Python numpy 模块,Inf() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.Inf()。
def _ncc_c(x, y):
"""
>>> _ncc_c([1,2,3,4], [1,2,3,4])
array([ 0.13333333, 0.36666667, 0.66666667, 1. , 0.66666667,
0.36666667, 0.13333333])
>>> _ncc_c([1,1,1], [1,1,1])
array([ 0.33333333, 0.66666667, 1. , 0.66666667, 0.33333333])
>>> _ncc_c([1,2,3], [-1,-1,-1])
array([-0.15430335, -0.46291005, -0.9258201 , -0.77151675, -0.46291005])
"""
den = np.array(norm(x) * norm(y))
den[den == 0] = np.Inf
x_len = len(x)
fft_size = 1<<(2*x_len-1).bit_length()
cc = ifft(fft(x, fft_size) * np.conj(fft(y, fft_size)))
cc = np.concatenate((cc[-(x_len-1):], cc[:x_len]))
return np.real(cc) / den
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def SLcomputeSNR(X, Xnoisy):
"""
SLcomputeSNR Compute signal to noise ratio (SNR).
Usage:
SNR = SLcomputeSNR(X, Xnoisy)
Input:
X: 2D or 3D signal.
Xnoisy: 2D or 3D noisy signal.
Output:
SNR: The signal to noise ratio (in dB).
"""
if np.linalg.norm(X-Xnoisy) == 0:
return np.Inf
else:
return 10 * np.log10( np.sum(np.power(X,2)) / np.sum(np.power(X-Xnoisy,2)) )
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def __init__(self,shape,z0rep_axes=(0,), z1rep_axes=(0,), map_est=False):
Estim.__init__(self)
self.shape = shape
ndim = len(shape)
if z0rep_axes == 'all':
z0rep_axes = tuple(range(ndim))
if z1rep_axes == 'all':
z1rep_axes = tuple(range(ndim))
self.z0rep_axes = z0rep_axes
self.z1rep_axes = z1rep_axes
self.cost_avail = True
self.map_est = map_est
# Initial variances
self.zvar0_init= np.Inf
self.zvar1_init= np.Inf
def __init__(self,y,shape,zrep_axes=(0,),thresh=0,perr=1e-6,\
var_init=np.Inf):
Estim.__init__(self)
self.y = y
self.shape = shape
self.thresh = thresh
self.perr = perr
self.cost_avail = True
self.var_init = var_init
# Set the repetition axes
ndim = len(self.shape)
if zrep_axes == 'all':
zrep_axes = tuple(range(ndim))
self.zrep_axes = zrep_axes
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode),
RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def test_invalid_nbins():
with raises(ValueError):
ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.NaN)
with raises(ValueError):
ew = graynet.extract(subject_id_list, fs_dir, num_bins=np.Inf)
with raises(ValueError):
ew = graynet.extract(subject_id_list, fs_dir, num_bins=2)
# test_multi_edge()
# test_multi_edge_CLI()
# test_empty_subject_list()
# test_run_no_IO()
# test_run_roi_stats_via_API()
# test_run_roi_stats_via_CLI()
# test_CLI_only_weight_or_stats()
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in xrange(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in xrange(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def update(self, decision):
for context in self.contexts:
if decision in self.contexts[context]:
self.contexts_scores[context] += eta + np.random.randn()*1e-5
# special condition for names:
if decision in women_names:
self.women_names_score = np.Inf
self.men_names_score = 0.
self.robots_names_score = -1.
if decision in men_names:
self.women_names_score = 0.
self.men_names_score = np.Inf
self.robots_names_score = -1.
if decision in robots_names:
self.women_names_score = np.random.randn()*1e-5
self.men_names_score = np.random.randn()*1e-5
self.robots_names_score = np.Inf
self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
def update(self, decision):
for context in self.contexts:
if decision in self.contexts[context]:
self.contexts_scores[context] += eta + np.random.randn()*1e-5
# special condition for names:
if decision in women_names:
self.women_names_score = np.Inf
self.men_names_score = 0.
self.robots_names_score = -1.
if decision in men_names:
self.women_names_score = 0.
self.men_names_score = np.Inf
self.robots_names_score = -1.
if decision in robots_names:
self.women_names_score = np.random.randn()*1e-5
self.men_names_score = np.random.randn()*1e-5
self.robots_names_score = np.Inf
self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
def update(self, decision, weight):
for context in CONTEXTS:
if decision in CONTEXTS[context]:
self.contexts_scores[context] += weight + np.random.randn()*1e-5
# special condition for names:
if decision in women_names:
self.women_names_score = np.Inf
self.men_names_score = 0.
self.robots_names_score = -1.
if decision in men_names:
self.women_names_score = 0.
self.men_names_score = np.Inf
self.robots_names_score = -1.
if decision in robots_names:
self.women_names_score = np.random.randn()*1e-5
self.men_names_score = np.random.randn()*1e-5
self.robots_names_score = np.Inf
self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
def update(self, decision):
for context in self.contexts:
if decision in self.contexts[context]:
self.contexts_scores[context] += eta + np.random.randn()*1e-5
# special condition for names:
if decision in women_names:
self.women_names_score = np.Inf
self.men_names_score = 0.
self.robots_names_score = -1.
if decision in men_names:
self.women_names_score = 0.
self.men_names_score = np.Inf
self.robots_names_score = -1.
if decision in robots_names:
self.women_names_score = np.random.randn()*1e-5
self.men_names_score = np.random.randn()*1e-5
self.robots_names_score = np.Inf
self.most_likely_context = max(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
self.less_likely_context = min(self.contexts_scores.iteritems(), key=operator.itemgetter(1))[0]
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# define required options
if not 'pBins' in self.opt:
self.opt['pBins']=10
if not 'inertia' in self.opt:
self.opt['inertia']=0.5
if not 'c1' in self.opt:
self.opt['c1']=0.6
if not 'c2' in self.opt:
self.opt['c2']=0.3
if not 'c3' in self.opt:
self.opt['c3']=0.001
if self.opt['c3']==0:
self.opt['c3']=1E-5
# define required variables
self.pBestIdxs=np.arange(self.opt['population'], dtype=np.int32)
self.gBestIdxs=np.arange(self.opt['population'], dtype=np.int32)
self.velocities=np.zeros((self.opt['population'],self.opt['nVars']))
tmp=np.hstack((-np.Inf, np.linspace(0,1, num=self.opt['pBins'])))
self.pBins=np.vstack((tmp[0:-1],tmp[1:]))
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
logging.warning('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode))
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def _get_best_trial(filename, cut=None):
try:
fh = open(filename, "r")
trials = cPickle.load(fh)
fh.close()
current_best = numpy.Inf
best_idx = 0
if cut is None:
cut = len(trials['trials'])
print filename, "#Trials", len(trials['trials'])
for i, trial in enumerate(trials['trials'][:cut]):
result = trial['result']
if result < current_best:
best_idx = i
current_best = result
if current_best == numpy.Inf:
raise Exception("%s does not contain any results" % filename)
return current_best, best_idx
except Exception as e:
print "Problem with ", filename, e
sys.stdout.flush()
return None, None
# TODO: Don't know whether this is longer needed
def plot_all_times_to_correct_decision(self,thr=0.5,stay_above=True,unit="spikes",spikemeasure="growing_spikecount", do_title=True):
times = np.array([self.time_to_correct_decision(e,thr,stay_above,unit,spikemeasure) for e in self.experiments]).flatten()
# times[30:50] = np.Inf
maximum = int(np.ceil(max(times[times!=np.Inf])))
plt_inf = maximum+2 # for unsuccessful trials (time=Inf), set time to some value distinct from any actual decision time.
times[times==np.Inf] = plt_inf
fig = plt.figure(figsize=(hcPlotting.fig_width,hcPlotting.fig_height/3))
bins = np.hstack([np.arange(0.25,maximum+1,0.5),[plt_inf,plt_inf+1]])
n,_,_ = plt.hist(times,bins,color='k',edgecolor='w')
ax = plt.gca()
ax.set_xlim((0,plt_inf+1))
ax.set_ylim(ax.get_ylim()[0],ax.get_ylim()[1]+1)
plt.plot((plt_inf,plt_inf),(0,ax.get_ylim()[1]),'r')
ax.set_xticks(range(maximum+1)+[plt_inf+0.5])
ax.set_xticklabels([str(i) for i in range(maximum+1)]+[r'$\infty$'])
ax.set_ylabel("nr. of trials")
ax.set_xlabel("spikes observed before classification")
if do_title:
plt.title("thr = "+str(thr)+", stay_above = "+str(stay_above)+", classes: " +" vs. ".join(self.classes))
def __init__(self, monitor='val_loss', patience=0, verbose=0, mode='auto'):
super(Callback, self).__init__()
self.monitor = monitor
self.patience = patience
self.verbose = verbose
self.wait = 0
self.best_epoch = 0
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def __init__(self, monitor='val_loss', mode='auto', verbose=0):
super(BestWeight, self).__init__()
self.monitor = monitor
self.mode = mode
self.best_weights = None
self.verbose = verbose
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode),
RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def process_questions(C, all_words, n):
scores = dist_function[0](C[:, all_words], W[all_words, :], W2)
worst = -dist_function[1]*numpy.Inf
for i in range(C.shape[0]):
scores[i, C[i, :].nonzero()[1]] = worst
if dist_function[1] > 0:
hits = scores.argpartition(-n, axis=1)[:, -n:]
answers = [sorted(hits[i], key=lambda hit: scores[i, hit], reverse=True) for i in range(len(hits))]
else:
hits = scores.argpartition(n, axis=1)[:, :n]
answers = [sorted(hits[i], key=lambda hit: scores[i, hit], reverse=False) for i in range(len(hits))]
if args.log_level > 1:
small_scores = [scores[i, answers[i]] for i in xrange(hits.shape[0])]
else:
small_scores = None
return answers, small_scores
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode),
RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def __init__(self, filepath, monitor='val_loss', verbose=0, save_best_only=False, mode='auto'):
super(Callback, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
if mode not in ['auto', 'min', 'max']:
warnings.warn("ModelCheckpoint mode %s is unknown, fallback to auto mode" % (self.mode), RuntimeWarning)
mode = 'auto'
if mode == "min":
self.monitor_op = np.less
self.best = np.Inf
elif mode == "max":
self.monitor_op = np.greater
self.best = -np.Inf
else:
if "acc" in self.monitor:
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def _reset(self):
"""Resets wait counter and cooldown counter.
"""
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode),
RuntimeWarning)
self.mode = 'auto'
if (self.mode == 'min' or
(self.mode == 'auto' and 'acc' not in self.monitor)):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def parse_location_string(loc_string):
"""
Parse a UCSC format location string (e.g. "chr2:1000-1100") and return
an interval tuple in the format ('chr2', 1000, 1100).
:param loc_string: Input location string
:type loc_string: :ref:`location string <location_string>`
:returns: (chromosome name, start coordinate, stop coordinate)
"""
chrom_fields = loc_string.split(':')
chrom = chrom_fields[0]
if len(chrom_fields) == 1:
start, stop = 0, np.Inf
else:
pos_fields = chrom_fields[1].split('-')
start, stop = (int(pos.replace(",", "")) for pos in pos_fields)
return chrom, start, stop
def initialize(self, length=None):
"""see ``__init__``"""
if length is None:
length = len(self.bounds)
max_i = min((len(self.bounds) - 1, length - 1))
self._lb = array([self.bounds[min((i, max_i))][0]
if self.bounds[min((i, max_i))][0] is not None
else -np.Inf
for i in range(length)], copy=False)
self._ub = array([self.bounds[min((i, max_i))][1]
if self.bounds[min((i, max_i))][1] is not None
else np.Inf
for i in range(length)], copy=False)
lb = self._lb
ub = self._ub
# define added values for lower and upper bound
self._al = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(lb[i])) / 20])
if isfinite(lb[i]) else 1 for i in rglen(lb)], copy=False)
self._au = array([min([(ub[i] - lb[i]) / 2, (1 + np.abs(ub[i])) / 20])
if isfinite(ub[i]) else 1 for i in rglen(ub)], copy=False)
def __init__(self, monitor='val_loss', cut_ratio=0.5, patience=2, scheduled_start_epoch=1, scheduled_cut_ratio=1.):
"""
Args:
monitor: quantity to be monitored.
cut_ratio: cut the learning rate by this percent.
patience: number of epochs with no improvement
after which training will be stopped.
scheduled_start_epoch: from which epoch to do scheduled learning rate discount
scheduled_cut_ratio: learning rate discount ratio.
"""
super(Callback, self).__init__()
self.monitor = monitor
self.patience = patience
self.best = np.Inf
self.wait = 0
self.cut_ratio = cut_ratio
self.monitor_decrease = False
self.scheduled_start_epoch = scheduled_start_epoch
self.scheduled_cut_ratio = scheduled_cut_ratio
def _get_bounds(self, ib, dimension):
"""ib == 0/1 means lower/upper bound, return a vector of length
`dimension` """
sign_ = 2 * ib - 1
assert sign_**2 == 1
if self.bounds is None or self.bounds[ib] is None:
return np.array(dimension * [sign_ * np.Inf])
res = []
for i in range(dimension):
res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
if res[-1] is None:
res[-1] = sign_ * np.Inf
return np.array(res)
def solve_static(self, F, up_, Dirichlet_bcs_up):
# Solve stationary Navier-Stokes problem with Picard method
# other methods may be more acurate and faster
iter_ = 0
max_iter = 50
eps = 1.0
tol = 1E-3
under_relax_ratio = 0.7
up_temp = Function(self.function_space) # a temporal to save value in the Picard loop
timer_solver = Timer("TimerSolveStatic")
timer_solver.start()
while (iter_ < max_iter and eps > tol):
# solve the linear stokes flow to avoid up_s = 0
up_temp.assign(up_)
# other solving methods
up_ = self.solve_linear_problem(F, up_, Dirichlet_bcs_up)
#up_s = self.solve_amg(F, Dirichlet_bcs_up, up_s) # AMG is not working with mixed function space
diff_up = up_.vector().array() - up_temp.vector().array()
eps = np.linalg.norm(diff_up, ord=np.Inf)
print("iter = {:d}; eps_up = {:e}; time elapsed = {}\n".format(iter_, eps, timer_solver.elapsed()))
## underreleax should be defined here, Courant number,
up_.vector()[:] = up_temp.vector().array() + diff_up * under_relax_ratio
iter_ += 1
## end of Picard loop
timer_solver.stop()
print("*" * 10 + " end of Navier-Stokes equation iteration" + "*" * 10)
return up_
def gen(N, df, thinning=1):
log_den = log_normal
if df < np.Inf:
log_den = grad_log_t_df(df)
return metropolis_hastings(log_den, chain_size=N, thinning=thinning, x_prev=np.random.randn(), step=0.5)
# estimate size of thinning
def get_thinning(X, nlags=50):
autocorrelation = acf(X, nlags=nlags, fft=True)
thinning = np.argmin(np.abs(autocorrelation - 0.95)) + 1
return thinning, autocorrelation
#
# X = gen(TEST_CHAIN_SIZE, np.Inf)
# thinning, autocorr = get_thinning(X)
# print('thinning for AR normal simulation ', thinning, autocorr[thinning])
def __init__(self, custom_model, filepath, monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto', period=1):
super(CustomModelCheckpoint, self).__init__()
self.custom_model = custom_model
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_save = 0
if mode not in ['auto', 'min', 'max']:
warnings.warn('CustomModelCheckpoint mode %s is unknown, '
'fallback to auto mode.' % (mode),
RuntimeWarning)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor or self.monitor.startswith('fmeasure'):
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def test_axis(self):
# Vector norms.
# Compare the use of `axis` with computing the norm of each row
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
# Matrix norms.
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
nd = B.ndim
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
for axis in itertools.combinations(range(-nd, nd), 2):
row_axis, col_axis = axis
if row_axis < 0:
row_axis += nd
if col_axis < 0:
col_axis += nd
if row_axis == col_axis:
assert_raises(ValueError, norm, B, ord=order, axis=axis)
else:
n = norm(B, ord=order, axis=axis)
# The logic using k_index only works for nd = 3.
# This has to be changed if nd is increased.
k_index = nd - (row_axis + col_axis)
if row_axis < col_axis:
expected = [norm(B[:].take(k, axis=k_index), ord=order)
for k in range(B.shape[k_index])]
else:
expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
for k in range(B.shape[k_index])]
assert_almost_equal(n, expected)
def test_keepdims(self):
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
allclose_err = 'order {0}, axis = {1}'
shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
# check the order=None, axis=None case
expected = norm(A, ord=None, axis=None)
found = norm(A, ord=None, axis=None, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(None, None))
expected_shape = (1, 1, 1)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, None, None))
# Vector norms.
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
for k in range(A.ndim):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(order, k))
expected_shape = list(A.shape)
expected_shape[k] = 1
expected_shape = tuple(expected_shape)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k))
# Matrix norms.
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
for k in itertools.permutations(range(A.ndim), 2):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(order, k))
expected_shape = list(A.shape)
expected_shape[k[0]] = 1
expected_shape[k[1]] = 1
expected_shape = tuple(expected_shape)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k))
def power_plot(data, sfreq, toffset, log_scale, zscale, title):
"""Plot the computed power of the iq data."""
print("power")
t_axis = numpy.arange(0, len(data)) / sfreq + toffset
if log_scale:
lrxpwr = 10 * numpy.log10(data + 1E-12)
else:
lrxpwr = data
zscale_low, zscale_high = zscale
if zscale_low == 0 and zscale_high == 0:
if log_scale:
zscale_low = numpy.min(
lrxpwr[numpy.where(lrxpwr.real != -numpy.Inf)])
zscale_high = numpy.max(lrxpwr) + 3.0
else:
zscale_low = numpy.min(lrxpwr)
zscale_high = numpy.max(lrxpwr)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(t_axis, lrxpwr.real)
ax.grid(True)
ax.axis([toffset, t_axis[len(t_axis) - 1], zscale_low, zscale_high])
ax.set_xlabel('time (seconds)')
if log_scale:
ax.set_ylabel('power (dB)')
else:
ax.set_ylabel('power')
ax.set_title(title)
return fig
def spectrum_plot(data, freq, cfreq, toffset, log_scale, zscale, title, clr):
"""Plot a spectrum from the data for a given fft bin size."""
print("spectrum")
tail_str = ''
if log_scale:
# pss = 10.0*numpy.log10(data / numpy.max(data))
pss = 10.0 * numpy.log10(data + 1E-12)
tail_str = ' (dB)'
else:
pss = data
print freq
freq_s = freq / 1.0E6 + cfreq / 1.0E6
print freq_s
zscale_low, zscale_high = zscale
if zscale_low == 0 and zscale_high == 0:
if log_scale:
zscale_low = numpy.median(
numpy.min(pss[numpy.where(pss.real != -numpy.Inf)])) - 3.0
zscale_high = numpy.median(numpy.max(pss)) + 3.0
else:
zscale_low = numpy.median(numpy.min(pss))
zscale_high = numpy.median(numpy.max(pss))
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(freq_s, pss, clr)
print freq_s[0], freq_s[-1], zscale_low, zscale_high
ax.axis([freq_s[0], freq_s[-1], zscale_low, zscale_high])
ax.grid(True)
ax.set_xlabel('frequency (MHz)')
ax.set_ylabel('power spectral density' + tail_str, fontsize=12)
ax.set_title(title)
return fig
def rti_plot(data, extent, tick_locs, tick_labels, log_scale, zscale, title):
# set to log scaling
if log_scale:
RTId = 10.0 * numpy.log10(data)
else:
RTId = data
zscale_low, zscale_high = zscale
if zscale_low == 0 and zscale_high == 0:
if log_scale:
zscale_low = numpy.median(
numpy.min(RTId[numpy.where(RTId.real != -numpy.Inf)])) - 3.0
zscale_high = numpy.median(numpy.max(RTId)) + 10.0
else:
zscale_low = numpy.median(numpy.min(RTId))
zscale_high = numpy.median(numpy.max(RTId))
vmin = zscale_low
vmax = zscale_high
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
img = ax.imshow(RTId, origin='lower',
extent=extent, interpolation='none', vmin=vmin, vmax=vmax, aspect='auto')
# plot dates
ax.set_xticks(tick_locs)
ax.set_xticklabels(tick_labels, rotation=-45, fontsize=10)
cb = fig.colorbar(img, ax=ax)
ax.set_xlabel('time (seconds)', fontsize=12)
ax.set_ylabel('range (km)', fontsize=12)
ax.set_title(title)
return fig
def __init__(self, filepath, monitor='val_loss', verbose=0,
save_best_only=False, save_weights_only=False,
mode='auto'):
super(ModelCheckpoint, self).__init__()
self.monitor = monitor
self.verbose = verbose
self.filepath = filepath
self.save_best_only = save_best_only
self.save_weights_only = save_weights_only
if mode not in ['auto', 'min', 'max']:
warnings.warn('ModelCheckpoint mode %s is unknown, '
'fallback to auto mode.' % (mode),
RuntimeWarning)
mode = 'auto'
if mode == 'min':
self.monitor_op = np.less
self.best = np.Inf
elif mode == 'max':
self.monitor_op = np.greater
self.best = -np.Inf
else:
if 'acc' in self.monitor:
self.monitor_op = np.greater
self.best = -np.Inf
else:
self.monitor_op = np.less
self.best = np.Inf
def on_train_begin(self, logs={}):
self.wait = 0 # Allow instances to be re-used
self.best = np.Inf if self.monitor_op == np.less else -np.Inf
def reset(self):
if self.mode not in ['auto', 'min', 'max']:
warnings.warn('Learning Rate Plateau Reducing mode %s is unknown, '
'fallback to auto mode.' % (self.mode), RuntimeWarning)
self.mode = 'auto'
if self.mode == 'min' or (self.mode == 'auto' and 'acc' not in self.monitor):
self.monitor_op = lambda a, b: np.less(a, b - self.epsilon)
self.best = np.Inf
else:
self.monitor_op = lambda a, b: np.greater(a, b + self.epsilon)
self.best = -np.Inf
self.cooldown_counter = 0
self.wait = 0
self.lr_epsilon = self.min_lr * 1e-4
def _get_bounds(self, ib, dimension):
"""ib == 0/1 means lower/upper bound, return a vector of length
`dimension` """
sign_ = 2 * ib - 1
assert sign_**2 == 1
if self.bounds is None or self.bounds[ib] is None:
return array(dimension * [sign_ * np.Inf])
res = []
for i in range(dimension):
res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
if res[-1] is None:
res[-1] = sign_ * np.Inf
return array(res)
def __init__(self, asedb, kvp={}, data={}, batch_size=1,
selection=None, shuffle=True, prefetch=False,
block_size=150000,
capacity=5000, num_epochs=np.Inf, floatX=np.float32):
super(ASEDataProvider, self).__init__(batch_size)
self.asedb = asedb
self.prefetch = prefetch
self.selection = selection
self.block_size = block_size
self.shuffle = shuffle
self.kvp = kvp
self.data = data
self.floatX = floatX
self.feat_names = ['numbers', 'positions', 'cell',
'pbc'] + list(kvp.keys()) + list(data.keys())
self.shapes = [(None,), (None, 3), (3, 3),
(3,)] + list(kvp.values()) + list(data.values())
self.epoch = 0
self.num_epochs = num_epochs
self.n_rows = 0
# initialize queue
with connect(self.asedb) as con:
row = list(con.select(self.selection, limit=1))[0]
feats = self.convert_atoms(row)
dtypes = [np.array(feat).dtype for feat in feats]
self.queue = tf.FIFOQueue(capacity, dtypes)
self.placeholders = [
tf.placeholder(dt, name=name)
for dt, name in zip(dtypes, self.feat_names)
]
self.enqueue_op = self.queue.enqueue(self.placeholders)
self.dequeue_op = self.queue.dequeue()
self.preprocs = []
def read(self):
retval = self.func()
if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
else: self.value.setText(str(retval))
def read(self):
retval = self.func()
try:
if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
else: self.value.setText(retval)
except:self.value.setText(str(retval))
def read(self):
retval = self.func(self.optionBox.currentText())
#if abs(retval)<1e4 and abs(retval)>.01:self.value.setText('%.3f %s '%(retval,self.units))
#else: self.value.setText('%.3e %s '%(retval,self.units))
if isinstance(retval,numbers.Number) and retval != np.Inf:self.value.setText('%s'%(self.applySIPrefix(retval,self.units) ))
else: self.value.setText(str(retval))
if self.linkFunc:
self.linkFunc(retval)
def _safe_db(num, den):
"""Properly handle the potential +Inf db SIR, instead of raising a
RuntimeWarning. Only denominator is checked because the numerator can never
be 0.
"""
if den == 0:
return np.Inf
return 10 * np.log10(num / den)
def _get_bounds(self, ib, dimension):
"""ib == 0/1 means lower/upper bound, return a vector of length
`dimension` """
sign_ = 2 * ib - 1
assert sign_**2 == 1
if self.bounds is None or self.bounds[ib] is None:
return array(dimension * [sign_ * np.Inf])
res = []
for i in range(dimension):
res.append(self.bounds[ib][min([i, len(self.bounds[ib]) - 1])])
if res[-1] is None:
res[-1] = sign_ * np.Inf
return array(res)