Python numpy 模块,int_() 实例源码
我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用numpy.int_()。
def render_lane(image, corners, ploty, fitx, ):
_, src, dst = perspective_transform(image, corners)
Minv = cv2.getPerspectiveTransform(dst, src)
# Create an image to draw the lines on
warp_zero = np.zeros_like(image[:,:,0]).astype(np.uint8)
color_warp = np.dstack((warp_zero, warp_zero, warp_zero))
# Recast the x and y points into usable format for cv2.fillPoly()
pts = np.vstack((fitx,ploty)).astype(np.int32).T
# Draw the lane onto the warped blank image
#plt.plot(left_fitx, ploty, color='yellow')
cv2.polylines(color_warp, [pts], False, (0, 255, 0), 10)
#cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0))
# Warp the blank back to original image space using inverse perspective matrix (Minv)
newwarp = cv2.warpPerspective(color_warp, Minv, (image.shape[1], image.shape[0]))
# Combine the result with the original image
result = cv2.addWeighted(image, 1, newwarp, 0.3, 0)
return result
def df_type_to_str(i):
'''
Convert into simple datatypes from pandas/numpy types
'''
if isinstance(i, np.bool_):
return bool(i)
if isinstance(i, np.int_):
return int(i)
if isinstance(i, np.float):
if np.isnan(i):
return 'NaN'
elif np.isinf(i):
return str(i)
return float(i)
if isinstance(i, np.uint):
return int(i)
if type(i) == bytes:
return i.decode('UTF-8')
if isinstance(i, (tuple, list)):
return str(i)
if i is pd.NaT: # not identified as a float null
return 'NaN'
return str(i)
def console_fill_foreground(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_background(con, cr, cg, cb)
def pickle_transitions_matrix_data():
transitions = pickle.load( open( "/ssd/ddimitrov/pickle/transitions", "rb" ) )
vocab = pickle.load( open( "/ssd/ddimitrov/pickle/vocab", "rb" ) )
i_indices = array.array(str("l"))
j_indices = array.array(str("l"))
values = array.array(str("d"))
for s, targets in transitions.iteritems():
for t, v in targets.iteritems():
i_indices.append(vocab[s])
j_indices.append(vocab[t])
values.append(v)
i_indices = np.frombuffer(i_indices, dtype=np.int_)
j_indices = np.frombuffer(j_indices, dtype=np.int_)
values = np.frombuffer(values, dtype=np.float64)
transition_matrix=[i_indices,j_indices,values]
pickle.dump(transition_matrix, open("/ssd/ddimitrov/pickle/transition_matrix", "wb"), protocol=pickle.HIGHEST_PROTOCOL)
print "transition_matrix"
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = np.array([1, 2, 3])
assert_equal(a[()], a)
assert_(a[()].base is a)
a = np.array(0)
assert_(isinstance(a[()], np.int_))
# Regression, it needs to fall through integer and fancy indexing
# cases, so need the with statement to ignore the non-integer error.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', '', DeprecationWarning)
a = np.array([1.])
assert_(isinstance(a[0.], np.float_))
a = np.array([np.array(1)], dtype=object)
assert_(isinstance(a[0.], np.ndarray))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def get_fra_num_by_dose( exp_dose, exp_time, att=1, dead_time =2 ):
'''
Calculate the frame number to be correlated by giving a X-ray exposure dose
Paramters:
exp_dose: a list, the exposed dose, e.g., in unit of exp_time(ms)*N(fram num)*att( attenuation)
exp_time: float, the exposure time for a xpcs time sereies
dead_time: dead time for the fast shutter reponse time, CHX = 2ms
Return:
noframes: the frame number to be correlated, exp_dose/( exp_time + dead_time )
e.g.,
no_dose_fra = get_fra_num_by_dose( exp_dose = [ 3.34* 20, 3.34*50, 3.34*100, 3.34*502, 3.34*505 ],
exp_time = 1.34, dead_time = 2)
--> no_dose_fra will be array([ 20, 50, 100, 502, 504])
'''
return np.int_( np.array( exp_dose )/( exp_time + dead_time)/ att )
def create_time_slice( N, slice_num, slice_width, edges=None ):
'''create a ROI time regions '''
if edges is not None:
time_edge = edges
else:
if slice_num==1:
time_edge = [ [0,N] ]
else:
tstep = N // slice_num
te = np.arange( 0, slice_num +1 ) * tstep
tc = np.int_( (te[:-1] + te[1:])/2 )[1:-1]
if slice_width%2:
sw = slice_width//2 +1
time_edge = [ [0,slice_width], ] + [ [s-sw+1,s+sw] for s in tc ] + [ [N-slice_width,N]]
else:
sw= slice_width//2
time_edge = [ [0,slice_width], ] + [ [s-sw,s+sw] for s in tc ] + [ [N-slice_width,N]]
return np.array(time_edge)
def get_his_std_qi( data_pixel_qi, max_cts=None):
'''
YG. Dev 16, 2016
Calculate the photon histogram for one q by giving
Parameters:
data_pixel_qi: one-D array, for the photon counts
max_cts: for bin max, bin will be [0,1,2,..., max_cts]
Return:
bins
his
std
'''
if max_cts is None:
max_cts = np.max( data_pixel_qi ) +1
bins = np.arange(max_cts)
dqn, dqm = data_pixel_qi.shape
#get histogram here
H = np.apply_along_axis(np.bincount, 1, np.int_(data_pixel_qi), minlength= max_cts )/dqm
#do average for different frame
his = np.average( H, axis=0)
std = np.std( H, axis=0 )
#cal average photon counts
kmean= np.average(data_pixel_qi )
return bins, his, std, kmean
def default(self, obj):
# convert dates and numpy objects in a json serializable format
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
elif isinstance(obj, date):
return obj.strftime('%Y-%m-%d')
elif type(obj) in (np.int_, np.intc, np.intp, np.int8, np.int16,
np.int32, np.int64, np.uint8, np.uint16,
np.uint32, np.uint64):
return int(obj)
elif type(obj) in (np.bool_,):
return bool(obj)
elif type(obj) in (np.float_, np.float16, np.float32, np.float64,
np.complex_, np.complex64, np.complex128):
return float(obj)
# Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, obj)
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = np.array([1, 2, 3])
assert_equal(a[()], a)
assert_(a[()].base is a)
a = np.array(0)
assert_(isinstance(a[()], np.int_))
# Regression, it needs to fall through integer and fancy indexing
# cases, so need the with statement to ignore the non-integer error.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', '', DeprecationWarning)
a = np.array([1.])
assert_(isinstance(a[0.], np.float_))
a = np.array([np.array(1)], dtype=object)
assert_(isinstance(a[0.], np.ndarray))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def console_fill_foreground(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_background(con, cr, cg, cb)
def __tiledoutput__(self, net_op, batch_size, num_cols=8, net_recon_const=None):
num_rows = np.int_(np.ceil((batch_size*1.)/num_cols))
out_img = np.zeros((num_rows*self.outshape[0], num_cols*self.outshape[1], 3), dtype='uint8')
img_lab = np.zeros((self.outshape[0], self.outshape[1], 3), dtype='uint8')
c = 0
r = 0
for i in range(batch_size):
if(i % num_cols == 0 and i > 0):
r = r + 1
c = 0
img_lab[..., 0] = self.__decodeimg__(net_recon_const[i, 0, :, :].reshape(\
self.outshape[0], self.outshape[1]))
img_lab[..., 1] = self.__decodeimg__(net_op[i, 0, :, :].reshape(\
self.shape[0], self.shape[1]))
img_lab[..., 2] = self.__decodeimg__(net_op[i, 1, :, :].reshape(\
self.shape[0], self.shape[1]))
img_rgb = cv2.cvtColor(img_lab, cv2.COLOR_LAB2BGR)
out_img[r*self.outshape[0]:(r+1)*self.outshape[0], \
c*self.outshape[1]:(c+1)*self.outshape[1], ...] = img_rgb
c = c+1
return out_img
def test_constructors():
from pybind11_tests.array import default_constructors, converting_constructors
defaults = default_constructors()
for a in defaults.values():
assert a.size == 0
assert defaults["array"].dtype == np.array([]).dtype
assert defaults["array_t<int32>"].dtype == np.int32
assert defaults["array_t<double>"].dtype == np.float64
results = converting_constructors([1, 2, 3])
for a in results.values():
np.testing.assert_array_equal(a, [1, 2, 3])
assert results["array"].dtype == np.int_
assert results["array_t<int32>"].dtype == np.int32
assert results["array_t<double>"].dtype == np.float64
def console_fill_foreground(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_background(con, cr, cg, cb)
def maybe_convert_indices(indices, n):
""" if we have negative indicies, translate to postive here
if have indicies that are out-of-bounds, raise an IndexError
"""
if isinstance(indices, list):
indices = np.array(indices)
if len(indices) == 0:
# If list is empty, np.array will return float and cause indexing
# errors.
return np.empty(0, dtype=np.int_)
mask = indices < 0
if mask.any():
indices[mask] += n
mask = (indices >= n) | (indices < 0)
if mask.any():
raise IndexError("indices are out-of-bounds")
return indices
def test_empty_fancy(self):
empty_farr = np.array([], dtype=np.float_)
empty_iarr = np.array([], dtype=np.int_)
empty_barr = np.array([], dtype=np.bool_)
# pd.DatetimeIndex is excluded, because it overrides getitem and should
# be tested separately.
for idx in [self.strIndex, self.intIndex, self.floatIndex]:
empty_idx = idx.__class__([])
self.assertTrue(idx[[]].identical(empty_idx))
self.assertTrue(idx[empty_iarr].identical(empty_idx))
self.assertTrue(idx[empty_barr].identical(empty_idx))
# np.ndarray only accepts ndarray of int & bool dtypes, so should
# Index.
self.assertRaises(IndexError, idx.__getitem__, empty_farr)
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = np.array([1, 2, 3])
assert_equal(a[()], a)
assert_(a[()].base is a)
a = np.array(0)
assert_(isinstance(a[()], np.int_))
# Regression, it needs to fall through integer and fancy indexing
# cases, so need the with statement to ignore the non-integer error.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', '', DeprecationWarning)
a = np.array([1.])
assert_(isinstance(a[0.], np.float_))
a = np.array([np.array(1)], dtype=object)
assert_(isinstance(a[0.], np.ndarray))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, np.ones((1, 10)))
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, np.ones((1, 10)))
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test all close w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = np.array([1, 2, 3])
assert_equal(a[()], a)
assert_(a[()].base is a)
a = np.array(0)
assert_(isinstance(a[()], np.int_))
# Regression, it needs to fall through integer and fancy indexing
# cases, so need the with statement to ignore the non-integer error.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', '', DeprecationWarning)
a = np.array([1.])
assert_(isinstance(a[0.], np.float_))
a = np.array([np.array(1)], dtype=object)
assert_(isinstance(a[0.], np.ndarray))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, np.ones((1, 10)))
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, np.ones((1, 10)))
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test all close w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def console_fill_foreground(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_foreground(con, cr, cg, cb)
def console_fill_background(con,r,g,b) :
if len(r) != len(g) or len(r) != len(b):
raise TypeError('R, G and B must all have the same size.')
if (numpy_available and isinstance(r, numpy.ndarray) and
isinstance(g, numpy.ndarray) and isinstance(b, numpy.ndarray)):
#numpy arrays, use numpy's ctypes functions
r = numpy.ascontiguousarray(r, dtype=numpy.int_)
g = numpy.ascontiguousarray(g, dtype=numpy.int_)
b = numpy.ascontiguousarray(b, dtype=numpy.int_)
cr = r.ctypes.data_as(POINTER(c_int))
cg = g.ctypes.data_as(POINTER(c_int))
cb = b.ctypes.data_as(POINTER(c_int))
else:
# otherwise convert using ctypes arrays
cr = (c_int * len(r))(*r)
cg = (c_int * len(g))(*g)
cb = (c_int * len(b))(*b)
_lib.TCOD_console_fill_background(con, cr, cg, cb)
def test_get_all_route_shapes(self):
res = self.gtfs.get_all_route_shapes()
self.assertTrue(isinstance(res, list))
el = res[0]
keys = u"name type agency lats lons".split()
for key in keys:
self.assertTrue(key in el)
for el in res:
self.assertTrue(isinstance(el[u"name"], string_types), type(el[u"name"]))
self.assertTrue(isinstance(el[u"type"], (int, numpy.int_)), type(el[u'type']))
self.assertTrue(isinstance(el[u"agency"], string_types))
self.assertTrue(isinstance(el[u"lats"], list), type(el[u'lats']))
self.assertTrue(isinstance(el[u"lons"], list))
self.assertTrue(isinstance(el[u'lats'][0], float))
self.assertTrue(isinstance(el[u'lons'][0], float))
def test_get_stop_count_data(self):
dt_start_query = datetime.datetime(2007, 1, 1, 7, 59, 59)
dt_end_query = datetime.datetime(2007, 1, 1, 10, 2, 1)
start_query = self.gtfs.unlocalized_datetime_to_ut_seconds(dt_start_query)
end_query = self.gtfs.unlocalized_datetime_to_ut_seconds(dt_end_query)
df = self.gtfs.get_stop_count_data(start_query, end_query)
self.assertTrue(isinstance(df, pandas.DataFrame))
columns = ["stop_I", "count", "lat", "lon", "name"]
for c in columns:
self.assertTrue(c in df.columns)
el = df[c].iloc[0]
if c in ["stop_I", "count"]:
self.assertTrue(isinstance(el, (int, numpy.int_)))
if c in ["lat", "lon"]:
self.assertTrue(isinstance(el, float))
if c in ["name"]:
self.assertTrue(isinstance(el, string_types), type(el))
self.assertTrue((df['count'].values > 0).any())
def get_reads_base_sds(chrm_strand_reads, chrm_len, rev_strand):
base_sd_sums = np.zeros(chrm_len)
base_cov = np.zeros(chrm_len, dtype=np.int_)
for r_data in chrm_strand_reads:
# extract read means data so data across all chrms is not
# in RAM at one time
try:
read_data = h5py.File(r_data.fn, 'r')
except IOError:
# probably truncated file
continue
events_slot = '/'.join((
'/Analyses', r_data.corr_group, 'Events'))
if events_slot not in read_data:
continue
read_sds = read_data[events_slot]['norm_stdev']
if rev_strand:
read_sds = read_sds[::-1]
base_sd_sums[r_data.start:
r_data.start + len(read_sds)] += read_sds
base_cov[r_data.start:r_data.start + len(read_sds)] += 1
return base_sd_sums / base_cov
def get_reads_base_lengths(chrm_strand_reads, chrm_len, rev_strand):
base_length_sums = np.zeros(chrm_len)
base_cov = np.zeros(chrm_len, dtype=np.int_)
for r_data in chrm_strand_reads:
# extract read means data so data across all chrms is not
# in RAM at one time
try:
read_data = h5py.File(r_data.fn, 'r')
except IOError:
# probably truncated file
continue
events_slot = '/'.join((
'/Analyses', r_data.corr_group, 'Events'))
if events_slot not in read_data:
continue
read_lengths = read_data[events_slot]['length']
if rev_strand:
read_lengths = read_lengths[::-1]
base_length_sums[
r_data.start:
r_data.start + len(read_lengths)] += read_lengths
base_cov[r_data.start:r_data.start + len(read_lengths)] += 1
return base_length_sums / base_cov
def test_empty_tuple_index(self):
# Empty tuple index creates a view
a = np.array([1, 2, 3])
assert_equal(a[()], a)
assert_(a[()].base is a)
a = np.array(0)
assert_(isinstance(a[()], np.int_))
# Regression, it needs to fall through integer and fancy indexing
# cases, so need the with statement to ignore the non-integer error.
with warnings.catch_warnings():
warnings.filterwarnings('ignore', '', DeprecationWarning)
a = np.array([1.])
assert_(isinstance(a[0.], np.float_))
a = np.array([np.array(1)], dtype=object)
assert_(isinstance(a[0.], np.ndarray))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def default(self, obj):
# convert dates and numpy objects in a json serializable format
if isinstance(obj, datetime):
return obj.strftime('%Y-%m-%dT%H:%M:%SZ')
elif isinstance(obj, date):
return obj.strftime('%Y-%m-%d')
elif type(obj) in [np.int_, np.intc, np.intp, np.int8, np.int16,
np.int32, np.int64, np.uint8, np.uint16,
np.uint32, np.uint64]:
return int(obj)
elif type(obj) in [np.bool_]:
return bool(obj)
elif type(obj) in [np.float_, np.float16, np.float32, np.float64,
np.complex_, np.complex64, np.complex128]:
return float(obj)
# Let the base class default method raise the TypeError
return json.JSONEncoder.default(self, obj)
def test_int_subclassing(self):
# Regression test for https://github.com/numpy/numpy/pull/3526
numpy_int = np.int_(0)
if sys.version_info[0] >= 3:
# On Py3k int_ should not inherit from int, because it's not
# fixed-width anymore
assert_equal(isinstance(numpy_int, int), False)
else:
# Otherwise, it should inherit from int...
assert_equal(isinstance(numpy_int, int), True)
# ... and fast-path checks on C-API level should also work
from numpy.core.multiarray_tests import test_int_subclass
assert_equal(test_int_subclass(numpy_int), True)
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmax, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmax(-1, out=out)
assert_equal(out, a.argmax(-1))
def test_output_shape(self):
# see also gh-616
a = np.ones((10, 5))
# Check some simple shape mismatches
out = np.ones(11, dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones((2, 5), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
# these could be relaxed possibly (used to allow even the previous)
out = np.ones((1, 10), dtype=np.int_)
assert_raises(ValueError, a.argmin, -1, out)
out = np.ones(10, dtype=np.int_)
a.argmin(-1, out=out)
assert_equal(out, a.argmin(-1))
def test_allclose(self):
# Tests allclose on arrays
a = np.random.rand(10)
b = a + np.random.rand(10) * 1e-8
self.assertTrue(allclose(a, b))
# Test allclose w/ infs
a[0] = np.inf
self.assertTrue(not allclose(a, b))
b[0] = np.inf
self.assertTrue(allclose(a, b))
# Test allclose w/ masked
a = masked_array(a)
a[-1] = masked
self.assertTrue(allclose(a, b, masked_equal=True))
self.assertTrue(not allclose(a, b, masked_equal=False))
# Test comparison w/ scalar
a *= 1e-8
a[0] = 0
self.assertTrue(allclose(a, 0, masked_equal=True))
# Test that the function works for MIN_INT integer typed arrays
a = masked_array([np.iinfo(np.int_).min], dtype=np.int_)
self.assertTrue(allclose(a, a))
def data_style_func(df):
'''
Default value that can be used as callback for data_style_func
Args:
df: the dataframe that will be used to build the presentation model
Returns:
a function table takes idx, col as arguments and returns a dictionary of html style attributes
'''
def _style_func(r, c):
if isinstance(df.at[r,c], (np.int_, np.float, np.uint)):
return td_style_to_str(default_numeric_td_style)
return td_style_to_str(default_td_style)
return _style_func