Python numpy 模块,mat() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.mat()。
def FOP(self, A, b):
""" Create a forward optimization problem.
Args:
A (matrix): numpy matrix of shape :math:`m \\times n`.
b (matrix): numpy matrix of shape :math:`m \\times 1`.
Currently, the forward problem is constructed by the user supplying a
constraint matrix ``A`` and vector ``b``. The forward problem is
.. math::
\min_{\mathbf{x}} \quad&\mathbf{c'x}
\\text{s.t} \quad&\mathbf{A x \geq b}
"""
#self.A = np.mat(A)
#self.b = np.mat(b)
self.A, self.b = validateFOP(A, b)
self._fop = True
def FOP(self, A, b):
""" Create a forward optimization problem.
Args:
A (matrix): numpy matrix of shape :math:`m \\times n`.
b (matrix): numpy matrix of shape :math:`m \\times 1`.
Currently, the forward problem is constructed by the user supplying a
constraint matrix `A` and vector `b`. The forward problem is
.. math::
\min_{\mathbf{x}} \quad&\mathbf{c'x}
\\text{s.t} \quad&\mathbf{A x \geq b}
"""
#self.A = np.mat(A)
#self.b = np.mat(b)
self.A, self.b = validateFOP(A, b)
self._fop = True
def rho(self, points):
""" Solves the goodness of fit.
"""
assert self._solved, 'you need to solve first.'
m, n = self.A.shape
projections = self.optimal_points(points)
_pts = [np.mat(pt).T for pt in points]
numer = [
np.linalg.norm(pj - pt, self.p)
for pj, pt in zip(projections, _pts)
]
numer = sum(numer)
denom = 0
for i in range(m):
ai = self.A[i]
bi = self.b[i]
result = self._project_to_hyperplane(points, ai, bi)
denom += result
rho = 1 - numer / denom
return rho
def FOP(self, A, b):
""" Create a forward optimization problem.
Args:
A (matrix): numpy matrix of shape :math:`m \\times n`.
b (matrix): numpy matrix of shape :math:`m \\times 1`.
Currently, the forward problem is constructed by the user supplying a
constraint matrix ``A`` and vector ``b``. The forward problem is
.. math::
\min_{\mathbf{x}} \quad&\mathbf{c'x}
\\text{s.t} \quad&\mathbf{A x \geq b}
"""
#self.A = np.mat(A)
#self.b = np.mat(b)
self.A, self.b = validateFOP(A, b)
self._fop = True
def train(self, training_data_array):
for data in training_data_array:
# ??????????
y1 = np.dot(np.mat(self.theta1), np.mat(data.y0).T)
sum1 = y1 + np.mat(self.input_layer_bias)
y1 = self.sigmoid(sum1)
y2 = np.dot(np.array(self.theta2), y1)
y2 = np.add(y2, self.hidden_layer_bias)
y2 = self.sigmoid(y2)
# ??????????
actual_vals = [0] * 10
actual_vals[data.label] = 1
output_errors = np.mat(actual_vals).T - np.mat(y2)
hidden_errors = np.multiply(np.dot(np.mat(self.theta2).T, output_errors), self.sigmoid_prime(sum1))
# ???????????
self.theta1 += self.LEARNING_RATE * np.dot(np.mat(hidden_errors), np.mat(data.y0))
self.theta2 += self.LEARNING_RATE * np.dot(np.mat(output_errors), np.mat(y1).T)
self.hidden_layer_bias += self.LEARNING_RATE * output_errors
self.input_layer_bias += self.LEARNING_RATE * hidden_errors
def _gene_signature(self,wm,size,key):
'''????????????????????????'''
wm = cv2.resize(wm,(size,size))
wU,_,wV = np.linalg.svd(np.mat(wm))
sumU = np.sum(np.array(wU),axis=0)
sumV = np.sum(np.array(wV),axis=0)
sumU_mid = np.median(sumU)
sumV_mid = np.median(sumV)
sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])
uv_xor=np.logical_xor(sumU,sumV)
np.random.seed(key)
seq=np.random.randint(2,size=len(uv_xor))
signature = np.logical_xor(uv_xor, seq)
sqrts = int(np.sqrt(size))
return np.array(signature,dtype=np.int8).reshape((sqrts,sqrts))
def _gene_signature(self,wm,key):
'''????????????????????????'''
wm = cv2.resize(wm,(256,256))
wU,_,wV = np.linalg.svd(np.mat(wm))
sumU = np.sum(np.array(wU),axis=0)
sumV = np.sum(np.array(wV),axis=0)
sumU_mid = np.median(sumU)
sumV_mid = np.median(sumV)
sumU=np.array([1 if sumU[i] >sumU_mid else 0 for i in range(len(sumU)) ])
sumV=np.array([1 if sumV[i] >sumV_mid else 0 for i in range(len(sumV)) ])
uv_xor=np.logical_xor(sumU,sumV)
np.random.seed(key)
seq=np.random.randint(2,size=len(uv_xor))
signature = np.logical_xor(uv_xor, seq)
return np.array(signature,dtype=np.int8)
def _extract_svd_sig(self,vec,siglen):
Q = 32
ext_sig=[]
for i in range(0,vec.shape[0],8): #128*128
for j in range(0,vec.shape[1],8):
u,s,v = np.linalg.svd(np.mat(vec[i:i+8,j:j+8]))
z = s[0] % Q
if z>=Q/2 :
ext_sig.append(1)
else:
ext_sig.append(0)
if siglen >len(ext_sig):
logging.warning('extract svd sig is {},small than needed {}'.format(len(ext_sig),siglen))
ext_sig.extend([0] * (siglen - len(ext_sig)))
else:
ext_sig = ext_sig[:siglen]
return [ext_sig]
##################################################################################################################################
def encode(msg):
""" passed a list of bits (integers, 1 or 0), returns a hamming(8,4)-coded
list of bits """
while len(msg) % 4 != 0:
# pad the message to length
msg.append(0)
msg = np.reshape(np.array(msg), (-1, 4))
# create parity bits using transition matrix
transition = np.mat('1,0,0,0,0,1,1,1;\
0,1,0,0,1,0,1,1;\
0,0,1,0,1,1,0,1;\
0,0,0,1,1,1,1,0')
result = np.dot(msg, transition)
# mod 2 the matrix multiplication
return np.mod(result, 2)
def syndrome(msg):
""" passed a list of hamming(8,4)-encoded bits (integers, 1 or 0),
returns an error syndrome for that list """
msg = np.reshape(np.array(msg), (-1, 8)).T
# syndrome generation matrix
transition = np.mat('0,1,1,1,1,0,0,0;\
1,0,1,1,0,1,0,0;\
1,1,0,1,0,0,1,0;\
1,1,1,0,0,0,0,1')
result = np.dot(transition, msg)
# mod 2 the matrix multiplication
return np.mod(result, 2)
def PatPatSimilarity(p, c):
#??bet??????
#?????
# print 'p', p
# print 'c', c
# print 'p len ', len(p)
# print 'c len ', len(c[1])
A = np.mat(p[1:])
B = np.mat(c[1:])
# A = np.mat(p)
# B = np.mat(c[1])
num = A * B.T
denom = np.linalg.norm(A) * np.linalg.norm(B)
cos = num / denom # ???
# sim = 0.5 + 0.5 * cos # ???
return cos
def tdoa_to_position(time_diff, sensor_pos):
sensors = len(time_diff)
if len(time_diff) != len(sensor_pos):
raise Exception('Channel number mismatch.')
dist_diff = []
for x in time_diff:
dist_diff.append(x * sound_speed)
inhom_mat = np.mat(np.zeros([sensors - 2, 1]))
coeff_mat = np.mat(np.zeros([sensors - 2, 3]))
for i in range(2, sensors):
args = dist_diff[1], dist_diff[i], \
sensor_pos[0], sensor_pos[1], sensor_pos[i]
coeff_mat[i - 2, :] = coeff(*args)
inhom_mat[i - 2] = -inhom(*args)
x_sol = lin.pinv(coeff_mat) * inhom_mat
return x_sol[0, 0], x_sol[1, 0], x_sol[2, 0]
def jaccard_pinyin(pv1, pv2):
"""Similarity score between two pinyin vectors with jaccard.
?????????jaccard??????
According to the semantic jaccard model to calculate the similarity.
The similarity score interval for each two pinyin sentences was [0, 1].
????jaccard??????????????????????????[0, 1]?
"""
sv_matrix = []
sv_rows = []
for pinyin1 in pv1:
for pinyin2 in pv2:
score = match_pinyin(pinyin1, pinyin2)
sv_rows.append(score)
sv_matrix.append(sv_rows)
sv_rows = []
matrix = mat(sv_matrix)
result = sum_cosine(matrix, 0.7)
total = result["total"]
total_dif = result["total_dif"]
num = result["num_not_match"]
sim = total/(total + num*(1-total_dif))
return sim
def load_iros15(folder=IROS15_BASE_FOLDER, resolution=15, legs='all', part_proportions=(.7, .2), one_hot=True,
shuffle=True):
resolutions = (5, 11, 15)
legs_names = ('LF', 'LH', 'RF', 'RH')
assert resolution in resolutions
folder += str(resolution)
if legs == 'all': legs = legs_names
base_name_by_leg = lambda leg: os.path.join(folder, 'trainingSet%sx%sFromSensor%s.mat'
% (resolution, resolution, leg))
datasets = {}
for _leg in legs:
dat = scio.loadmat(base_name_by_leg(_leg))
data, target = dat['X'], to_one_hot_enc(dat['Y']) if one_hot else dat['Y']
# maybe pre-processing??? or it is already done? ask...
datasets[_leg] = Datasets.from_list(
redivide_data([Dataset(data, target, info={'leg': _leg})],
partition_proportions=part_proportions, shuffle=shuffle))
return datasets
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
import numpy as np
from math import factorial
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
try:
window_size = np.abs(np.int(window_size))
order = np.abs(np.int(order))
except ValueError, msg:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
def transcoding(x):
l1 = list(x)
province = list(set(l1))
n = len(province)
mat = [[0 for j in range(n)] for i in range(n)]
province_dict = {}
for i in range(n):
mat[i][i] = 1
province_dict[str(province[i])] = mat[i]
ret = []
for i in range(len(l1)):
key = str(l1[i])
ret.append(province_dict[key])
return pd.DataFrame(ret),province_dict
#hot_coding,province_dict = transcoding(df[10])
def rotation_matrix(a, b):
"""
Create rotation matrix to rotate vector a into b.
After http://math.stackexchange.com/a/476311
Parameters
----------
a,b
xyz-vectors
"""
v = np.cross(a, b)
sin = np.linalg.norm(v)
if sin == 0:
return np.identity(3)
cos = np.vdot(a, b)
vx = np.mat([[0, -v[2], v[1]], [v[2], 0., -v[0]], [-v[1], v[0], 0.]])
R = np.identity(3) + vx + vx * vx * (1 - cos) / (sin ** 2)
return R
def _update_parameters(self, factors0, factors1, ratings, factors_mu, factors_variance):
"""
:param factors0:
:param factors1:
:param ratings:
:param factors_mu:
:param factors_variance:
:return:
"""
index = ratings.keys()
QQ = 0
RQ = 0
for dim0, dim1 in index:
Q = factors0[dim0, :] * factors1[dim1, :]
QQ += np.mat(Q).transpose() * np.mat(Q)
RQ += (ratings[dim0, dim1] - self.mean_rating) * Q
sigma_inv = np.linalg.inv(factors_variance + self.rating_sigma * QQ)
mu = sigma_inv * (np.dot(factors_variance, np.reshape(factors_mu, newshape=(factors_mu.shape[0], 1))) + self.rating_sigma * RQ)
return np.random.multivariate_normal(mu, sigma_inv)
def _update_time_parameters(self, user_factors, item_factors, time_factors, ratings, factors_mu, factors_variance, time_id):
index = ratings.keys()
QQ, RQ = 0.0, 0.0
for dim0, dim1 in index:
Q = user_factors[dim0, :] * item_factors[dim1, :]
QQ += np.mat(Q).transpose() * np.mat(Q)
RQ += (ratings[dim0, dim1] - self.mean_rating) * Q
RQ = np.reshape(RQ, newshape=(RQ.shape[0], 1))
if time_id == 0:
mu = (time_factors[1, :] + factors_mu) / 2
sigma_inv = np.linalg.inv(2 * factors_variance + self.rating_sigma * QQ)
elif time_id == self.time_num-1:
sigma_inv = np.linalg.inv(factors_variance + self.rating_sigma * QQ)
Tk_1 = np.reshape(time_factors[self.time_num-2, :], newshape=(time_factors.shape[1], 1))
mu = sigma_inv * (np.dot(factors_variance, Tk_1) + self.rating_sigma * RQ)
else:
sigma_inv = np.linalg.inv(2 * factors_variance + self.rating_sigma * QQ)
Tk = time_factors[time_id-1, :] + time_factors[time_id+1, :]
mu = sigma_inv * (np.dot(factors_variance, np.reshape(Tk, newshape=(Tk.shape[0], 1))) + self.rating_sigma * RQ)
return np.random.multivariate_normal(mu, sigma_inv)
def DCT(width, height, depth):
N = width
M = depth
filtMtx = np.zeros((N*N*M, N*N*M))
xn = np.arange(0,N)
Xn, Yn = np.meshgrid(xn,xn, sparse=False)
xm = np.arange(0,M)
Xm, Ym = np.meshgrid(xm,xm, sparse=False)
dctBasisN = np.cos((np.pi / N) * (Yn + 0.5)*Xn)
dctBasisN = np.mat(dctBasisN)
dctBasisM = np.cos((np.pi / M) * (Ym + 0.5)*Xm)
dctBasisM = np.mat(dctBasisM)
for i in range(0,N):
for j in range(0,N):
filt2d = dctBasisN[:,j].dot(dctBasisN[:,i].T)
filt2d = filt2d.reshape(N**2,1)
for k in range(0,M):
filt = filt2d.dot(dctBasisM[:,k].T)
filt = filt/np.linalg.norm(filt) # L2 normalization
filtMtx[:,j*N+k*N*N + i] = filt.reshape(N*N*M)
return filtMtx.astype("float32")[:,1:]
#load parameters theta from file
def createValidateDataSet():
'''
get validate data
'''
db = MyDataBase.MyDataBase("validate")
conn, executer = db.getConn(), db.getExcuter()
# get all the students
executer.execute("select * from students_rank")
students,dataSet = [],[]
for i in executer.fetchall():
student = Student(studentId=i[0], attributes=list(i[1:-1]), subsidy=i[-1])
dataSet.append(student.getAll())
students.append(student)
conn.close();executer.close()
dataSet = mat(dataSet)
return students,dataSet[:, :-1]
def unprojectOpenGL(self, u):
# K, R, t = camera.factor()
# squareProj = np.row_stack((
# camera.P,
# np.array([0,0,0,1], np.float32)
# ))
# invProj = np.linalg.inv(squareProj)
# x = invProj*np.row_stack([np.mat(u).T, [1]])
# x = x[:3]
# u = np.mat(u).T
# x = np.linalg.inv(R)*(np.linalg.inv(K)*u - t)
proj = self.getOpenGlCameraMatrix()
invProj = np.linalg.inv(proj)
x = invProj*np.row_stack([np.mat(u).T, [1]])
x = x[:3] / x[3]
return x
def unproject(self, u):
# K, R, t = camera.factor()
# squareProj = np.row_stack((
# camera.P,
# np.array([0,0,0,1], np.float32)
# ))
# invProj = np.linalg.inv(squareProj)
# x = invProj*np.row_stack([np.mat(u).T, [1]])
# x = x[:3]
# u = np.mat(u).T
# x = np.linalg.inv(R)*(np.linalg.inv(K)*u - t)
proj = self.getOpenGlCameraMatrix()
invProj = np.linalg.inv(proj)
x = invProj*np.row_stack([np.mat(u).T, [1]])
x = x[:3] / x[3]
return x
# TODO: Fix handling of camera centre.
def filter(self, kpt1, feat1, kpt2, feat2):
kpt1 = np.array([(k.pt[0],k.pt[1]) for k in kpt1])
kpt2 = np.array([(k.pt[0],k.pt[1]) for k in kpt2])
self.normalrize(kpt1), self.normalrize(kpt2)
idx = self.match(feat1, feat2)
if self.dim == 0:
return idx, np.ones(len(idx), dtype=np.bool), 1
mask = []
for i1, i2 in idx:
v1 = np.mat(kpt1[i1])
v2 = np.mat(kpt2[i2])
if self.test(v1, v2):
self.accept(v1.T,v2.T)
mask.append(True)
else: mask.append(False)
mask = np.array(mask)
#print mask
return idx, mask, self.V
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
'''
:param conv1_get: [a,c,d]?size, number, step of convolution kernel
:param size_p1: pooling size
:param bp_num1: units number of flatten layer
:param bp_num2: units number of hidden layer
:param bp_num3: units number of output layer
:param rate_w: rate of weight learning
:param rate_t: rate of threshold learning
'''
self.num_bp1 = bp_num1
self.num_bp2 = bp_num2
self.num_bp3 = bp_num3
self.conv1 = conv1_get[:2]
self.step_conv1 = conv1_get[2]
self.size_pooling1 = size_p1
self.rate_weight = rate_w
self.rate_thre = rate_t
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
def LaplaceFFTDemo(self):
origfftimg = self.PrepareFFT()
fftimg = origfftimg.copy()
sz = fftimg.shape
center = np.mat(fftimg.shape) / 2.0
for i in xrange(0, 512):
for j in xrange(0, 512):
#pass
#print -(np.float64(i - center[0, 0]) ** 2.0 + np.float64(j - center[0, 1]) ** 2.0)
fftimg[i, j] *= - 0.00001* (np.float64(i - 256) ** 2.0 + np.float64(j - 256) ** 2.0)
ifft = self.GetIFFT(fftimg)
#plt.imshow(np.real(fftimg))
#plt.show()
# cv2.namedWindow("fft1")
# cv2.imshow("fft1", np.real(origfftimg))
cv2.namedWindow("fft")
cv2.imshow("fft", np.real(fftimg))
# cv2.imshow("ifft", np.uint8(ifft))
cv2.namedWindow("ifft")
cv2.imshow("ifft", ifft)
cv2.waitKey(0)
def calculate_objective(self,spontaneous,w1,alpha,w2,events,train_times):
T=train_times
N=len(events)
s=events
old_sum2 = 0
obj = numpy.log(spontaneous*numpy.exp(-w1*s[0]))
for i in range(1,N):
mu = spontaneous*numpy.exp(-w1*s[i])
sum1 = mu
sum2 = (old_sum2 + alpha)*numpy.exp(-w2*(s[i]-s[i-1]))
old_sum2 = sum2
obj=obj+numpy.log(sum1+sum2)
activate = numpy.exp(-w2*(T-numpy.mat(s)))
activate_sum = numpy.sum((1-activate))*alpha/float(w2)
obj= obj - activate_sum
obj = obj - (spontaneous/w1) * (1 - numpy.exp(-w1*T))
return obj
def predict_one(self,_id,duration,pred_year):
try:
patent = self.params['patent'][str(_id)]
except KeyError,e:
return None
w1 = self.params['w1']
alpha = patent['alpha']
w2 = self.params['w2']
fea = numpy.mat(patent['fea'])
ti = patent['cite']
beta = numpy.mat(self.params['beta'])
cut_point = pred_year - int(float((patent['year'])))
tr = numpy.mat([x for x in ti if x <= cut_point])
pred = self.predict_year_by_year(tr,cut_point,duration,
beta*numpy.mat(fea).T,w1,alpha,w2)
_dict = {}
for i in range(len(pred)):
year = pred_year + i + 1
_dict[year] = pred[i]
_list = sorted(_dict.items(),key=lambda x:x[0])
return _list
def predict_year_by_year(self,tr,cut_point,duration,spontaneous,w1,alpha,w2):
N = tr.shape[1]
pred = []
for t in range(cut_point+1,cut_point+duration+1):
delta_ct = spontaneous/w1*(numpy.exp(-w1*(t-1))-numpy.exp(-w1*t)) + \
alpha/w2*(numpy.sum(numpy.exp(-w2*((t-1)-tr)))-numpy.sum(numpy.exp(-w2*(t-tr))))
delta_ct = delta_ct[0,0]
if len(pred) == 0:
ct = N + delta_ct
else :
ct = pred[-1] + delta_ct
tr = tr.tolist()[0]
tr.extend([t for i in range(int(delta_ct))])
tr = numpy.mat(tr)
pred.append(ct)
return pred
def update_sequence_weights(self,pids,Alpha,features,sequences,publish_years,predict_year,beta,W1,W2):
result = []
for i in range(len(pids)):
seq = {}
fea = numpy.mat(features[i])
beta = numpy.mat(beta)
seq['seq_id'] = i
seq['paper_id'] = pids[i]
seq['theta'] = W1[i]
seq['w'] = W2[i]
seq['alpha'] = Alpha[i]
seq['fea'] = features[i]
seq['beta'] = beta.tolist()
seq['spont'] = (fea*beta).tolist()[0]
result.append(seq)
self.sequence_weights = result
def simhawkes(trseq,T1,T2,v,w1,alpha,w2):
t = T1
while t<T2:
lam = v*numpy.exp(-w1*t) + numpy.sum(alpha*numpy.exp(-w2*(t-trseq)))
#v*exp(-w1*t) + sum(alpha*exp(-w2*(t-trseq)));
u = numpy.random.random() # rand();
t = t+(-numpy.log(numpy.random.random())/float(lam)) #t+(-log(rand)/lam);
lam2 = v*numpy.exp(-w1*t) + numpy.sum(alpha*numpy.exp(-w2*(t-trseq)))
#v*exp(-w1*t) + sum(alpha*exp(-w2*(t-trseq)));
if t<T2 and u*lam<lam2:
trseq = numpy.concatenate((trseq,numpy.mat(t)),axis=1) #[trseq;t];
#end
if trseq.shape[1] > 1e3: #length(trseq)>1e3
break
#end
#end
return trseq
#ct = trseq
#end
def cal_obj(v,w1,alpha,w2,events,trainT): #function [obj]=cal_obj(v,w1,alpha,w2,events,trainT)
T=trainT
N=len(events)
s=events
old_sum2 = 0
obj = numpy.log(v*numpy.exp(-w1*s[0])) #log(v*exp(-w1*s(1)));
for i in range(1,N): #i=2:N
mu = v*numpy.exp(-w1*s[i]) #v*exp(-w1*s(i));
sum1 = mu
sum2 = (old_sum2 + alpha)*numpy.exp(-w2*(s[i]-s[i-1])) #(old_sum2+ alpha)*exp(-w2*(s(i)-s(i-1)));
old_sum2 = sum2
obj=obj+numpy.log(sum1+sum2)
#end
____1 = numpy.exp(-w2*(T-numpy.mat(s)))
____2 = numpy.sum((1- ____1))*alpha/float(w2)
obj= obj - ____2 #obj - sum((1-exp(-w2*(T-s))))*alpha/w2;
obj = obj - (v/w1) * (1 - numpy.exp(-w1*T)) #obj - v/w1*(1-exp(-w1*T));
return obj
#end
def rbf_kernel(self, x, y, gamma):
"""
Custom sigmoid kernel function, similarities of vectors using a radial basis function kernel
:param x: array of input vectors
:param y: array of input vectors
:param gamma: reach factor
:returns:
- rbfk: radial basis of the kernel's inner product
"""
mat1 = np.mat(x) #convert to readable matrices
mat2 = np.mat(y)
trnorms1 = np.mat([(v * v.T)[0, 0] for v in mat1]).T #norm matrices
trnorms2 = np.mat([(v * v.T)[0, 0] for v in mat2]).T
k1 = trnorms1 * np.mat(np.ones((mat2.shape[0], 1), dtype=np.float64)).T #dot products of y and y transposed and x and x transposed
k2 = np.mat(np.ones((mat1.shape[0], 1), dtype=np.float64)) * trnorms2.T
rbfk = k1 + k2 #sum products together
rbfk -= 2 * np.mat(mat1 * mat2.T) #dot product of x and y transposed
rbfk *= - 1./(2 * np.power(gamma, 2)) #radial basis
np.exp(rbfk,rbfk)
return np.array(rbfk)
def load_ad_info(dict_ad_info, user_behavior):
list_ad_info = []
for ad in dict_ad_info:
ad_id = dict_ad_info[ad][0]
position = 1
advertiser_id = int(dict_ad_info[ad][1])
price = int(dict_ad_info[ad][5])
ad_tag = dict_ad_info[ad][4]
user_tag = user_behavior[0][0]
user_sex = user_behavior[0][1]
list_ad_info.append([-1, ad_id, position, advertiser_id, price, ad_tag, user_tag, user_sex])
# print list_ad_info
list_ad_info.append([-1, ad_id, 2, advertiser_id, price, ad_tag, user_tag, user_sex])
name = ['click', 'ad_id', 'position', 'advertiser_id', 'price', 'ad_tag', 'user_tag', 'user_sex']
# np_ad_info = np.mat(list_ad_info)
df_ad_info = pd.DataFrame(list_ad_info, columns=name)
file = open("f_origin_8features.pkl", 'wb')
pickle.dump(df_ad_info, file)
file.close()
#print 'DONE'
return df_ad_info
def Back_Propagation():
global In_param
global Out_param
global thres_in
global thres_out
rate = 0.1
for epoch in range(50000):
for id, item in enumerate(traits):
hid_In = np.array(np.mat(item) * np.mat(In_param))
hid_Out = sigmoid(hid_In - thres_in)
fin_In = np.array(np.mat(hid_Out) * np.mat(Out_param))
fin_Out = sigmoid(fin_In - thres_out)
g = fin_Out * (1.0 - fin_Out) * (judge[id] - fin_Out)
e = hid_Out * (1.0 - hid_Out) * np.array([np.dot(x, g) for x in Out_param])
In_param += np.array(rate * np.matrix(item).T * np.matrix(e))
Out_param += np.array(rate * np.matrix(hid_Out).T * np.matrix(g))
thres_in -= rate * e
thres_out -= rate * g
def PCA(dataset, topFeatNum = 2):
#????
#1????????????
#2???????????
#3??????????????
#4???xx??????????
#5?????????????
datasetMat = np.mat(dataset)
meanValues = np.mean(datasetMat, axis = 0)
stds = np.std(datasetMat, axis = 0)
adjustedDatasetMat = datasetMat - meanValues
adjustedDatasetMat = adjustedDatasetMat / stds
plt.plot(adjustedDatasetMat[:, 0], adjustedDatasetMat[:, 1], "r^")
plt.show()
covMat = np.cov(adjustedDatasetMat, rowvar = 0)
#covMat = (adjustedDatasetMat.T * adjustedDatasetMat) / datasetMat.shape[0] #?????0????????
eigenVals, eigenVecs = np.linalg.eig(np.mat(covMat))
draw(eigenVals) #?????????????????
eigenValsIndex = np.argsort(eigenVals) #?eigenVals???????????????
eigenValsIndex = eigenValsIndex[: -(topFeatNum+1) : -1] #??eigenVals???topFeatNum?????
eigenVecs = eigenVecs[:, eigenValsIndex] #????topFeatNum????????eigenValues????
transformedDatasetMat = adjustedDatasetMat * eigenVecs
return transformedDatasetMat
def mds(d, dimensions=2):
"""
Multidimensional Scaling - Given a matrix of interpoint distances,
find a set of low dimensional points that have similar interpoint
distances.
"""
E = (-0.5 * d**2)
# Use mat to get column and row means to act as column and row means.
Er = np.mat(np.mean(E, 1))
Es = np.mat(np.mean(E, 0))
# From Principles of Multivariate Analysis: A User's Perspective (page 107).
F = np.array(E - np.transpose(Er) - Es + np.mean(E))
U, S, V = svd(F)
Y = U * np.sqrt(S)
return Y[:, 0:dimensions], S
def plotPrincipalComponents(principal1, principal2, X, y, classNames):
C = len(classNames)
Y = X - np.ones((len(X),1))*X.mean(0)
U,S,V = linalg.svd(Y,full_matrices=False)
V = mat(V).T
Z = Y * V
# Plot PCA of the data
f = figure()
f.hold()
title('Data projected onto Principal Components')
for c in range(C):
class_mask = y.A.ravel()==c
plot(Z[class_mask,principal1], Z[class_mask,principal2], 'o')
legend([convertToWord(i) for i in classNames])
xlabel('PC{0}'.format(principal1+1))
ylabel('PC{0}'.format(principal2+1))
show()
# Gets the direction of a certain principal component
def plot3DPrincipalComponents(X,y,classNames,prin1,prin2,prin3,attributeNames):
C = len(classNames)
Y = X - np.ones((len(X),1))*X.mean(0)
U,S,V = linalg.svd(Y,full_matrices=False)
V = mat(V).T
Z = Y * V
f = figure()
hold(True)
colors = ['blue', 'green']
ax = f.add_subplot(111, projection='3d')
for c in range(C):
class_mask = (y==c).A.ravel()
ax.scatter(Z[class_mask,prin1].A, Z[class_mask,prin2].A, Z[class_mask,prin3].A, c=colors[c])
ax.set_xlabel('PC{0}'.format(prin1+1))
ax.set_ylabel('PC{0}'.format(prin2+1))
ax.set_zlabel('PC{0}'.format(prin3+1))
title("3D plot of principal components")
legend(attributeNames)
#Using CHD as attribute
def learn(fName, features, nRows=-1):
with open('bin/train.bin', 'r') as f:
train = np.load(f)
x = np.mat(train[:nRows,timbreVector[features[0]]]).reshape(nRows,1)
y = np.mat(train[:nRows,timbreVector[features[1]]]).reshape(nRows,1)
z = np.mat(train[:nRows,timbreVector[features[2]]]).reshape(nRows,1)
X = np.concatenate((x, y, z), axis=1)
Y = train[:nRows,0] % minYear
clf = svm.SVC(verbose=3)
clf.fit(X, Y)
print "[SUCCESS] Fitted training data to SVM (kernel: rbf)."
print "[STARTED] Dumping classifier."
joblib.dump(clf, 'bin/%s'%fName)
print "[SUCCESS] Dumped to ", fName
def test(fName, features, nRows):
with open('bin/train.bin') as f:
test = np.load(f)
x = np.mat(test[:nRows,timbreVector[features[0]]]).reshape(nRows,1)
y = np.mat(test[:nRows,timbreVector[features[1]]]).reshape(nRows,1)
z = np.mat(test[:nRows,timbreVector[features[2]]]).reshape(nRows,1)
X = np.concatenate((x, y, z), axis=1)
Y = test[:nRows,0]
pred = predict(fName, X)
print "Mean Square Error: ", np.mean(0.5*np.square(pred - Y))
print "Absolute Error: ", np.mean(np.absolute(pred-Y))
plt.scatter(Y, pred-Y, marker='o')
plt.xlabel('Actual')
plt.ylabel('Difference')
plt.show()
def learn(X, Y, datapoint):
global alpha
datapoint = np.mat(datapoint)
Y = np.mat(Y)
X = np.mat(X)
weights = getWeights(X, datapoint)
den = (X*weights)*X.T
num = (X*weights)*Y.T
try:
return num*den.I
except:
return None
def filter(self, X, Y):
if self.interpolate:
X, Y = self.simplefill(X, Y)
else:
X, Y = self.sortxy(X, Y)
order_range = list(range(self.order+1))
half_window = (self.window_size - 1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range]
for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[self.deriv]
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = Y[0] - np.abs(Y[1:half_window+1][::-1] - Y[0])
lastvals = Y[-1] + np.abs(Y[-half_window-1:-1][::-1] - Y[-1])
Y1 = np.concatenate((firstvals, Y, lastvals))
Y2 = np.convolve(m, Y1, mode='valid')
return X, Y2
def gs_numpy( method, X, Y, alphas_log = (-1, 1, 9), n_splits=5, n_jobs = -1, disp = True):
"""
Grid search method with numpy array of X and Y
Previously, np.mat are used for compatible with Matlab notation.
"""
if disp:
print( X.shape, Y.shape)
clf = getattr( linear_model, method)()
parmas = {'alpha': np.logspace( *alphas_log)}
kf5_c = model_selection.KFold( n_splits = n_splits, shuffle=True)
#kf5 = kf5_c.split( X)
gs = model_selection.GridSearchCV( clf, parmas, scoring = 'r2', cv = kf5_c, n_jobs = n_jobs)
gs.fit( X, Y)
return gs
def mlr_show( clf, RMv, yEv, disp = True, graph = True):
yEv_calc = clf.predict( RMv)
if len( np.shape(yEv)) == 2 and len( np.shape(yEv_calc)) == 1:
yEv_calc = np.mat( yEv_calc).T
r_sqr, RMSE = jchem.estimate_accuracy( yEv, yEv_calc, disp = disp)
if graph:
plt.figure()
ms_sz = max(min( 4000 / yEv.shape[0], 8), 1)
plt.plot( yEv.tolist(), yEv_calc.tolist(), '.', ms = ms_sz)
ax = plt.gca()
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
#ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.plot(lims, lims, '-', color = 'pink')
plt.xlabel('Experiment')
plt.ylabel('Prediction')
plt.title( '$r^2$ = {0:.2e}, RMSE = {1:.2e}'.format( r_sqr, RMSE))
plt.show()
return r_sqr, RMSE
def mlr_show3( clf, RMv, yEv, disp = True, graph = True):
yEv_calc = clf.predict( RMv)
if len( np.shape(yEv)) == 2 and len( np.shape(yEv_calc)) == 1:
yEv_calc = np.mat( yEv_calc).T
r_sqr, RMSE, aae = jchem.estimate_accuracy3( yEv, yEv_calc, disp = disp)
if graph:
plt.figure()
ms_sz = max(min( 4000 / yEv.shape[0], 8), 1)
plt.plot( yEv.tolist(), yEv_calc.tolist(), '.', ms = ms_sz)
ax = plt.gca()
lims = [
np.min([ax.get_xlim(), ax.get_ylim()]), # min of both axes
np.max([ax.get_xlim(), ax.get_ylim()]), # max of both axes
]
# now plot both limits against eachother
#ax.plot(lims, lims, 'k-', alpha=0.75, zorder=0)
ax.plot(lims, lims, '-', color = 'pink')
plt.xlabel('Experiment')
plt.ylabel('Prediction')
plt.title( '$r^2$={0:.2e}, RMSE={1:.2e}, AAE={2:.2e}'.format( r_sqr, RMSE, aae))
plt.show()
return r_sqr, RMSE, aae
def ann_val_post( yE, disp = True, graph = True, rate = 2, more_train = True, center = None):
"""
After ann_pre and shell command, ann_post can be used.
"""
df_ann = pd.read_csv( 'ann_out.csv')
yE_c = np.mat( df_ann['out'].tolist()).T
yEt, yEt_c, yEv, yEv_c = jchem.get_valid_mode_data( yE, yE_c, rate = rate, more_train = more_train, center = center)
print('Trainig result')
ann_show( yEt, yEt_c, disp = disp, graph = graph)
print('Validation result')
r_sqr, RMSE = ann_show( yEv, yEv_c, disp = disp, graph = graph)
return r_sqr, RMSE