Python numpy 模块,diagonal() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用numpy.diagonal()。
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def zz(matrix, nb):
r"""Zig-zag traversal of the input matrix
:param matrix: input matrix
:param nb: number of coefficients to keep
:return: an array of nb coefficients
"""
flipped = np.fliplr(matrix)
rows, cols = flipped.shape # nb of columns
coefficient_list = []
for loop, i in enumerate(range(cols - 1, -rows, -1)):
anti_diagonal = np.diagonal(flipped, i)
# reversing even diagonals prioritizes the X resolution
# reversing odd diagonals prioritizes the Y resolution
# for square matrices, the information content is the same only when nb covers half of the matrix
# e.g. [ nb = n*(n+1)/2 ]
if loop % 2 == 0:
anti_diagonal = anti_diagonal[::-1] # reverse anti_diagonal
coefficient_list.extend([x for x in anti_diagonal])
# flattened = [val for sublist in coefficient_list for val in sublist]
return coefficient_list[:nb]
def predict_y(self, inputs):
"""Summary
Args:
inputs (TYPE): Description
Returns:
TYPE: Description
"""
mf, vf = self.dyn_layer.forward_prop_thru_post(inputs)
if self.gp_emi:
mg, vg = self.emi_layer.forward_prop_thru_post(mf, vf)
my, vy = self.lik_layer.output_probabilistic(mg, vg)
else:
my, _, vy = self.emi_layer.output_probabilistic(mf, vf)
vy = np.diagonal(vy, axis1=1, axis2=2)
return my, vy
def get_posterior_y(self):
"""Summary
Returns:
TYPE: Description
"""
mx, vx = self.get_posterior_x()
if self.Dcon_emi > 0:
mx = np.hstack((mx, self.x_control))
vx = np.hstack((vx, np.zeros((self.N, self.Dcon_emi))))
if self.gp_emi:
mf, vf = self.emi_layer.forward_prop_thru_post(mx, vx)
my, vyn = self.lik_layer.output_probabilistic(mf, vf)
else:
my, vy, vyn = self.emi_layer.output_probabilistic(mx, vx)
vf = np.diagonal(vy, axis1=1, axis2=2)
vyn = np.diagonal(vyn, axis1=1, axis2=2)
return my, vf, vyn
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def lsInversion(self):
"""
LS Inversion from Hwang et al (2002)
"""
At=np.transpose(self.A)
St=np.transpose(self.S)
N=At.dot(self.P).dot(self.A)
#solution:
self.X=np.linalg.inv(N+self.S.dot(St)).dot(At).dot(self.P).dot(self.Obs)
self.r=self.A.dot(self.X)-self.Obs
rt=np.transpose(self.r)
self.VtPV=rt.dot(self.P).dot(self.r)
var_post_norm=self.VtPV/self.dof
self.SDaposteriori=np.sqrt(var_post_norm)
cov_post=np.linalg.inv(N)*var_post_norm
self.var=np.diagonal(cov_post)
def _fisher_vector(self, img_descriptors):
"""
:param img_descriptors: X
:return: fisher vector
:rtype: np.array
"""
means, covariances, weights = self.gmm.means, self.gmm.covariances, self.gmm.weights
s0, s1, s2 = self._likelihood_statistics(img_descriptors)
T = img_descriptors.shape[0]
diagonal_covariances = np.float32([np.diagonal(covariances[k]) for k in range(0, covariances.shape[0])])
""" Refer page 4, first column of reference [1] """
g_weights = self._fisher_vector_weights(s0, s1, s2, means, diagonal_covariances, weights, T)
g_means = self._fisher_vector_means(s0, s1, s2, means, diagonal_covariances, weights, T)
g_sigma = self._fisher_vector_sigma(s0, s1, s2, means, diagonal_covariances, weights, T)
fv = np.concatenate([np.concatenate(g_weights), np.concatenate(g_means), np.concatenate(g_sigma)])
fv = self.normalize(fv)
return fv
def compute_mar_likelihood(X_train, X_test, y_train, sigma, l):
"""
compute log marginal likelihood for tuning parameters using Bayesian optimization
:param X_train: training data
:param X_test: test data
:param y_train: training targets
:param sigma: output variance
:param l: lengthscalar
:return: log marginal likelihood
"""
s = 0.0005 # noise variance and zero mean for noise
n = len(X_train)
# choose RBF kernel in this regression case
K_train = RBF_kernel(X_train, X_train, sigma, l)
L = np.linalg.cholesky(K_train + s * np.eye(n))
m = np.linalg.solve(L, y_train)
alpha = np.linalg.solve(L.T, m)
# compute log marginal likelihood
log_marg_likelihood = -.5 * np.dot(y_train.T, alpha) - np.log(np.diagonal(L)).sum(0) - n / 2.0 * np.log(2 * np.pi)
return log_marg_likelihood
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def print_performance(cm):
tp = np.diagonal(cm).astype(np.float)
tpfp = np.sum(cm, axis=0).astype(np.float) # sum of each col
tpfn = np.sum(cm, axis=1).astype(np.float) # sum of each row
acc = np.sum(tp) / np.sum(cm)
precision = tp / tpfp
recall = tp / tpfn
f1 = (2 * precision * recall) / (precision + recall)
mf1 = np.mean(f1)
print "Sample: {}".format(np.sum(cm))
print "W: {}".format(tpfn[W])
print "N1: {}".format(tpfn[N1])
print "N2: {}".format(tpfn[N2])
print "N3: {}".format(tpfn[N3])
print "REM: {}".format(tpfn[REM])
print "Confusion matrix:"
print cm
print "Precision: {}".format(precision)
print "Recall: {}".format(recall)
print "F1: {}".format(f1)
print "Overall accuracy: {}".format(acc)
print "Macro-F1 accuracy: {}".format(mf1)
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def compute_precision_and_recall(confusion_matrix):
correct_predictions = np.diagonal(confusion_matrix)
samples_per_class = np.sum(confusion_matrix, axis=0)
false_positives = np.sum(confusion_matrix, axis=1) - correct_predictions
false_negatives = samples_per_class - correct_predictions
prectmp = correct_predictions / (correct_predictions + false_positives)
prectmp[np.where(correct_predictions == 0)[0]] = 0
prectmp[np.where(samples_per_class == 0)[0]] = float('nan')
precision = np.nanmean(prectmp)
rectmp = correct_predictions / (correct_predictions + false_negatives)
rectmp[np.where(correct_predictions == 0)[0]] = 0
rectmp[np.where(samples_per_class == 0)[0]] = float('nan')
recall = np.nanmean(rectmp)
return precision, recall
def GetClassMetric(gtLabal, testLabel, numClass=-1, labelSet=npy.array([])):
if numClass>0:
labelSet=npy.arange(numClass)
else:
if labelSet.size()==0 or npy.min(labelSet)<0:
return
numClass=npy.max(labelSet)+1
confMat=npy.zeros((numClass,numClass),dtype=npy.float32)
vecOnes=npy.ones(len(gtLabal))
for ii in labelSet:
for jj in labelSet:
confMat[ii,jj]=npy.sum(vecOnes[npy.logical_and(testLabel==ii, gtLabal==jj)])
ccn=npy.diagonal(confMat)
oa=npy.sum(ccn)/npy.sum(confMat)
pa=ccn/npy.sum(confMat, axis=0)
ua=ccn/npy.sum(confMat, axis=1)
temp1=npy.sum(confMat)*npy.sum(ccn)-npy.sum(npy.sum(confMat,axis=1)*npy.sum(confMat,axis=0));
temp2=npy.power(npy.sum(confMat),2)-npy.sum(npy.sum(confMat,axis=1)*npy.sum(confMat,axis=0));
kappa=temp1/temp2
confMat=confMat.astype(npy.int32)
accMetric={"confMat":confMat, "oa":oa, "pa":pa, "ua":ua, "kappa": kappa}
return accMetric
def GetClassMetric(gtLabal, testLabel, numClass=-1, labelSet=npy.array([])):
if numClass>0:
labelSet=npy.arange(numClass)
else:
if labelSet.size()==0 or npy.min(labelSet)<0:
return
numClass=npy.max(labelSet)+1
confMat=npy.zeros((numClass,numClass),dtype=npy.float32)
vecOnes=npy.ones(len(gtLabal))
for ii in labelSet:
for jj in labelSet:
confMat[ii,jj]=npy.sum(vecOnes[npy.logical_and(testLabel==ii, gtLabal==jj)])
ccn=npy.diagonal(confMat)
oa=npy.sum(ccn)/npy.sum(confMat)
pa=ccn/npy.sum(confMat, axis=0)
ua=ccn/npy.sum(confMat, axis=1)
temp1=npy.sum(confMat)*npy.sum(ccn)-npy.sum(npy.sum(confMat,axis=1)*npy.sum(confMat,axis=0));
temp2=npy.power(npy.sum(confMat),2)-npy.sum(npy.sum(confMat,axis=1)*npy.sum(confMat,axis=0));
kappa=temp1/temp2
confMat=confMat.astype(npy.int32)
accMetric={"confMat":confMat, "oa":oa, "pa":pa, "ua":ua, "kappa": kappa}
return accMetric
def write_overlap_densities(
path_hdf5: str, paths_fragment_overlaps: List, swaps: Matrix, dt: int=1):
"""
Write the diagonal of the overlap matrices
"""
logger.info("writing densities in human readable format")
# Track the crossing between MOs
for paths_overlaps in paths_fragment_overlaps:
overlaps = np.stack(retrieve_hdf5_data(path_hdf5, paths_overlaps))
for k, mtx in enumerate(np.rollaxis(overlaps, 0)):
overlaps[k] = mtx[:, swaps[k]][swaps[k]]
# Print to file the densities for each fragment on a given MO
for ifrag, paths_overlaps in enumerate(paths_fragment_overlaps):
# time frame
frames = overlaps.shape[0]
ts = np.arange(1, frames + 1).reshape(frames, 1) * dt
# Diagonal of the 3D-tensor
densities = np.diagonal(overlaps, axis1=1, axis2=2)
data = np.hstack((ts, densities))
# Save data in human readable format
file_name = 'densities_fragment_{}.txt'.format(ifrag)
np.savetxt(file_name, data, fmt='{:^3}'.format('%e'))
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def tril(m, k=0):
"""
Lower triangle of an array.
Return a copy of an array with elements above the `k`-th diagonal zeroed.
Parameters
----------
m : array_like, shape (M, N)
Input array.
k : int, optional
Diagonal above which to zero elements. `k = 0` (the default) is the
main diagonal, `k < 0` is below it and `k > 0` is above.
Returns
-------
array, shape (M, N)
Lower triangle of `m`, of same shape and data-type as `m`.
See Also
--------
triu : Same thing, only for the upper triangle.
"""
return m * tri(m.shape[0], m.shape[1], k=k, dtype=m.dtype)
def test_log_normal_matrix_full():
n_points, n_components, n_features = 10,5,2
points = np.random.randn(n_points,n_features)
means = np.random.randn(n_components,n_features)
cov = generate_covariance_matrices_full(n_components,n_features)
# Beginnig of the test
log_det_cov = np.log(np.linalg.det(cov))
precisions = np.linalg.inv(cov)
log_prob = np.empty((n_points,n_components))
for i in range(n_components):
diff = points - means[i]
y = np.dot(diff,np.dot(precisions[i],diff.T))
log_prob[:,i] = np.diagonal(y)
expected_log_normal_matrix = -0.5 * (n_features * np.log(2*np.pi) +
log_prob + log_det_cov)
predected_log_normal_matrix = _log_normal_matrix(points,means,cov,'full')
assert_almost_equal(expected_log_normal_matrix,predected_log_normal_matrix)
def test_log_normal_matrix_full():
n_points, n_components, n_features = 10,5,2
points = np.random.randn(n_points,n_features)
means = np.random.randn(n_components,n_features)
cov = generate.generate_covariance_matrices_full(n_components,n_features)
cov_chol = np.empty((n_components,n_features,n_features))
for i in range(n_components):
cov_chol[i] = linalg.cholesky(cov[i],lower=True)
# Beginnig of the test
log_det_cov = np.log(np.linalg.det(cov))
precisions = np.linalg.inv(cov)
log_prob = np.empty((n_points,n_components))
for i in range(n_components):
diff = points - means[i]
y = np.dot(diff,np.dot(precisions[i],diff.T))
log_prob[:,i] = np.diagonal(y)
expected_log_normal_matrix = -0.5 * (n_features * np.log(2*np.pi) +
log_prob + log_det_cov)
predected_log_normal_matrix = _log_normal_matrix(points,means,cov_chol,'full')
assert_almost_equal(expected_log_normal_matrix,predected_log_normal_matrix)
def _log_multivariate_normal_density_full(X, means, covars, min_covar=1.e-7):
"""Log probability for full covariance matrices."""
n_samples, n_dim = X.shape
nmix = len(means)
log_prob = np.empty((n_samples, nmix))
for c, (mu, cv) in enumerate(zip(means, covars)):
try:
cv_chol = linalg.cholesky(cv, lower=True)
except linalg.LinAlgError:
# The model is most probably stuck in a component with too
# few observations, we need to reinitialize this components
try:
cv_chol = linalg.cholesky(cv + min_covar * np.eye(n_dim),
lower=True)
except linalg.LinAlgError:
raise ValueError("'covars' must be symmetric, "
"positive-definite")
cv_log_det = 2 * np.sum(np.log(np.diagonal(cv_chol)))
cv_sol = linalg.solve_triangular(cv_chol, (X - mu).T, lower=True).T
log_prob[:, c] = - .5 * (np.sum(cv_sol ** 2, axis=1) +
n_dim * np.log(2 * np.pi) + cv_log_det)
return log_prob
def test_diagonal(self):
a = np.arange(12).reshape((3, 4))
assert_equal(a.diagonal(), [0, 5, 10])
assert_equal(a.diagonal(0), [0, 5, 10])
assert_equal(a.diagonal(1), [1, 6, 11])
assert_equal(a.diagonal(-1), [4, 9])
b = np.arange(8).reshape((2, 2, 2))
assert_equal(b.diagonal(), [[0, 6], [1, 7]])
assert_equal(b.diagonal(0), [[0, 6], [1, 7]])
assert_equal(b.diagonal(1), [[2], [3]])
assert_equal(b.diagonal(-1), [[4], [5]])
assert_raises(ValueError, b.diagonal, axis1=0, axis2=0)
assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]])
assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]])
assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]])
# Order of axis argument doesn't matter:
assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]])
def test_item_is_self_similar(self):
sim_matrix, _ = self.out
diagonal = np.diagonal(sim_matrix)
self.assertEqual(diagonal.tolist(), [2.0, 1.0, 2.0, 2.0, 1.0])
def diagonal_mpa(entries, sites):
"""Returns an MPA with ``entries`` on the diagonal and zeros otherwise.
:param numpy.ndarray entries: one-dimensional array
:returns: :class:`~mpnum.mparray.MPArray` with rank ``len(entries)``.
"""
assert sites > 0
if entries.ndim != 1:
raise NotImplementedError("Currently only supports diagonal MPA with "
"one leg per site.")
if sites < 2:
return mp.MPArray.from_array(entries)
ldim = len(entries)
leftmost_ltens = np.eye(ldim).reshape((1, ldim, ldim))
rightmost_ltens = np.diag(entries).reshape((ldim, ldim, 1))
center_ltens = np.zeros((ldim,) * 3)
np.fill_diagonal(center_ltens, 1)
ltens = it.chain((leftmost_ltens,), it.repeat(center_ltens, sites - 2),
(rightmost_ltens,))
return mp.MPArray(LocalTensors(ltens, cform=(sites - 1, sites)))
#########################
# More physical stuff #
#########################
def _unitary_haar(dim, randstate=None):
"""Returns a sample from the Haar measure of the unitary group of given
dimension.
:param int dim: Dimension
:param randn: Function to create real N(0,1) distributed random variables.
It should take the shape of the output as numpy.random.randn does
(default: numpy.random.randn)
"""
z = _zrandn((dim, dim), randstate) / np.sqrt(2.0)
q, r = qr(z)
d = np.diagonal(r)
ph = d / np.abs(d)
return q * ph
def test_diagonal(self):
a = [[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]]
out = np.diagonal(a)
tgt = [0, 5, 10]
assert_equal(out, tgt)
def test_diagonal_view_notwriteable(self):
# this test is only for 1.9, the diagonal view will be
# writeable in 1.10.
a = np.eye(3).diagonal()
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diagonal(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diag(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
def test_diagonal_memleak(self):
# Regression test for a bug that crept in at one point
a = np.zeros((100, 100))
assert_(sys.getrefcount(a) < 50)
for i in range(100):
a.diagonal()
assert_(sys.getrefcount(a) < 50)
def _half_log_det(self, M):
""" Return log(|M|)*0.5. For positive definite matrix M
of more than 2 dimensions, calculate this for the
last two dimension and return a value corresponding
to each element in the first few dimensions.
"""
chol = np.linalg.cholesky(M)
if M.ndim == 2:
return np.sum(np.log(np.abs(np.diag(chol))))
else:
return np.sum(np.log(np.abs(np.diagonal(
chol, axis1=-2, axis2=-1))), axis=-1)
def predict_forward_mm(self, T, x_control):
"""Summary
Args:
T (TYPE): Description
x_control (None, optional): Description
Returns:
TYPE: Description
"""
mx = np.zeros((T, self.Din))
vx = np.zeros((T, self.Din))
my = np.zeros((T, self.Dout))
vy_noiseless = np.zeros((T, self.Dout))
vy = np.zeros((T, self.Dout))
post_m, post_v = self.get_posterior_x()
mtm1 = post_m[[-1], :]
vtm1 = post_v[[-1], :]
for t in range(T):
if self.Dcon_dyn > 0:
mtm1 = np.hstack((mtm1, x_control[[t], :]))
vtm1 = np.hstack((vtm1, np.zeros((1, self.Dcon_dyn))))
mt, vt = self.dyn_layer.forward_prop_thru_post(mtm1, vtm1)
if self.Dcon_emi > 0:
mtc = np.hstack((mt, x_control[[t], :]))
vtc = np.hstack((vt, np.zeros((1, self.Dcon_emi))))
else:
mtc, vtc = mt, vt
if self.gp_emi:
mft, vft = self.emi_layer.forward_prop_thru_post(mtc, vtc)
myt, vyt_n = self.lik_layer.output_probabilistic(mft, vft)
else:
myt, vyt, vyt_n = self.emi_layer.output_probabilistic(mt, vt)
vft = np.diagonal(vyt, axis1=1, axis2=2)
vyt_n = np.diagonal(vyt_n, axis1=1, axis2=2)
mx[t, :], vx[t, :] = mt, vt
my[t, :], vy_noiseless[t, :], vy[t, :] = myt, vft, vyt_n
mtm1 = mt
vtm1 = vt
return mx, vx, my, vy_noiseless, vy
def predict_forward_mc(self, T, x_control, no_samples):
"""Summary
Args:
T (TYPE): Description
x_control (None, optional): Description
Returns:
TYPE: Description
"""
x = np.zeros((T, no_samples, self.Din))
my = np.zeros((T, no_samples, self.Dout))
vy = np.zeros((T, no_samples, self.Dout))
post_m, post_v = self.get_posterior_x()
mtm1 = post_m[[-1], :]
vtm1 = post_v[[-1], :]
eps = np.random.randn(no_samples, self.Din)
x_samples = eps * np.sqrt(vtm1) + mtm1
for t in range(T):
if self.Dcon_dyn > 0:
xc_samples = np.hstack((x_samples, np.tile(x_control[[t], :], [no_samples, 1])))
else:
xc_samples = x_samples
mt, vt = self.dyn_layer.forward_prop_thru_post(xc_samples)
eps = np.random.randn(no_samples, self.Din)
x_samples = eps * np.sqrt(vt) + mt
if self.Dcon_emi > 0:
xc_samples = np.hstack((x_samples, np.tile(x_control[[t], :]), [no_samples, 1]))
else:
xc_samples = x_samples
if self.gp_emi:
mft, vft = self.emi_layer.forward_prop_thru_post(xc_samples)
myt, vyt_n = self.lik_layer.output_probabilistic(mft, vft)
else:
myt, _, vyt_n = self.emi_layer.output_probabilistic(xc_samples, np.zeros_like(x_samples))
vyt_n = np.diagonal(vyt_n, axis1=1, axis2=2)
x[t, :, :] = x_samples
my[t, :, :], vy[t, :, :] = myt, vyt_n
return x, my, vy
def update_clustered_homogeneous_block_sizes(self, x, weight=1.0, block_size=None, include_self_loops=True):
print("update_clustered_homogeneous_block_sizes ")
if block_size is None:
er = "error, block_size not specified!!!!"
raise Exception(er)
# block_size = self.block_size
if isinstance(block_size, numpy.ndarray):
er = "Error: inhomogeneous block sizes not supported by this function"
raise Exception(er)
# Assuming block_size is an integer:
num_samples, dim = x.shape
if num_samples % block_size > 0:
err = "Inconsistency error: num_samples (%d) is not a multiple of block_size (%d)" % \
(num_samples, block_size)
raise Exception(err)
num_blocks = num_samples / block_size
# warning, plenty of dtype missing!!!!!!!!
sum_x = x.sum(axis=0)
sum_prod_x = mdp.utils.mult(x.T, x)
self.AddSamples(sum_prod_x, sum_x, num_samples, weight)
self.last_block = None
# DCorrelation Matrix. Compute medias signal
media = numpy.zeros((num_blocks, dim))
for i in range(num_blocks):
media[i] = x[i * block_size:(i + 1) * block_size].sum(axis=0) * (1.0 / block_size)
sum_prod_meds = mdp.utils.mult(media.T, media)
# FIX1: AFTER DT in (0,4) normalization
num_diffs = num_blocks * block_size # ## * (block_size-1+1) / (block_size-1)
print("num_diffs in block:", num_diffs, " num_samples:", num_samples)
if include_self_loops:
sum_prod_diffs = 2.0 * block_size * (sum_prod_x - block_size * sum_prod_meds) / block_size
else:
sum_prod_diffs = 2.0 * block_size * (sum_prod_x - block_size * sum_prod_meds) / (block_size - 1)
self.AddDiffs(sum_prod_diffs, num_diffs, weight)
print("(Diag(complete)/num_diffs.avg)**0.5 =", ((numpy.diagonal(sum_prod_diffs) / num_diffs).mean()) ** 0.5)
def diagonal(self):
return numpy.diagonal(self.__mat)
def __animate_1d(self, mat, **kwargs):
delta_list = numpy.diagonal(mat)
for (idx, val) in enumerate(delta_list):
if val is True:
self.activate_1d(idx, **kwargs)
elif val is False:
self.deactivate_1d(idx, **kwargs)
self.commit(**kwargs)
def _predict(self, steps, exog, alpha):
assert 0 < alpha < 1
y = (exog if exog is not None else self._endog)[-self.results.k_ar:]
forecast = self.results.forecast(y, steps)
# FIXME: The following is adapted from statsmodels's
# VAR.forecast_interval() as the original doesn't work
q = norm.ppf(1 - alpha / 2)
sigma = np.sqrt(np.abs(np.diagonal(self.results.mse(steps), axis1=2)))
err = q * sigma
return np.asarray([forecast, forecast - err, forecast + err])
def test_diagonal(self):
a = [[0, 1, 2, 3],
[4, 5, 6, 7],
[8, 9, 10, 11]]
out = np.diagonal(a)
tgt = [0, 5, 10]
assert_equal(out, tgt)
def test_diagonal_view_notwriteable(self):
# this test is only for 1.9, the diagonal view will be
# writeable in 1.10.
a = np.eye(3).diagonal()
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diagonal(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diag(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
def test_diagonal_memleak(self):
# Regression test for a bug that crept in at one point
a = np.zeros((100, 100))
assert_(sys.getrefcount(a) < 50)
for i in range(100):
a.diagonal()
assert_(sys.getrefcount(a) < 50)
def __str__(self):
return "x: {}, var: {}".format(self._x, np.diagonal(self._P))
def __str__(self):
return "x: {}, var: {}".format(self._x, np.diagonal(self._P))
def fisher_vector(samples, means, covs, w):
s0, s1, s2 = likelihood_statistics(samples, means, covs, w)
T = len(samples)
covs = np.float32([np.diagonal(covs[k]) for k in range(0, covs.shape[0])])
#pdb.set_trace()
a = fisher_vector_weights(s0, s1, s2, means, covs, w, T)
b = fisher_vector_means(s0, s1, s2, means, covs, w, T)
c = fisher_vector_sigma(s0, s1, s2, means, covs, w, T)
fv = np.concatenate([np.concatenate(a), np.concatenate(b), np.concatenate(c)])
fv = normalize(fv)
return fv
def fisher_vector(samples, means, covs, w):
s0, s1, s2 = likelihood_statistics(samples, means, covs, w)
T = len(samples)
covs = np.float32([np.diagonal(covs[k]) for k in range(0, covs.shape[0])])
#pdb.set_trace()
a = fisher_vector_weights(s0, s1, s2, means, covs, w, T)
b = fisher_vector_means(s0, s1, s2, means, covs, w, T)
c = fisher_vector_sigma(s0, s1, s2, means, covs, w, T)
fv = np.concatenate([np.concatenate(a), np.concatenate(b), np.concatenate(c)])
fv = normalize(fv)
return fv
def _update_iteration_data(self, itr, algorithm, costs, pol_sample_lists):
"""
Update iteration data information: iteration, average cost, and for
each condition the mean cost over samples, step size, linear Guassian
controller entropies, and initial/final KL divergences for BADMM.
"""
avg_cost = np.mean(costs)
if pol_sample_lists is not None:
test_idx = algorithm._hyperparams['test_conditions']
# pol_sample_lists is a list of singletons
samples = [sl[0] for sl in pol_sample_lists]
pol_costs = [np.sum(algorithm.cost[idx].eval(s)[0])
for s, idx in zip(samples, test_idx)]
itr_data = '%3d | %8.2f %12.2f' % (itr, avg_cost, np.mean(pol_costs))
else:
itr_data = '%3d | %8.2f' % (itr, avg_cost)
for m in range(algorithm.M):
cost = costs[m]
step = np.mean(algorithm.prev[m].step_mult * algorithm.base_kl_step)
entropy = 2*np.sum(np.log(np.diagonal(algorithm.prev[m].traj_distr.chol_pol_covar,
axis1=1, axis2=2)))
itr_data += ' | %8.2f %8.2f %8.2f' % (cost, step, entropy)
if isinstance(algorithm, AlgorithmBADMM):
kl_div_i = algorithm.cur[m].pol_info.init_kl.mean()
kl_div_f = algorithm.cur[m].pol_info.prev_kl.mean()
itr_data += ' %8.2f %8.2f %8.2f' % (pol_costs[m], kl_div_i, kl_div_f)
elif isinstance(algorithm, AlgorithmMDGPS):
# TODO: Change for test/train better.
if test_idx == algorithm._hyperparams['train_conditions']:
itr_data += ' %8.2f' % (pol_costs[m])
else:
itr_data += ' %8s' % ("N/A")
self.append_output_text(itr_data)
def f1_score(confusion):
tps = np.diagonal(confusion)
supports = confusion.sum(axis=1)
# TODO remove this ignore divide by 0, shouldn't happen
with np.errstate(divide='ignore', invalid='ignore'):
precisions = np.true_divide(tps, confusion.sum(axis=0))
recalls = np.true_divide(tps, supports)
f1s = 2*np.true_divide((precisions*recalls),(precisions+recalls))
f1s[f1s == np.inf] = 0
f1s = np.nan_to_num(f1s)
f1 = np.average(f1s, weights=supports)
return f1
# TODO remove duplicated code, same as intent model utils
def gradient_ascent(a, b, sigma, l, alpha, K_y):
"""
tune hyperparameters sigma and l for RBF kernel
:param a: input vector a
:param b: input vector b
:param sigma: output variance determines the average distance of your function away from its mean
:param l: lengthscale determines the length of the 'wiggles' in your function.
:param alpha: equals to K_inv * y
:param K_y: K_inv
:return: current sigmal and l
"""
step_size = 0.01
sqdist = ((a[:, :, None] - b[:, :, None].T) ** 2).sum(1)
# fix the output variance of RBF kernel in order to visualize it in one dimension
'''
# tune hyperparameter sigma
sigma_grad = 2 * sigma * np.exp(-.5*sqdist/(l**2))
sigma_matrix = np.dot(np.dot(alpha, alpha.T) - K_y, sigma_grad)
tr_sigma = np.diagonal(sigma_matrix).sum()
sigma_var = .5 * tr_sigma
'''
# tune hyperparameter l
l_grad = sigma**2 * np.exp(-.5*sqdist/(l**2)) * (sqdist/l**3)
l_matrix = np.dot(np.dot(alpha, alpha.T) - K_y, l_grad)
tr_l = np.diagonal(l_matrix).sum()
l_var = .5 * tr_l
# gradient ascent to maximum log marginal likelihood simultaneously
'''
sigma = sigma + step_size * sigma_var
'''
l = l + step_size * l_var
return sigma, l
def test_diagonal_view_notwriteable(self):
# this test is only for 1.9, the diagonal view will be
# writeable in 1.10.
a = np.eye(3).diagonal()
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diagonal(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diag(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
def test_diagonal_memleak(self):
# Regression test for a bug that crept in at one point
a = np.zeros((100, 100))
assert_(sys.getrefcount(a) < 50)
for i in range(100):
a.diagonal()
assert_(sys.getrefcount(a) < 50)
def test_diagonal():
b1 = np.matrix([[1,2],[3,4]])
diag_b1 = np.matrix([[1, 4]])
array_b1 = np.array([1, 4])
assert_equal(b1.diagonal(), diag_b1)
assert_equal(np.diagonal(b1), array_b1)
assert_equal(np.diag(b1), array_b1)
def _compute_output_errors(traj, x, P, output_stamps,
gyro_model, accel_model):
T = _errors_transform_matrix(traj.loc[output_stamps])
y = util.mv_prod(T, x[:, :N_BASE_STATES])
Py = util.mm_prod(T, P[:, :N_BASE_STATES, :N_BASE_STATES])
Py = util.mm_prod(Py, T, bt=True)
sd_y = np.diagonal(Py, axis1=1, axis2=2) ** 0.5
err = pd.DataFrame(index=output_stamps)
err['lat'] = y[:, DRN]
err['lon'] = y[:, DRE]
err['VE'] = y[:, DVE]
err['VN'] = y[:, DVN]
err['h'] = np.rad2deg(y[:, DH])
err['p'] = np.rad2deg(y[:, DP])
err['r'] = np.rad2deg(y[:, DR])
sd = pd.DataFrame(index=output_stamps)
sd['lat'] = sd_y[:, DRN]
sd['lon'] = sd_y[:, DRE]
sd['VE'] = sd_y[:, DVE]
sd['VN'] = sd_y[:, DVN]
sd['h'] = np.rad2deg(sd_y[:, DH])
sd['p'] = np.rad2deg(sd_y[:, DP])
sd['r'] = np.rad2deg(sd_y[:, DR])
gyro_err = pd.DataFrame(index=output_stamps)
gyro_sd = pd.DataFrame(index=output_stamps)
n = N_BASE_STATES
for i, name in enumerate(gyro_model.states):
gyro_err[name] = x[:, n + i]
gyro_sd[name] = P[:, n + i, n + i] ** 0.5
accel_err = pd.DataFrame(index=output_stamps)
accel_sd = pd.DataFrame(index=output_stamps)
ng = gyro_model.n_states
for i, name in enumerate(accel_model.states):
accel_err[name] = x[:, n + ng + i]
accel_sd[name] = P[:, n + ng + i, n + ng + i] ** 0.5
return err, sd, gyro_err, gyro_sd, accel_err, accel_sd
def test_diagonal_view_notwriteable(self):
# this test is only for 1.9, the diagonal view will be
# writeable in 1.10.
a = np.eye(3).diagonal()
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diagonal(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)
a = np.diag(np.eye(3))
assert_(not a.flags.writeable)
assert_(not a.flags.owndata)