Python numpy 模块,sinc() 实例源码
我们从Python开源项目中,提取了以下43个代码示例,用于说明如何使用numpy.sinc()。
def generate_mtf(pixel_aperture=1, azimuth=0, num_samples=128):
''' generates the 1D diffraction-limited MTF for a given pixel size and azimuth.
Args:
pixel_aperture (`float`): aperture of the pixel, in microns. Pixel is
assumed to be square.
azimuth (`float`): azimuth to retrieve the MTF at, in degrees.
num_samples (`int`): number of samples in the output array.
Returns:
`tuple` containing:
`numpy.ndarray`: array of units, in cy/mm.
`numpy.ndarray`: array of MTF values (rel. 1.0).
Notes:
Azimuth is not actually implemented yet.
'''
pitch_unit = pixel_aperture / 1e3
normalized_frequencies = np.linspace(0, 2, num_samples)
otf = np.sinc(normalized_frequencies)
mtf = np.abs(otf)
return normalized_frequencies / pitch_unit, mtf
def smPhiDP(phiDP, ran):
# smooth phiDP field and take derivative
# calculate lanczos filter weights
numRan = ran.shape[0]
numK = 31
fc = 0.015
kt = np.linspace(-(numK-1)/2, (numK-1)/2, numK)
w = np.sinc(2.*kt*fc)*(2.*fc)*np.sinc(kt/(numK/2))
#smoothPhiDP = convolve1d(phiDP, w, axis=1, mode='constant', cval=-999.)
smoothPhiDP = conv(phiDP, w)
#smoothPhiDP = np.ma.masked_where(smoothPhiDP==-999., smoothPhiDP)
return smoothPhiDP
# function for estimating kdp
#----------------------------------
def n_even_fcn(f, o, w, l):
"""Even case."""
# Variables :
k = np.array(range(0, int(l) + 1, 1)) + 0.5
b = np.zeros(k.shape)
# # Run Loop :
for s in range(0, len(f), 2):
m = (o[s + 1] - o[s]) / (f[s + 1] - f[s])
b1 = o[s] - m * f[s]
b = b + (m / (4 * np.pi * np.pi) * (np.cos(2 * np.pi * k * f[
s + 1]) - np.cos(2 * np.pi * k * f[s])) / (
k * k)) * abs(np.square(w[round((s + 1) / 2)]))
b = b + (f[s + 1] * (m * f[s + 1] + b1) * np.sinc(2 * k * f[
s + 1]) - f[s] * (m * f[s] + b1) * np.sinc(2 * k * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
a = (np.square(w[0])) * 4 * b
h = 0.5 * np.concatenate((np.flipud(a), a))
return h
def NevenFcn(F, M, W, L): # N is even
# Variables :
k = np.array(range(0, int(L) + 1, 1)) + 0.5
b = np.zeros(k.shape)
# # Run Loop :
for s in range(0, len(F), 2):
m = (M[s + 1] - M[s]) / (F[s + 1] - F[s])
b1 = M[s] - m * F[s]
b = b + (m / (4 * np.pi * np.pi) * (np.cos(2 * np.pi * k * F[
s + 1]) - np.cos(2 * np.pi * k * F[s])) / (
k * k)) * abs(np.square(W[round((s + 1) / 2)]))
b = b + (F[s + 1] * (m * F[s + 1] + b1) * np.sinc(2 * k * F[
s + 1]) - F[s] * (m * F[s] + b1) * np.sinc(2 * k * F[s])) * abs(
np.square(W[round((s + 1) / 2)]))
a = (np.square(W[0])) * 4 * b
h = 0.5 * np.concatenate((np.flipud(a), a))
return h
####################################################################
# - Filt the signal :
####################################################################
def lpfls(N,wp,ws,W):
M = (N-1)/2
nq = np.arange(0,2*M+1)
nb = np.arange(0,M+1)
q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
b[0] = wp/np.pi
q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
b = b.transpose()
Q1 = ln.toeplitz(q[0:M+1])
Q2 = ln.hankel(q[0:M+1],q[M:])
Q = Q1+Q2
a = ln.solve(Q,b)
h = list(nq)
for i in nb:
h[i] = 0.5*a[M-i]
h[N-1-i] = h[i]
h[M] = 2*h[M]
hmax = max(np.absolute(h))
for i in nq:
h[i] = (8191/hmax)*h[i]
return h
def bpfls(N,ws1,wp1,wp2,ws2,W):
M = (N-1)/2
nq = np.arange(0,2*M+1)
nb = np.arange(0,M+1)
q = W*np.sinc(nq) - (W*ws2/np.pi) * np.sinc(nq* (ws2/np.pi)) + (wp2/np.pi) * np.sinc(nq*(wp2/np.pi)) - (wp1/np.pi) * np.sinc(nq*(wp1/np.pi)) + (W*ws1/np.pi) * np.sinc(nq*(ws1/np.pi))
b = (wp2/np.pi)*np.sinc((wp2/np.pi)*nb) - (wp1/np.pi)*np.sinc((wp1/np.pi)*nb)
b[0] = wp2/np.pi - wp1/np.pi
q[0] = W - W*ws2/np.pi + wp2/np.pi - wp1/np.pi + W*ws1/np.pi # since sin(pi*n)/pi*n = 1, not 0
b = b.transpose()
Q1 = ln.toeplitz(q[0:M+1])
Q2 = ln.hankel(q[0:M+1],q[M:])
Q = Q1+Q2
a = ln.solve(Q,b)
h = list(nq)
for i in nb:
h[i] = 0.5*a[M-i]
h[N-1-i] = h[i]
h[M] = 2*h[M]
hmax = max(np.absolute(h))
for i in nq:
h[i] = (8191/hmax)*h[i]
return h
def hpfls(N,ws,wp,W):
M = (N-1)/2
nq = np.arange(0,2*M+1)
nb = np.arange(0,M+1)
b = 1 - (wp/np.pi)* np.sinc(nb * wp/np.pi)
b[0] = 1- wp/np.pi
q = 1 - (wp/np.pi)* np.sinc(nq * wp/np.pi) + W * (ws/np.pi) * np.sinc(nq * ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
q[0] = b[0] + W* ws/np.pi
b = b.transpose()
Q1 = ln.toeplitz(q[0:M+1])
Q2 = ln.hankel(q[0:M+1],q[M:])
Q = Q1+Q2
a = ln.solve(Q,b)
h = list(nq)
for i in nb:
h[i] = 0.5*a[M-i]
h[N-1-i] = h[i]
h[M] = 2*h[M]
hmax = max(np.absolute(h))
for i in nq:
h[i] = (8191/hmax)*h[i]
return h
def lanczosSubPixKernel( subPixShift, kernelShape=3, lobes=None ):
"""
Generate a kernel suitable for ni.convolve to subpixally shift an image.
"""
kernelShape = np.array( [kernelShape], dtype='int' )
if kernelShape.ndim == 1: # make it 2-D
kernelShape = np.array( [kernelShape[0], kernelShape[0]], dtype='int' )
if lobes is None:
lobes = (kernelShape[0]+1)/2
x_range = np.arange(-kernelShape[1]/2,kernelShape[1]/2)+1.0-subPixShift[1]
x_range = ( 2.0 / kernelShape[1] ) * x_range
y_range = np.arange(-kernelShape[1]/2,kernelShape[0]/2)+1.0-subPixShift[0]
y_range = ( 2.0 /kernelShape[0] ) * y_range
[xmesh,ymesh] = np.meshgrid( x_range, y_range )
lanczos_filt = np.sinc(xmesh * lobes) * np.sinc(xmesh) * np.sinc(ymesh * lobes) * np.sinc(ymesh)
lanczos_filt = lanczos_filt / np.sum(lanczos_filt) # Normalize filter output
return lanczos_filt
def sincinterp(x):
"""
Sinc interpolation for computation of fractional transformations.
As appears in :
-https://github.com/audiolabs/frft/
----------
Args:
f : (array) Complex valued input array
a : (float) Alpha factor
Returns:
ret : (array) Real valued synthesised data
"""
N = len(x)
y = np.zeros(2 * N - 1, dtype=x.dtype)
y[:2 * N:2] = x
xint = fftconvolve( y[:2 * N], np.sinc(np.arange(-(2 * N - 3), (2 * N - 2)).T / 2),)
return xint[2 * N - 3: -2 * N + 3]
def collect_pixel(self, pixel_i, frame_i, k,j,i):
#print pixel_i, k,j,i
t0 = time.time()
#px_data = np.random.rand()
#px_data = t0 - self.prev_px
x_hw = self.stage.settings.x_position.read_from_hardware(send_signal=False)
y_hw = self.stage.settings.y_position.read_from_hardware(send_signal=False)
theta = np.pi/10. * frame_i
x = x_hw*np.cos(theta) - y_hw*np.sin(theta)
y = x_hw*np.sin(theta) + y_hw*np.cos(theta)
px_data = np.sinc((x-50)*0.05)**2 * np.sinc(0.05*(y-50))**2 #+ 0.05*np.random.random()
#px_data = (x-xhw)**2 + ( y-yhw)**2
#if px_data > 1:
# print('hw', x, xhw, y, yhw)
self.display_image_map[k,j,i] = px_data
if self.settings['save_h5']:
self.test_data[frame_i, k,j,i] = px_data
time.sleep(self.settings['pixel_time'])
#self.prev_px = t0
def design_windowed_sinc_lpf(fc, bw):
N = Filter.get_filter_length_from_bandwidth(bw)
# Compute sinc filter impulse response
h = np.sinc(2 * fc * (np.arange(N) - (N - 1) / 2.))
# We use blackman window function
w = np.blackman(N)
# Multiply sinc filter with window function
h = h * w
# Normalize to get unity gain
h_unity = h / np.sum(h)
return h_unity
def intensitiesFFIntraAtom(nq, dq, partNrs, nameList, ffDict):
""" uses atomistic form factors """
dIntensity = np.zeros((nq, 2), dtype=float)
partInt = np.zeros((nq, len(partNrs) + 1))
qList = np.zeros(nq)
qList[:] = [float(i * dq) for i in range(nq)]
dIntensity[:, 0] = qList[:]
partInt[:, 0] = qList[:]
# for j in range(0,len(dIntegrand)):
# r=dIntegrand[j,0]
# sinc=j0(q*r)
k = 0
formFacProd = np.zeros((nq, len(partNrs) + 1))
# partNrsProd=getPartNrsProd(partNrs)
# print "partNrsProd ", partNrsProd
for i in range(nq):
for k in range(1, len(partNrs) + 1):
# print k
formFacProd[i, k] = ff.fiveGaussian(
ffDict[nameList[k - 1]], qList[i]) ** 2
partInt[i, k] += partNrs[k - 1] * formFacProd[i, k]
for i in range(nq):
dIntensity[i, 1] = partInt[i, 1:].sum()
return partInt, dIntensity
def iterate_l1(L, alpha, arg, beta, K, N, rr):
oversample_ratio = (1.0 * K / N)
for l1 in range(-L, L + 1):
alf = alpha[abs(l1)] * 1.0
if l1 < 0:
alf = numpy.conj(alf)
# r1 = numpy.sinc(1.0*(arg+1.0*l1*beta)/(1.0*K/N))
input_array = (arg + 1.0 * l1 * beta) / oversample_ratio
r1 = dirichlet(input_array.astype(numpy.float32))
rr = iterate_sum(rr, alf, r1)
return rr
def nufft_r(om, N, J, K, alpha, beta):
'''
equation (30) of Fessler's paper
'''
def iterate_sum(rr, alf, r1):
rr = rr + alf * r1
return rr
def iterate_l1(L, alpha, arg, beta, K, N, rr):
oversample_ratio = (1.0 * K / N)
import time
t0=time.time()
for l1 in range(-L, L + 1):
alf = alpha[abs(l1)] * 1.0
# if l1 < 0:
# alf = numpy.conj(alf)
# r1 = numpy.sinc(1.0*(arg+1.0*l1*beta)/(1.0*K/N))
input_array = (arg + 1.0 * l1 * beta) / oversample_ratio
r1 = dirichlet(input_array)
rr = iterate_sum(rr, alf, r1)
return rr
M = numpy.size(om) # 1D size
gam = 2.0 * numpy.pi / (K * 1.0)
nufft_offset0 = nufft_offset(om, J, K) # om/gam - nufft_offset , [M,1]
dk = 1.0 * om / gam - nufft_offset0 # om/gam - nufft_offset , [M,1]
arg = outer_sum(-numpy.arange(1, J + 1) * 1.0, dk)
L = numpy.size(alpha) - 1
# print('alpha',alpha)
rr = numpy.zeros((J, M), dtype=numpy.float32)
rr = iterate_l1(L, alpha, arg, beta, K, N, rr)
return (rr, arg)
def analytic_ft(self, unit_x, unit_y):
''' Analytic fourier transform of a pixel aperture.
Args:
unit_x (`numpy.ndarray`): sample points in x axis.
unit_y (`numpy.ndarray`): sample points in y axis.
Returns:
`numpy.ndarray`: 2D numpy array containing the analytic fourier transform.
'''
xq, yq = np.meshgrid(unit_x, unit_y)
return (sinc(xq * self.size_x / 1e3) *
sinc(yq * self.size_y / 1e3)).astype(config.precision)
def make_bin_weights(self):
erb_max = hz2erb(self.sr/2.0)
ngrid = 1000
erb_grid = np.arange(ngrid) * erb_max / (ngrid - 1)
hz_grid = (np.exp(erb_grid / 9.26) - 1) / 0.00437
resp = np.zeros((ngrid, self.n_bins))
for b in range(self.n_bins):
w = self.widths[b]
r = (2.0 * w + 1.0) / self.sr * (hz_grid - self.hz_freqs[b])
resp[:,b] = np.square(np.sinc(r)+ 0.5 * np.sinc(r + 1.0) + 0.5 * np.sinc(r - 1.0));
self.weights = np.dot(linalg.pinv(resp), np.ones((ngrid,1)))
def autocorrelation_function(self, r):
"""compute the real space autocorrelation function for the Gaussian random field model
"""
# compute the cut-level parameter beta
beta = np.sqrt(2) * erfinv(2 * (1-self.frac_volume) - 1)
# the covariance of the GRF
acf_psi = (np.exp(-r/self.corr_length) * (1 + r / self.corr_length)
* np.sinc(2*r/self.repeat_distance))
# integral discretization. henning says: the resolution 1e-2 is ad hoc, test required,
# the integrand has a (integrable) singularity for t=1 and acf_psi = 1, so an adaptive
# discretization seems preferable -> TODO
dt = 1e-2
t = np.arange(0, 1, dt)
# the gridded integrand, via change of integration variable
# compared to the wp-2 docu, to enable array-based computation
t_gridded, acf_psi_gridded = np.meshgrid(t, acf_psi)
integrand_gridded = (acf_psi_gridded / np.sqrt(1 - (t_gridded * acf_psi_gridded)**2)
* np.exp( - beta**2 / (1 + t_gridded * acf_psi_gridded)))
acf = 1.0 / (2 * np.pi) * np.trapz(integrand_gridded, x=t_gridded)
return acf
# ft not known analytically: deligate
# def ft_autocorrelation_function(self, k):
def autocorrelation_function(self, r):
"""compute the real space autocorrelation function for the Teubner Strey model
"""
acf = self.corr_func_at_origin * np.exp(-r/self.corr_length) * np.sinc(2*r/self.repeat_distance)
return acf
def n_odd_fcn(f, o, w, l):
"""Odd case."""
# Variables :
b0 = 0
m = np.array(range(int(l + 1)))
k = m[1:len(m)]
b = np.zeros(k.shape)
# Run Loop :
for s in range(0, len(f), 2):
m = (o[s + 1] - o[s]) / (f[s + 1] - f[s])
b1 = o[s] - m * f[s]
b0 = b0 + (b1 * (f[s + 1] - f[s]) + m / 2 * (
f[s + 1] * f[s + 1] - f[s] * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
b = b + (m / (4 * np.pi * np.pi) * (
np.cos(2 * np.pi * k * f[s + 1]) - np.cos(2 * np.pi * k * f[s])
) / (k * k)) * abs(np.square(w[round((s + 1) / 2)]))
b = b + (f[s + 1] * (m * f[s + 1] + b1) * np.sinc(2 * k * f[
s + 1]) - f[s] * (m * f[s] + b1) * np.sinc(2 * k * f[s])) * abs(
np.square(w[round((s + 1) / 2)]))
b = np.insert(b, 0, b0)
a = (np.square(w[0])) * 4 * b
a[0] = a[0] / 2
aud = np.flipud(a[1:len(a)]) / 2
a2 = np.insert(aud, len(aud), a[0])
h = np.concatenate((a2, a[1:] / 2))
return h
def NoddFcn(F, M, W, L): # N is odd
# Variables :
b0 = 0
m = np.array(range(int(L + 1)))
k = m[1:len(m)]
b = np.zeros(k.shape)
# Run Loop :
for s in range(0, len(F), 2):
m = (M[s + 1] - M[s]) / (F[s + 1] - F[s])
b1 = M[s] - m * F[s]
b0 = b0 + (b1 * (F[s + 1] - F[s]) + m / 2 * (
F[s + 1] * F[s + 1] - F[s] * F[s])) * abs(
np.square(W[round((s + 1) / 2)]))
b = b + (m / (4 * np.pi * np.pi) * (
np.cos(2 * np.pi * k * F[s + 1]) - np.cos(2 * np.pi * k * F[s])
) / (k * k)) * abs(np.square(W[round((s + 1) / 2)]))
b = b + (F[s + 1] * (m * F[s + 1] + b1) * np.sinc(2 * k * F[
s + 1]) - F[s] * (m * F[s] + b1) * np.sinc(2 * k * F[s])) * abs(
np.square(W[round((s + 1) / 2)]))
b = np.insert(b, 0, b0)
a = (np.square(W[0])) * 4 * b
a[0] = a[0] / 2
aud = np.flipud(a[1:len(a)]) / 2
a2 = np.insert(aud, len(aud), a[0])
h = np.concatenate((a2, a[1:] / 2))
return h
# Even case
def lpfls2notch(N,wp,ws,wn1,wn2,W):
M = (N-1)/2
nq = np.arange(0,2*M+1)
nb = np.arange(0,M+1)
q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
b = np.asmatrix(b)
b = b.transpose()
Q1 = ln.toeplitz(q[0:M+1])
Q2 = ln.hankel(q[0:M+1],q[M:])
Q = Q1+Q2
G1 = np.cos(wn1*nb)
G2 = np.cos(wn2*nb)
G = np.matrix([G1,G2])
d = np.array([0,0])
d = np.asmatrix(d)
d = d.transpose()
c = np.asmatrix(ln.solve(Q,b))
mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)
a = c - ln.solve(Q,G.transpose()*mu)
h = np.zeros(N)
for i in nb:
h[i] = 0.5*a[M-i]
h[N-1-i] = h[i]
h[M] = 2*h[M]
hmax = max(np.absolute(h))
for i in nq:
h[i] = (8191/hmax)*h[i]
return h
def lpfls1notch(N,wp,ws,wn1,W):
M = (N-1)/2
nq = np.arange(0,2*M+1)
nb = np.arange(0,M+1)
q = (wp/np.pi)*np.sinc((wp/np.pi)*nq) - W*(ws/np.pi)*np.sinc((ws/np.pi)*nq)
b = (wp/np.pi)*np.sinc((wp/np.pi)*nb)
q[0] = wp/np.pi + W*(1-ws/np.pi) # since sin(pi*n)/pi*n = 1, not 0
b = np.asmatrix(b)
b = b.transpose()
Q1 = ln.toeplitz(q[0:M+1])
Q2 = ln.hankel(q[0:M+1],q[M:])
Q = Q1+Q2
G1 = np.cos(wn1*nb)
G = np.matrix([G1])
d = np.array([0])
d = np.asmatrix(d)
c = np.asmatrix(ln.solve(Q,b))
mu = ln.solve(G*ln.inv(Q)*G.transpose(),G*c - d)
a = c - ln.solve(Q,G.transpose()*mu)
h = np.zeros(N)
for i in nb:
h[i] = 0.5*a[M-i]
h[N-1-i] = h[i]
h[M] = 2*h[M]
hmax = max(np.absolute(h))
for i in nq:
h[i] = (8191/hmax)*h[i]
return h
def rcosfir(beta, sps, span=None):
"""Generates a raised cosine FIR filter.
:param beta: shape of the raised cosine filter (0-1)
:param sps: number of samples per symbol
:param span: length of the filter in symbols (None => automatic selection)
>>> import arlpy
>>> rc = arlpy.comms.rcosfir(0.25, 6)
>>> bb = arlpy.comms.modulate(arlpy.comms.random_data(100), arlpy.comms.psk())
>>> pb = arlpy.comms.upconvert(bb, 6, 27000, 18000, rc)
"""
if beta < 0 or beta > 1:
raise ValueError('Beta must be between 0 and 1')
if span is None:
# from http://www.commsys.isy.liu.se/TSKS04/lectures/3/MichaelZoltowski_SquareRootRaisedCosine.pdf
# since this recommendation is for root raised cosine filter, it is conservative for a raised cosine filter
span = 33-int(44*beta) if beta < 0.68 else 4
delay = int(span*sps/2)
t = _np.arange(-delay, delay+1, dtype=_np.float)/sps
denom = 1 - (2*beta*t)**2
eps = _np.finfo(float).eps
idx1 = _np.nonzero(_np.abs(denom) > _sqrt(eps))
b = _np.full_like(t, beta*_sin(_pi/(2*beta))/(2*sps))
b[idx1] = _np.sinc(t[idx1]) * _cos(_pi*beta*t[idx1])/denom[idx1] / sps
b /= _sqrt(_np.sum(b**2))
return b
def lanczos(x, freq, radius=3):
l = 0.5*freq * np.sinc(0.5*freq*x) * np.sinc(x/radius)
l[(x < -radius) | (x > radius)] = 0.0
return l
def pollData(self):
"""Poll for new data. This method sleeps in order to ensure
that self.pollSize observations are generated at a realistic rate.
"""
# figure time between polls using exponentially weighted moving average
curTime = time.time()
if self.pollDelay >= 0.0:
self.pollDelay = 0.8*self.pollDelay + 0.2*(curTime - self.lastPollTime)
else:
self.pollDelay = 0.0
self.lastPollTime = curTime - self.shift
sleepTime = np.max((0.0, self.shift - self.pollDelay))
self.lastPollTime = curTime + sleepTime
time.sleep(sleepTime)
with self.lock:
# generate some random data
data = np.random.uniform(-self.scale.value, self.scale.value,
size=(self.pollSize,self.nChan))
erpEnd = self.erpStart.value +\
self.erpSpeed.value *\
data.shape[0]/float(self.sampRate)
erp = np.linspace(self.erpStart.value, erpEnd, data.shape[0])
erp = np.repeat(erp, data.shape[1]).reshape((-1,data.shape[1]))
erp = erp * 0.5*(np.arange(data.shape[1])+1.0)
erp = np.sinc(erp)
data += erp
self.erpStart.value = erpEnd
return data
def lanczos(n, radius=3):
taps = np.linspace(-radius,radius, n)
return np.sinc(taps/radius)
def sinc(n, radius=3, freq=1.0):
taps = np.linspace(-radius,radius, n)
return freq * np.sinc(freq*taps)
def initImpulseResponse(self, window):
if self.bandType == 'allpass':
self.impulseResponse = windows.kroneckerDelta(self.order+1)
elif self.bandType == 'allstop':
self.impulseResponse = np.zeros_like(window)
elif self.bandType == 'lowpass':
hightaps = self.high*self.taps
self.impulseResponse = self.high*np.sinc(hightaps) * window
elif self.bandType == 'highpass':
lowtaps = self.low*self.taps
self.impulseResponse = (-self.low*np.sinc(lowtaps) * window +
windows.kroneckerDelta(self.order+1))
elif self.bandType == 'bandpass':
lowtaps = self.low*self.taps
hightaps = self.high*self.taps
self.impulseResponse = (self.high*np.sinc(hightaps) -
self.low*np.sinc(lowtaps)) * window
elif self.bandType == 'bandstop':
lowtaps = self.low*self.taps
hightaps = self.high*self.taps
self.impulseResponse = ((self.high*np.sinc(hightaps) -
self.low*np.sinc(lowtaps)) * window +
windows.kroneckerDelta(self.order+1))
else:
raise Exception('Invalid bandType: ' + str(self.bandType))
self.impulseResponse = self.impulseResponse.astype(self.dtype, copy=False)
def BandpassFilter(lowFreq, highFreq, sampRate=1.0, order=None, filtType='butter', **kwargs):
filtType = filtType.lower()
if filtType in ('butter', 'cheby1', 'cheby2', 'ellip', 'bessel'):
if order is None: order = 3
return BandpassFilterIIR(lowFreq=lowFreq, highFreq=highFreq,
sampRate=sampRate, order=order, filtType=filtType, **kwargs)
elif filtType in ('lanczos', 'sinc-blackman', 'sinc-hamming', 'sinc-hann'):
if order is None: order = 20
return BandpassFilterFIR(lowFreq=lowFreq, highFreq=highFreq,
sampRate=sampRate, order=order, filtType=filtType, **kwargs)
else:
raise Exception('Invalid filter type: ' + str(filtType) + '.')
def rootRaisedCosine(t):
bit_period = 1/BIT_FREQUENCY
if (t== bit_period/(4*BETA)):
return (BETA/(np.pi*np.sqrt(2*bit_period)) * \
((np.pi + 2)*np.sin(np.pi/(4*BETA)) + (np.pi - 2)*np.cos(np.pi/(4*BETA))))
else:
return (4 * BETA / np.pi / np.sqrt(bit_period) * \
(np.cos((1 + BETA) * np.pi * t / bit_period) + \
(1 - BETA) * np.pi / (4 * BETA) * np.sinc((1-BETA)*t/bit_period)) / \
(1 - (4*BETA*t/bit_period)**2))
def rootRaisedCosine(t):
bit_period = 1/BIT_FREQUENCY
if (t== bit_period/(4*BETA)):
return (BETA/(np.pi*np.sqrt(2*bit_period)) * \
((np.pi + 2)*np.sin(np.pi/(4*BETA)) + (np.pi - 2)*np.cos(np.pi/(4*BETA))))
else:
return (4 * BETA / np.pi / np.sqrt(bit_period) * \
(np.cos((1 + BETA) * np.pi * t / bit_period) + \
(1 - BETA) * np.pi / (4 * BETA) * np.sinc((1-BETA)*t/bit_period)) / \
(1 - (4*BETA*t/bit_period)**2))
def get_CML(self, q, t):
"""
Calculate C, M, L forming the elements of T matrix
:param q: a shifted coordinate grid
:param t: time
:return: tuple C, M, L
"""
assert q is self.x_plus or q is self.x_minus, \
"the shifted coordinate (q) must be either x_plus or x_minus"
# get the difference of adiabatic potential curves
Vg_minus_Ve = (self._Vg_plus_Ve_x_plus if q is self.x_plus else self._Vg_minus_Ve_x_minus)
Veg = self.Veg(q, t)
D = Veg**2 + 0.25*Vg_minus_Ve**2
np.sqrt(D, out=D)
S = np.sinc(D * self.dt / np.pi)
S *= self.dt
C = D * self.dt
np.cos(C, out=C)
M = S * Vg_minus_Ve
M *= 0.5
L = S * Veg
return C, M, L
def ef_cascade(screenpos, i, nletters):
v = np.array([0, -1])
d = lambda t : 1 if t < 0 else abs(np.sinc(t) / (1 + t**4))
return lambda t: screenpos + v * 400 * d(t - 0.15 * i)
def collect_pixel(self, pixel_i, k,j,i):
#print pixel_i, k,j,i
t0 = time.time()
#px_data = np.random.rand()
#px_data = t0 - self.prev_px
x0,y0 = self.pos
x_set = self.stage.settings['x_position']
y_set = self.stage.settings['y_position']
x_hw = self.stage.settings.x_position.read_from_hardware(send_signal=False)
y_hw = self.stage.settings.y_position.read_from_hardware(send_signal=False)
if np.abs(x_hw - x0) > 1:
self.log.debug('='*60)
self.log.debug('pos {} {}'.format(x0, y0))
self.log.debug('settings {} {}'.format(x_set, y_set))
self.log.debug('hw {} {}'.format(x_hw, y_hw))
self.log.debug('settings value delta {} {}'.format(x_set-x0, y_set-y0))
self.log.debug('read_hw value delta {} {}'.format(x_hw-x0, y_hw-y0))
self.log.debug('='*60)
x = x_hw
y = y_hw
px_data = np.sinc((x-50)*0.05)**2 * np.sinc(0.05*(y-50))**2 #+ 0.05*np.random.random()
#px_data = (x-xhw)**2 + ( y-yhw)**2
#if px_data > 1:
# print('hw', x, xhw, y, yhw)
self.display_image_map[k,j,i] = px_data
if self.settings['save_h5']:
self.test_data[k,j,i] = px_data
time.sleep(self.settings['pixel_time'])
#self.prev_px = t0
def Sinc(freq=440, amp=1.0, offset=0):
"""Makes a Sinc function.
freq: float frequency in Hz
amp: float amplitude, 1.0 is nominal max
offset: float phase offset in radians
returns: Sinusoid object
"""
return Sinusoid(freq, amp, offset, func=np.sinc)
def intensitiesFFFaster(nq, dq, dIntegrand, keys, ffDict, dr):
""" uses atomistic form factors """
dIntensity = np.zeros((nq, 2), dtype=float)
partInt = np.zeros((nq, len(dIntegrand[0])))
nameList = [k.split(",") for k in keys]
# print "nameList=",nameList
qList = np.zeros(nq)
qList[:] = [float(i * dq) for i in range(nq)]
dIntensity[:, 0] = qList[:]
partInt[:, 0] = qList[:]
rList = dIntegrand[:, 0]
# for j in range(0,len(dIntegrand)):
# r=dIntegrand[j,0]
# sinc=j0(q*r)
formFacProd = np.zeros((nq, len(dIntegrand[0])))
for i in range(nq):
sincList = np.sinc(rList * qList[i] / math.pi) * dr
for k in range(1, len(dIntegrand[0])):
# print k
formFacProd[i, k] = ff.fiveGaussian(ffDict[nameList[k - 1][0]], qList[i])\
* ff.fiveGaussian(ffDict[nameList[k - 1][1]], qList[i])
partInt[i, k] += (sincList[:] * dIntegrand[:, k]
).sum() * formFacProd[i, k]
for i in range(nq):
dIntensity[i, 1] = partInt[i, 1:].sum()
return partInt, dIntensity
def initLanczos(self, filtOrder):
self.filtOrder = filtOrder
if self.filtOrder % 2 != 0:
raise Exception('Invalid filtOrder: ' + str(self.filtOrder) +
' Must be an even integer.')
radius = self.filtOrder // 2
win = np.sinc(np.linspace(-radius, radius, self.filtOrder+1) / float(radius)) # lanczos
#win = spsig.hamming(self.filtOrder+1) # sinc-hamming
# this should be automated somehow XXX - idfah
if self.filtOrder <= 6:
cutoff = 2*0.570
elif self.filtOrder <= 8:
cutoff = 2*0.676
elif self.filtOrder <= 12:
cutoff = 2*0.781
elif self.filtOrder <= 16:
cutoff = 2*0.836
elif self.filtOrder <= 32:
cutoff = 2*0.918
elif self.filtOrder <= 64:
cutoff = 2*0.959
# need to fix for multiple pool sizes XXX - idfah
cutoff /= float(self.poolSize)
taps = cutoff * np.linspace(-radius, radius, self.filtOrder+1, dtype=self.dtype)
impulseResponse = cutoff * np.sinc(taps) * win
self.filters = []
nReadoutLayers = 1 if self.nHidden is None else 2
for ni, no in self.layerDims[:-nReadoutLayers]:
noEmb = no*(self.filtOrder+1) # no outs after filter embedding
filtMat = np.zeros(noEmb*2, dtype=self.dtype)
filtMat[noEmb-1::-no] = impulseResponse
# filters strided for embedding
sz = filtMat.itemsize
filtMat = npst.as_strided(filtMat, (no,noEmb), strides=(sz,sz))[::-1].T
self.filters.append(filtMat.copy())
def rrc(t):
'''
Input: T, evaluation point (seconds)
Output: value of root-raised-cosine at time T
'''
# Delay between two bits
bit_period = 1/BIT_FREQUENCY
# Total amount of bits to transmit
nb_bits = len(LIST_OF_BITS)
# To be returned (sum of contributions)
s = 0.0
# Max value of rrc
m = 4*BETA/np.pi/np.sqrt(bit_period) + (1-BETA)/np.sqrt(bit_period) + sum(abs(2*rootRaisedCosine(i*bit_period)) for i in range(1, TRUNCATION))
if(t < - TRUNCATION * bit_period or t >= (nb_bits + TRUNCATION) * bit_period):
# T out of support
r = 0.0
else:
# Bits that will affect function at time T
relevant_bits = np.zeros(2*TRUNCATION+1)
for i in range(2*TRUNCATION+1):
j = t/bit_period + i - TRUNCATION
j = int(j) if int(j) <= j else int(j) - 1
if(j >= 0 and j < nb_bits):
relevant_bits[i] = -1 if LIST_OF_BITS[j] == '0' else 1
for i in range(2*TRUNCATION+1):
tt = t/bit_period
tt = t - int(tt)*bit_period if int(tt) <= tt else t - (int(tt)-1)*bit_period
if(t == bit_period * (1 / 4 / BETA + (i - TRUNCATION))):
# L'Hospital's rule because of potential discontinuity
s += relevant_bits[i] * BETA / np.pi / np.sqrt(2*bit_period) * 1 / m * \
((np.pi + 2) * np.sin(np.pi/4/BETA) + \
(np.pi - 2) * np.cos(np.pi/4/BETA))
else:
# General case formula
s += relevant_bits[i] * 4*BETA/np.pi/np.sqrt(bit_period) * 1 / m * \
(np.cos((1 + BETA) * np.pi * ((tt / bit_period - (i-TRUNCATION)))) + \
(1 - BETA) * np.pi / 4 / BETA * \
np.sinc((1 - BETA) * (tt / bit_period - (i-TRUNCATION))))/ \
(1 - (4*BETA*(tt / bit_period - (i-TRUNCATION)))**2)
return s
### ### ### ### ### ### ###
def noise_power(self, freq):
"""Returns a function to calculate the noise PS at the given freq.
"""
z = freq_to_z(freq)
beam_size = self.beam_size(freq)
A_pix = beam_size**2
A_survey = self.f_sky * 4 * np.pi
tau = A_pix / A_survey * units.year * self.num_year * self.beam_num
# Calculate the comoving size of a frequency bin (at the given freq)
d = self.proper_distance
dxf = (d(freq_to_z(freq - self.freq_width)) - d(z))
# Define the window function in k-space for the parallel and perpendicular directions.
# Use a sinc function for parallel as it is the FT of a top-hat bin. This is probably a bad choice.
def window_par(kpar):
y = kpar * dxf / (4 * np.pi)
return np.sinc(y) * (np.abs(y) < 1.0)
# Azimuthally average over the X and Y window functions to produce an
# overall k_perp window function. Do this by averaging for a set number
# of points k values and then generating an interpolating function to
# appeoximate the full result.
def _int(phi, k):
# Integrand to average over
x = (3e2 * k * d(z)) / (freq * 2 * np.pi)
xx = x * np.cos(phi)
xy = x * np.sin(phi)
return (self.window_x(xx) * self.window_y(xy))**2
def _w_xy_average(k):
# Full averaged window function
return scipy.integrate.fixed_quad(_int, 0, 2 * np.pi, args=(k,), n=1024)[0]
# Generate a log interpolated approximation
k_val = np.linspace(0, self.kmax, 256)
int_val = np.array([_w_xy_average(k)**0.5 for k in k_val])
_w_perp_interp = scipy.interpolate.interp1d(k_val, np.log(int_val))
def window_perp(kperp):
return np.exp(_w_perp_interp(kperp))
# Calculate the comoving volume of a single pixel (beam)
V_pix = A_pix * d(z)**2 * dxf
# Receiver temperature contribution to instrumental Stokes I
T_recv_I = self.T_recv / 2**0.5
return inv_noise_ps_21cm(T_recv_I + self.T_sky(freq), tau, V_pix,
self.freq_width, window_par, window_perp)
def focus_multiprocessing(self, row):
"""
Focus SAR image with TDBP algorithm. NOTE: Image must be range compressed.
It uses local squint angle (antenna coordinate system) and distances to target to focus.
Parameters
----------
row: int.
image row to be focus.
Returns
-------
list of numpy complex.
List containing entire focused row (numpy complex data) calculated in parallel mode.
"""
# Light speed.
c = 300000000.0
# SAR bandwidth, central frequency and lambda.
sar_B = self.param.get_float_parameter("Radar/B")
sar_f0 = self.param.get_float_parameter("Radar/f0")
sar_lambda = c/sar_f0
nt_fast_time = self.simulated_image.traj.nt
nt_slow_time = self.simulated_image.Nt
# Partial row calculated in parallel mode focusing.
partial_row = np.empty(self.ny, dtype=np.complex128)
x_foc_ind = row
for y_foc_ind in range(self.ny):
foc_lin_ind = x_foc_ind*self.ny + y_foc_ind
# Synthetic range compressed data (matched 2D filter).
# Antenna Enclosure (lobe).
doppler_amplitude_lin = (np.sinc(self.local_squint_ref_traj[foc_lin_ind, :]/self.radar_beamwidth*0.886 ))**2
doppler_amplitude = np.tile(doppler_amplitude_lin, [self.simulated_image.Nt, 1])
# Range amplitude: range positions in raw data of backscattered signal. These are the sincs with range
# migration (range compressed image).
range_amplitude = np.sinc( sar_B*( (np.tile(self.simulated_image.t_axis_fast_time, [nt_fast_time, 1])).transpose()
- np.tile(2*self.distances_ref_traj[foc_lin_ind, :]/c, [nt_slow_time, 1]) ) )
# Limit bandwidth to threshold given by a window. Use only 3dB of antenna lobe for azimuth, limited by squint threshold.
doppler_threshold_win = np.absolute( np.tile(self.local_squint_ref_traj[foc_lin_ind, :], [nt_slow_time, 1]) ) < self.squint_threshold
raw_amplitude = doppler_amplitude*range_amplitude*doppler_threshold_win
# Phase of backscattered signal (2*pi*2*r/lambda).
raw_phase = np.exp(-1j*4*np.pi/sar_lambda*np.tile(self.distances_ref_traj[foc_lin_ind, :], [nt_slow_time, 1]))
# Get module of raw_amplitude (for every xn, yn).
mod_raw_amplitude = np.sum(abs(raw_amplitude)**2)
# Repeat over x,y (slow time and fast time) to normalize.
mod_raw_amplitude = np.tile(mod_raw_amplitude, [nt_slow_time, nt_fast_time])
# Get raw odographer with raw_amplitude and raw_phase, i.e. with amplitude and phase information, and normalize.
raw_to_foc = (np.conjugate(raw_phase))*raw_amplitude/mod_raw_amplitude
partial_row[y_foc_ind] = np.sum(self.new_raw*raw_to_foc)
return list(partial_row)
def generate_img(self, param):
"""
Generate range compressed image.
Parameters
----------
param: object (ConfigurationManager instance).
ConfigurationManager instance to read parameters from file.
Returns
-------
-.
"""
# Light speed.
c = 300000000.0
# Load beamwidth, bandwidth and central frequency to use locally.
sar_bmw = (param.get_float_parameter("Radar/beamwidth")*np.pi)/180.
sar_B = param.get_float_parameter("Radar/B")
sar_f0 = param.get_float_parameter("Radar/f0")
# Get angles squint and look of view with respect to the antenna coordinate system.
#self.get_angles_antenna()
self.local_look, self.local_squint = Utils.get_angles_antenna(self.traj, self.nom_target)
# Set fast time axis.
start = 2*(min(self.distances))/c - self.fast_time_pixel_margin_mono*self.radar_dt
end = 2*(max(self.distances))/c + self.fast_time_pixel_margin_mono*self.radar_dt
step = self.radar_dt
self.t_axis_fast_time = np.arange(start, end, step)
# Number of elements in fast time axis.
self.Nt = np.size(self.t_axis_fast_time)
self.freq_axis_fftshift = Utils.freq_axis(self.radar_dt, self.Nt, False, True)
sar_lambda = c/sar_f0
# Doppler amplitude (envolvente de la antena).
doppler_amplitude = (np.sinc( (np.tile(self.local_squint, [self.Nt, 1]))/sar_bmw*(2*0.443) ))**2
# Range amplitude: range positions in raw data of backscattered signal.
Nd = np.size(self.distances)
range_amplitude = np.sinc( sar_B*( (np.tile(self.t_axis_fast_time, [Nd, 1])).transpose() - np.tile(2*self.distances/c, [self.Nt, 1]) ) )
# Signal phase received: 2*pi*2*r/lambda.
signal_phase = np.exp(-1j*4*np.pi/sar_lambda*np.tile(self.distances, [self.Nt, 1]))
# Generate range compressed simulated image.
self.image = doppler_amplitude*range_amplitude*signal_phase