TODO this currently only works if the z-coordinate is the one with no pbc
# Therefore if a structure with x non pbc is given this should also work.
# maybe write a 'tranform film to fleur_film routine'?
if len(vector) == 3:
postionR = np.array(vector)
postionR_f = np.array(postionR[:2])
#print postionR_f
cell_np = np.array(cell)
cell_np = np.array(cell_np[0:2, 0:2])
#print cell_np
new_xy = [i for i in np.matmul(postionR_f, cell_np)]
new_abs_pos_f = [new_xy[0], new_xy[1], postionR[2]]
return new_abs_pos_f
else:
return False
def test_exceptions(self):
dims = [
((1,), (2,)), # mismatched vector vector
((2, 1,), (2,)), # mismatched matrix vector
((2,), (1, 2)), # mismatched vector matrix
((1, 2), (3, 1)), # mismatched matrix matrix
((1,), ()), # vector scalar
((), (1)), # scalar vector
((1, 1), ()), # matrix scalar
((), (1, 1)), # scalar matrix
((2, 2, 1), (3, 1, 2)), # cannot broadcast
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
assert_raises(ValueError, self.matmul, a, b)
def test_shapes(self):
dims = [
((1, 1), (2, 1, 1)), # broadcast first argument
((2, 1, 1), (1, 1)), # broadcast second argument
((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
res = self.matmul(a, b)
assert_(res.shape == (2, 1, 1))
# vector vector returns scalars.
for dt in self.types:
a = np.ones((2,), dtype=dt)
b = np.ones((2,), dtype=dt)
c = self.matmul(a, b)
assert_(np.array(c).shape == ())
def test_numpy_ufunc_override(self):
# 2016-01-29: NUMPY_UFUNC_DISABLED
return
class A(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return "A"
class B(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return NotImplemented
a = A([1, 2])
b = B([1, 2])
c = np.ones(2)
assert_equal(self.matmul(a, b), "A")
assert_equal(self.matmul(b, a), "A")
assert_raises(TypeError, self.matmul, b, c)
def mul(self, matrix):
'''Multiply this matrix by `matrix`
The order of operation is: `this @ matrix`.
*Parameters:*
- `matrix`: `Matrix4`
'''
# Make a matrix4 shape to matmul function
view1 = np.reshape(self._values, (4, 4))
view2 = np.reshape(matrix.values, (4, 4))
self.tmp.shape = (4, 4)
# np.matmul(view2, view1, out=out)
np.matmul(view2, view1, out=self.tmp)
self.tmp.shape = (16,)
self._values[:] = self.tmp
return self
def select_negtive(self, i_feat, s_feat, sess, topN=50):
'''
Select the triplets with the largest losses \n
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
'''
feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
S = np.matmul(i_embed, s_embed.T)
i_feat_pos = i_feat.repeat(topN, axis=0)
s_feat_pos = s_feat.repeat(topN, axis=0)
N = S.shape[0]
np.fill_diagonal(S, -2*np.ones(N))
neg_s_idx = S.argsort(axis=1)[:, -topN:]
neg_i_idx = S.argsort(axis=0)[-topN:, :]
s_feat_neg = s_feat[neg_s_idx.flatten('C')]
i_feat_neg = i_feat[neg_i_idx.flatten('F')]
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
def select_negtive(self, i_feat, s_feat, sess, topN=50):
'''
Select the triplets with the largest losses \n
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
'''
feed_dict = {self.image_feat: i_feat, self.sentence_feat:s_feat}
i_embed, s_embed = sess.run([self.image_fc2, self.sentence_fc2], feed_dict=feed_dict)
S = np.matmul(i_embed, s_embed.T)
i_feat_pos = i_feat.repeat(topN, axis=0)
s_feat_pos = s_feat.repeat(topN, axis=0)
N = S.shape[0]
np.fill_diagonal(S, -2*np.ones(N))
neg_s_idx = S.argsort(axis=1)[:, -topN:]
neg_i_idx = S.argsort(axis=0)[-topN:, :]
s_feat_neg = s_feat[neg_s_idx.flatten('C')]
i_feat_neg = i_feat[neg_i_idx.flatten('F')]
return i_feat_pos, s_feat_pos, i_feat_neg, s_feat_neg
def get_xyz(interface, xyz_from_camera):
angles = interface.current_status.angles[0:3]
# Get current XYZ
P0t = DobotModel.forward_kinematics(angles)
# Getting Desired XYZ of end effector
Pct = np.array(CAMERA_OFFSET)
R0t = DobotModel.R0T(angles)
Rtc = np.array([[0, 1, 0], [1, 0, 0], [0, 0, -1]])
R0c = np.matmul(R0t, Rtc)
Pta = np.matmul(R0c, xyz_from_camera) - np.matmul(R0c, Pct)
target = np.reshape(Pta, (3, 1)) + np.reshape(P0t, (3, 1))
return target
# FUNCTION: Touch - Place the end effector on top of an AR tag
# AR TAGS: DUCKY = 0 DUCKYBOT = 1 OBSTACLE = 2
def __compute_valid_convolution_nd(data, kernel, dimension: int):
convolution_shape = tuple(data.shape[i] - kernel.shape[i] + 1 for i in range(-1, -dimension - 1, -1))
list_dimension = reduce(lambda a, b: a * b, convolution_shape)
data_prefix = data.shape[:-dimension]
kernel_flat = kernel.ravel()
data_flat = numpy.zeros(data_prefix + (list_dimension, len(kernel_flat)))
for i in range(list_dimension):
tensor_slice_start = [0] * len(kernel.shape)
tensor_slice = [slice(None)] * len(data.shape)
tensor_slice_start[-1] = i
for r in range(-1, -len(kernel.shape) - 1, -1):
dimension_scale = data.shape[r] - kernel.shape[r] + 1
if tensor_slice_start[r] >= dimension_scale:
tensor_slice_start[r + 1] = tensor_slice_start[r] // dimension_scale
tensor_slice_start[r] %= dimension_scale
tensor_slice[r] = slice(tensor_slice_start[r], tensor_slice_start[r] + kernel.shape[r])
sub_convolution_index = (slice(None),) * (len(data.shape) - dimension) + tuple([i, slice(None)])
data_flat[sub_convolution_index] = data[tensor_slice].reshape(data_prefix + (reduce(lambda a, b: a * b, kernel.shape),))
convolution_flat = numpy.matmul(data_flat, numpy.flip(kernel_flat, axis=0))
convolution_nd = convolution_flat.reshape(data_prefix + convolution_shape)
return convolution_nd
def test_matmul_two_vars():
x2 = ad.Variable(name='x2')
x3 = ad.Variable(name='x3')
y = ad.matmul(x2, x3)
grad_x2, grad_x3 = ad.gradients(y, [x2, x3])
executor = ad.Executor([y, grad_x2, grad_x3])
x2_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2
x3_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3
y_val, grad_x2_val, grad_x3_val = executor.run(feed_shapes={x2: x2_val, x3: x3_val})
expected_yval = np.matmul(x2_val, x3_val)
expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(x3_val))
expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval))
assert isinstance(y, ad.Node)
assert np.array_equal(y_val, expected_yval)
assert np.array_equal(grad_x2_val, expected_grad_x2_val)
assert np.array_equal(grad_x3_val, expected_grad_x3_val)
def test_matmul_var_and_param():
x2 = ad.Variable(name="x2")
w2_val = np.array([[7, 8, 9], [10, 11, 12]]) # 2x3
w2 = ad.Parameter(name="w2", init=w2_val)
y = ad.matmul(x2, w2)
grad_x2, grad_w2 = ad.gradients(y, [x2, w2])
executor = ad.Executor([y, grad_x2, grad_w2])
x2_val = np.array([[1, 2], [3, 4], [5, 6]]) # 3x2
y_val, grad_x2_val, grad_w2_val = executor.run(feed_shapes={x2: x2_val})
expected_yval = np.matmul(x2_val, w2_val)
expected_grad_x2_val = np.matmul(np.ones_like(expected_yval), np.transpose(w2_val))
expected_grad_x3_val = np.matmul(np.transpose(x2_val), np.ones_like(expected_yval))
assert isinstance(y, ad.Node)
# assert np.array_equal(y_val, expected_yval)
# assert np.array_equal(grad_x2_val, expected_grad_x2_val)
# assert np.array_equal(grad_w2_val, expected_grad_x3_val)
def output_step_scan(self, dummy, new_state):
if self.dale_ratio:
new_output = tf.matmul(
tf.nn.relu(new_state),
tf.matmul(
tf.abs(self.W_out) * self.output_Connectivity,
self.Dale_out,
name="in_2"),
transpose_b=True, name="3")\
+ self.b_out
else:
new_output = tf.matmul(tf.nn.relu(new_state), self.W_out * self.output_Connectivity,
transpose_b=True, name="3") + self.b_out
return new_output
def gradient(x0, X, y, alpha):
# gradient of the logistic loss
w, c = x0[1:137], x0[0]
#print("c is " + str(c))
z = X.dot(w) + c
z = phi(y * z)
z0 = (z - 1) * y
grad_w = np.matmul(z0,X) / X.shape[0] + alpha * w
grad_c = z0.sum() / X.shape[0]
grad_c = np.array(grad_c)
#print(grad_w[0,1:5])
return np.c_[([grad_c], grad_w)]
##### Stochastic Gradient Descent Optimiser ######
def gradient(x0, X, y, alpha):
# gradient of the logistic loss
w, c = x0[1:137], x0[0]
#print("c is " + str(c))
z = X.dot(w) + c
z = phi(y * z)
z0 = (z - 1) * y
grad_w = np.matmul(z0,X) / X.shape[0] + alpha * w
grad_c = z0.sum() / X.shape[0]
grad_c = np.array(grad_c)
#print(grad_w[0,1:5])
return np.c_[([grad_c], grad_w)]
##### Stochastic Gradient Descent Optimiser ######
def test_exceptions(self):
dims = [
((1,), (2,)), # mismatched vector vector
((2, 1,), (2,)), # mismatched matrix vector
((2,), (1, 2)), # mismatched vector matrix
((1, 2), (3, 1)), # mismatched matrix matrix
((1,), ()), # vector scalar
((), (1)), # scalar vector
((1, 1), ()), # matrix scalar
((), (1, 1)), # scalar matrix
((2, 2, 1), (3, 1, 2)), # cannot broadcast
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
assert_raises(ValueError, self.matmul, a, b)
def test_shapes(self):
dims = [
((1, 1), (2, 1, 1)), # broadcast first argument
((2, 1, 1), (1, 1)), # broadcast second argument
((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
res = self.matmul(a, b)
assert_(res.shape == (2, 1, 1))
# vector vector returns scalars.
for dt in self.types:
a = np.ones((2,), dtype=dt)
b = np.ones((2,), dtype=dt)
c = self.matmul(a, b)
assert_(np.array(c).shape == ())
def test_numpy_ufunc_override(self):
# Temporarily disable __numpy_ufunc__ for 1.10; see gh-5844
return
class A(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return "A"
class B(np.ndarray):
def __new__(cls, *args, **kwargs):
return np.array(*args, **kwargs).view(cls)
def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs):
return NotImplemented
a = A([1, 2])
b = B([1, 2])
c = np.ones(2)
assert_equal(self.matmul(a, b), "A")
assert_equal(self.matmul(b, a), "A")
assert_raises(TypeError, self.matmul, b, c)
def precalc(C, R, x_bar_list, P_bar_list):
assert C.ndim == 2
assert R.ndim == 2
nMeasurement, nStates = x_bar_list.shape
nObservableState = C.shape[0]
z_hat_list = C.dot(x_bar_list.T).T
S_list = np.matmul(np.matmul(C, P_bar_list), C.T) + R
S_inv_list = np.linalg.inv(S_list)
K_list = np.matmul(np.matmul(P_bar_list, C.T), S_inv_list)
P_hat_list = P_bar_list - np.matmul(K_list.dot(C), P_bar_list)
assert z_hat_list.shape == (nMeasurement, nObservableState), "z_hat ERROR"
assert S_list.shape == (nMeasurement, nObservableState, nObservableState), "S ERROR"
assert S_inv_list.shape == S_list.shape, "S_inv ERROR"
assert K_list.shape == (nMeasurement, nStates, nObservableState)
assert P_hat_list.shape == P_bar_list.shape, "P_hat ERROR"
return z_hat_list, S_list, S_inv_list, K_list, P_hat_list
def correlation(task,load=True):
self = mytask
if load:
self.initialize(_load=True, _logging=False, _log_dir='other/')
data = []
for batch in self.iterate_minibatches('valid'):
xtrain, ytrain = batch
ytrain = np.eye(10)[ytrain]
feed_dict = {self.x: xtrain, self.y: ytrain, self.sigma0: 1., self.initial_keep_prob: task['initial_keep_prob'], self.is_training: False}
z = tf.get_collection('log_network')[-1]
batch_z = self.sess.run( z, feed_dict)
data.append(batch_z)
data = np.vstack(data)
data = data.reshape(data.shape[0],-1)
def normal_tc(c0):
c1i = np.diag(1./np.diag(c0))
p = np.matmul(c1i,c0)
return - .5 * np.linalg.slogdet(p)[1] / c0.shape[0]
c0 = np.cov( data, rowvar=False )
tc = normal_tc(c0)
print "Total correlation: %f" % tc
def test_exceptions(self):
dims = [
((1,), (2,)), # mismatched vector vector
((2, 1,), (2,)), # mismatched matrix vector
((2,), (1, 2)), # mismatched vector matrix
((1, 2), (3, 1)), # mismatched matrix matrix
((1,), ()), # vector scalar
((), (1)), # scalar vector
((1, 1), ()), # matrix scalar
((), (1, 1)), # scalar matrix
((2, 2, 1), (3, 1, 2)), # cannot broadcast
]
for dt, (dm1, dm2) in itertools.product(self.types, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
assert_raises(ValueError, self.matmul, a, b)