Python numpy 模块,fix() 实例源码
我们从Python开源项目中,提取了以下37个代码示例,用于说明如何使用numpy.fix()。
def filter_window_cartesian(img, wsize, fun, scale, **kwargs):
r"""Apply a filter of square window size `fsize` on a given
cartesian image `img`.
Parameters
----------
img : :class:`numpy:numpy.ndarray`
2d array of values to which the filter is to be applied
wsize : float
Half size of the window centred on the pixel [m]
fun : string
name of the 2d filter from :mod:`scipy:scipy.ndimage`
scale : tuple of 2 floats
x and y scale of the cartesian grid [m]
Returns
-------
output : :class:`numpy:numpy.ndarray`
Array with the same shape as `img`, containing the filter's results.
"""
fun = getattr(filters, "%s_filter" % fun)
size = np.fix(wsize / scale + 0.5).astype(int)
data_filtered = fun(img, size, **kwargs)
return data_filtered
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
def pitch_strength_all_candidates(f_erbs, L, pc):
"""
Calculates the pitch ``strength'' of all candidate
pitches
Args:
f_erbs (array): frequencies in ERBs
L (matrix): loudness matrix
pc (array): pitch candidates array
Returns:
S (array): strength of pitches corresponding to pc's
"""
# create pitch strength matrix
S = np.zeros((pc.size, L.shape[1]))
# define integration regions
k = np.zeros(pc.size+1)
for j in range(k.size-1):
idx = int(k[j])
f = f_erbs[idx:]
val = find(f > pc[j] / 4)[0]
k[j+1] = k[j] + val
k = k[1:] # TODO: fix this sloppiness
# create loudness normalization matrix
N = np.sqrt(np.flipud(np.cumsum(np.flipud(L * L), 0)))
for j in range(pc.size):
# normalize loudness
n = N[int(k[j]), :]
n[n == 0] = -np.inf # to make zero-loudness equal zero after normalization
nL = L[int(k[j]):] / np.tile(n, (int(L.shape[0] - k[j]), 1))
# compute pitch strength
S[j] = pitch_strength_one_candidate(f_erbs[int(k[j]):], nL, pc[j])
return S
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold):
in_side = 2*out_side+11
stride = 0
if out_side != 1:
stride = float(in_side-12)/(out_side-1)
(x,y) = np.where(cls_prob>=threshold)
boundingbox = np.array([x,y]).T
bb1 = np.fix((stride * (boundingbox) + 0 ) * scale)
bb2 = np.fix((stride * (boundingbox) + 11) * scale)
boundingbox = np.concatenate((bb1,bb2),axis = 1)
dx1 = roi[0][x,y]
dx2 = roi[1][x,y]
dx3 = roi[2][x,y]
dx4 = roi[3][x,y]
score = np.array([cls_prob[x,y]]).T
offset = np.array([dx1,dx2,dx3,dx4]).T
boundingbox = boundingbox + offset*12.0*scale
rectangles = np.concatenate((boundingbox,score),axis=1)
rectangles = rect2square(rectangles)
pick = []
for i in range(len(rectangles)):
x1 = int(max(0 ,rectangles[i][0]))
y1 = int(max(0 ,rectangles[i][1]))
x2 = int(min(width ,rectangles[i][2]))
y2 = int(min(height,rectangles[i][3]))
sc = rectangles[i][4]
if x2>x1 and y2>y1:
pick.append([x1,y1,x2,y2,sc])
return NMS(pick,0.3,'iou')
def generateBoundingBox(map, reg, scale, t):
stride = 2
cellsize = 12
map = map.T
dx1 = reg[0,:,:].T
dy1 = reg[1,:,:].T
dx2 = reg[2,:,:].T
dy2 = reg[3,:,:].T
(x, y) = np.where(map >= t)
yy = y
xx = x
score = map[x,y]
reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])
if reg.shape[0] == 0:
pass
boundingbox = np.array([yy, xx]).T
bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
score = np.array([score])
boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)
return boundingbox_out.T
def generateBoundingBox(map, reg, scale, t):
stride = 2
cellsize = 12
map = map.T
dx1 = reg[0,:,:].T
dy1 = reg[1,:,:].T
dx2 = reg[2,:,:].T
dy2 = reg[3,:,:].T
(x, y) = np.where(map >= t)
yy = y
xx = x
score = map[x,y]
reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])
if reg.shape[0] == 0:
pass
boundingbox = np.array([yy, xx]).T
bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
score = np.array([score])
boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)
return boundingbox_out.T
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size == 0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def formalize_sample(samp):
samp = np.array(samp)
if np.any(samp != np.fix(samp)):
raise ValueError('Input sample must only contain integers.')
if samp.ndim == 1 or samp.ndim == 2 and samp.shape[0] == 1:
samp = samp.reshape((samp.size, 1))
return samp
def formalize_sample(samp):
samp = np.array(samp)
if np.any(samp != np.fix(samp)):
raise ValueError('Input sample must only contain integers.')
if samp.ndim == 1 or samp.ndim == 2 and samp.shape[0] == 1:
samp = samp.reshape((samp.size, 1))
return samp
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def float_to_rational(self, a):
assert np.all(a > 0.0)
d = 2**16 / np.fix(a+1).astype(int) # Uglier than it used to be: np.int(a + 1)
n = np.fix(a * d + 1).astype(int)
return n, d
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def to_julian_date(self):
"""
Convert DatetimeIndex to Float64Index of Julian Dates.
0 Julian date is noon January 1, 4713 BC.
http://en.wikipedia.org/wiki/Julian_day
"""
# http://mysite.verizon.net/aesir_research/date/jdalg2.htm
year = self.year
month = self.month
day = self.day
testarr = month < 3
year[testarr] -= 1
month[testarr] += 12
return Float64Index(day +
np.fix((153 * month - 457) / 5) +
365 * year +
np.floor(year / 4) -
np.floor(year / 100) +
np.floor(year / 400) +
1721118.5 +
(self.hour +
self.minute / 60.0 +
self.second / 3600.0 +
self.microsecond / 3600.0 / 1e+6 +
self.nanosecond / 3600.0 / 1e+9
) / 24.0)
def test_getitem_setitem_ellipsis(self):
s = Series(np.random.randn(10))
np.fix(s)
result = s[...]
assert_series_equal(result, s)
s[...] = 5
self.assertTrue((result == 5).all())
def test_reindex_corner(self):
# (don't forget to fix this) I think it's fixed
self.empty.reindex(self.ts.index, method='pad') # it works
# corner case: pad empty series
reindexed = self.empty.reindex(self.ts.index, method='pad')
# pass non-Index
reindexed = self.ts.reindex(list(self.ts.index))
assert_series_equal(self.ts, reindexed)
# bad fill method
ts = self.ts[::2]
self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo')
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def _segpoints(self, stimulus):
"""Find segmentation points."""
stim_diff = np.diff(stimulus)
changepoints = np.nonzero(stim_diff)[0]
changepoints = np.hstack([0, changepoints, stimulus.size])
changepoints_diff = np.diff(changepoints)
segpoints = changepoints[:-1] + np.fix(changepoints_diff/2)
segpoints = segpoints[0::2] # Sub-sample every 2 points
return segpoints
def generate_bboxes(scores_map, reg, scale, t):
stride = 2
cellsize = 12
(y, x) = np.where(scores_map >= t)
if len(y) < 1:
return None
scores = scores_map[y, x]
dx1, dy1, dx2, dy2 = [reg[i, y, x] for i in range(4)]
reg = np.array([dx1, dy1, dx2, dy2])
bbox = np.array([y, x])
# bb1 = np.fix((stride * bbox) / scale)
# bb2 = np.fix((stride * bbox + cellsize) / scale)
# !!! Use fix() for top-left point, and round() for bottom-right point
# !!! So we can cover a 'whole' face !!! added by zhaoyafei 2017-07-18
bb1 = np.fix((stride * bbox) / scale)
bb2 = np.round((stride * bbox + cellsize) / scale)
# print 'bb1.shape:', bb1.shape
# print 'bb2.shape:', bb2.shape
# print 'scores.shape:', scores.shape
# print 'reg.shape:', reg.shape
bbox_out = np.vstack((bb1, bb2, scores, reg))
# print 'bbox_out.shape:', bbox_out.shape
return bbox_out.T
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def detect_face_12net(cls_prob,roi,out_side,scale,width,height,threshold):
in_side = 2*out_side+11
stride = 0
if out_side != 1:
stride = float(in_side-12)/(out_side-1)
(x,y) = np.where(cls_prob>=threshold)
boundingbox = np.array([x,y]).T
bb1 = np.fix((stride * (boundingbox) + 0 ) * scale)
bb2 = np.fix((stride * (boundingbox) + 11) * scale)
boundingbox = np.concatenate((bb1,bb2),axis = 1)
dx1 = roi[0][x,y]
dx2 = roi[1][x,y]
dx3 = roi[2][x,y]
dx4 = roi[3][x,y]
score = np.array([cls_prob[x,y]]).T
offset = np.array([dx1,dx2,dx3,dx4]).T
boundingbox = boundingbox + offset*12.0*scale
rectangles = np.concatenate((boundingbox,score),axis=1)
rectangles = rect2square(rectangles)
pick = []
for i in range(len(rectangles)):
x1 = int(max(0 ,rectangles[i][0]))
y1 = int(max(0 ,rectangles[i][1]))
x2 = int(min(width ,rectangles[i][2]))
y2 = int(min(height,rectangles[i][3]))
sc = rectangles[i][4]
if x2>x1 and y2>y1:
pick.append([x1,y1,x2,y2,sc])
return NMS(pick,0.5,'iou')
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def generateBoundingBox(imap, reg, scale, t):
# use heatmap to generate bounding boxes
stride=2
cellsize=12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def pitch_strength_one_candidate(f_erbs, nL, pc):
"""
Calculates the pitch ``strength'' for a single
candidate
Args:
f_erbs (array):
nL : normalized loudness
pc : pitch candidate
Returns:
s (float): value of strength for a pitch
"""
# fix rounds a number *towards* zero
n = int(np.fix(f_erbs[-1] / pc - 0.75)) # number of harmonics
if n == 0:
return np.nan
k = np.zeros(f_erbs.shape) # kernel
# normalize freq w.r.t. candidate
q = f_erbs / pc
# create kernel
primes = np.concatenate((np.ones(1), primes_2_to_n(n)))
for i in primes:
a = np.abs(q - i)
# peak's weight
p = a < 0.25
k[p] = np.cos(2 * np.pi * q[p])
# valley's weight
v = np.logical_and(0.25 < a, a < 0.75)
k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2
# apply envelope
k = k * np.sqrt(1 / f_erbs)
# K+-normalized kernel
k = k / np.linalg.norm(k[k>0])
# strength value of pitch
s = np.dot(k, nL)
return s
def __init__(self, cnn=None, NetworkCode=None, StationCode=None, t=None):
if t is None:
ppp_soln = PPP_soln(cnn, NetworkCode, StationCode)
t = ppp_soln.t
# wrap around the solutions
wt = np.sort(np.unique(t - np.fix(t)))
# analyze the gaps in the data
dt = np.diff(wt)
# max dt (internal)
dtmax = np.max(dt)
# dt wrapped around
dt_interyr = 1 - wt[-1] + wt[0]
if dt_interyr > dtmax:
dtmax = dt_interyr
# save the value of the max wrapped delta time
self.dt_max = dtmax
# if dtmax < 3 months (90 days = 0.1232), then we can fit the annual
# if dtmax < 1.5 months (45 days = 0.24657), then we can fit the semi-annual too
if dtmax <= 0.1232:
# all components (annual and semi-annual)
self.A = np.array([sin(2 * pi * t), cos(2 * pi * t), sin(4 * pi * t), cos(4 * pi * t)]).transpose()
self.frequencies = 2
elif dtmax <= 0.2465:
# only annual
self.A = np.array([sin(2 * pi * t), cos(2 * pi * t)]).transpose()
self.frequencies = 1
else:
# no periodic terms
self.A = np.array([])
self.frequencies = 0
self.terms = self.frequencies * 2
return
def __init__(self, cnn=None, NetworkCode=None, StationCode=None, t=None):
if t is None:
ppp_soln = PPP_soln(cnn, NetworkCode, StationCode)
t = ppp_soln.t
# wrap around the solutions
wt = np.sort(np.unique(t - np.fix(t)))
# analyze the gaps in the data
dt = np.diff(wt)
# max dt (internal)
dtmax = np.max(dt)
# dt wrapped around
dt_interyr = 1 - wt[-1] + wt[0]
if dt_interyr > dtmax:
dtmax = dt_interyr
# save the value of the max wrapped delta time
self.dt_max = dtmax
# if dtmax < 3 months (90 days = 0.1232), then we can fit the annual
# if dtmax < 1.5 months (45 days = 0.24657), then we can fit the semi-annual too
if dtmax <= 0.1232:
# all components (annual and semi-annual)
self.A = np.array([sin(2 * pi * t), cos(2 * pi * t), sin(4 * pi * t), cos(4 * pi * t)]).transpose()
self.frequencies = 2
elif dtmax <= 0.2465:
# only annual
self.A = np.array([sin(2 * pi * t), cos(2 * pi * t)]).transpose()
self.frequencies = 1
else:
# no periodic terms
self.A = np.array([])
self.frequencies = 0
# variables to store the periodic amplitudes
self.sin = np.array([])
self.cos = np.array([])
self.params = self.frequencies * 2
def eemd(data, noise_std=0.2, num_ensembles=100, num_sifts=10):
"""
Ensemble Empirical Mode Decomposition (EEMD)
*** Must still add in post-processing with EMD ***
"""
# get modes to generate
num_samples = len(data)
num_modes = int(np.fix(np.log2(num_samples)))-1
# normalize incomming data
dstd = data.std()
y = data/dstd
# allocate for starting value
all_modes = np.zeros((num_modes+2,num_samples))
# loop over num_ensembles
for e in range(num_ensembles):
# perturb starting data
x0 = y + np.random.randn(num_samples)*noise_std
# save the starting value
all_modes[0] += x0
# loop over modes
for m in range(num_modes):
# do the sifts
imf = x0
for s in range(num_sifts):
imf = _do_one_sift(imf)
# save the imf
all_modes[m+1] += imf
# set the residual
x0 = x0 - imf
# save the final residual
all_modes[-1] += x0
# average everything out and renormalize
return all_modes*dstd/np.float64(num_ensembles)
def generateBoundingBox(map, reg, scale, t):
stride = 2
cellsize = 12
map = map.T
dx1 = reg[0,:,:].T
dy1 = reg[1,:,:].T
dx2 = reg[2,:,:].T
dy2 = reg[3,:,:].T
(x, y) = np.where(map >= t)
yy = y
xx = x
'''
if y.shape[0] == 1: # only one point exceed threshold
y = y.T
x = x.T
score = map[x,y].T
dx1 = dx1.T
dy1 = dy1.T
dx2 = dx2.T
dy2 = dy2.T
# a little stange, when there is only one bb created by PNet
#print "1: x,y", x,y
a = (x*map.shape[1]) + (y+1)
x = a/map.shape[0]
y = a%map.shape[0] - 1
#print "2: x,y", x,y
else:
score = map[x,y]
'''
#print "dx1.shape", dx1.shape
#print 'map.shape', map.shape
score = map[x,y]
reg = np.array([dx1[x,y], dy1[x,y], dx2[x,y], dy2[x,y]])
if reg.shape[0] == 0:
pass
boundingbox = np.array([yy, xx]).T
bb1 = np.fix((stride * (boundingbox) + 1) / scale).T # matlab index from 1, so with "boundingbox-1"
bb2 = np.fix((stride * (boundingbox) + cellsize - 1 + 1) / scale).T # while python don't have to
score = np.array([score])
boundingbox_out = np.concatenate((bb1, bb2, score, reg), axis=0)
#print '(x,y)',x,y
#print 'score', score
#print 'reg', reg
return boundingbox_out.T
def STFT(x, wlen, h, nfft, fs):
########################################################
# Short-Time Fourier Transform %
# with MATLAB Implementation %
# For Python %
# Copier: Nelson Yalta 11/03/15 %
########################################################
# function: [stft, f, t] = stft(x, wlen, h, nfft, fs)
# x - signal in the time domain
# wlen - length of the hamming window
# h - hop size
# nfft - number of FFT points
# fs - sampling frequency, Hz
# f - frequency vector, Hz
# t - time vector, s
# stft - STFT matrix (only unique points, time across columns, freq across rows)
# represent x as column-vector if it is not
if (len(x.shape) > 1) and (x.shape[1] > 1):
x = x.transpose()
# length of the signal
xlen = x.shape[0]
# form a periodic hamming window
win = hamming(wlen, False)
# form the stft matrix
rown = int(np.ceil((1.0+nfft)/2))
coln = int(np.fix((xlen-wlen)/h) + 1)
short_tft = np.zeros((rown,coln)).astype('complex64')
# initialize the indexes
indx = 0
col = 0
# perform STFT
while (indx + wlen <= xlen):
# windowing
xw =x[indx:indx+wlen]*win
# FFT
X = np.fft.fft(xw,nfft)
# update the stft matrix
short_tft[:,col] = X[0:rown]
# update the indexes
indx += h
col += 1
# calculate the time and frequency vectors
t = np.linspace(wlen/2,wlen/2+(coln-1)*h,coln)/fs
f = np.arange(0,rown,dtype= np.float32)*fs/nfft
return short_tft, f, t
def balanced_accuracy_score(y_true, y_pred, method = 'edges', random_state=None):
"""Balanced classification accuracy metric (multi-class).
Keeps only a subset of the data instances corresponding to the rest class.
The size of the subset is equal to the median group size of the other
classes."""
_check_x_y(y_true,y_pred)
classes, n_instances = np.unique(y_true, return_counts=True)
median_instances = np.median(n_instances[1:])
n_classes = classes.size
idx_rest = np.where(y_true == 0)[0] # Find rest instances
idx_else = np.where(y_true != 0)[0] # Find all other instances
if method == 'random':
if random_state is not None:
np.random.seed(random_state)
idx_keep = np.random.choice(idx_rest,median_instances, replace=False) # Keep a random subset
idx_final = np.sort(np.hstack((idx_keep, idx_else)))
if method == 'edges':
samples_per_rest_repetition = np.fix(median_instances / (2*n_classes - 1)).astype('int'); # How many we want to keep for each rest repetition
if samples_per_rest_repetition < 1:
samples_per_rest_repetition = 1;
changes = np.diff(y_true) # Stimulus change
idx_changes = np.nonzero(changes)[0] # Stimulus change
idx_from_rest = idx_changes[np.arange(start=0,stop=idx_changes.size,step=2)] # Changing from rest to movement
idx_to_rest = idx_changes[np.arange(start=1,stop=idx_changes.size,step=2)] # Changing from rest to movement
idx_to_rest = np.hstack(([0], idx_to_rest))
idx_keep = []
for ii,jj in zip(idx_to_rest,idx_from_rest):
center = np.fix(ii + (jj-ii)/2)
idx_keep.extend(np.arange(center,center+samples_per_rest_repetition))
idx_keep = np.asarray(idx_keep, dtype='int')
idx_final = np.sort(np.hstack((idx_keep, idx_else)))
true_new = y_true[idx_final]
pred_new = y_pred[idx_final]
return accuracy_score(true_new, pred_new)
def balanced_log_loss(y_true, y_pred, method = 'edges', random_state=None):
"""Balanced log-loss metric (multi-class).
Keeps only a subset of the data instances corresponding to the rest class.
The size of the subset is equal to the median group size of the other
classes."""
# y_true = np.asarray(y_true)
# y_pred = np.asarray(y_pred)
classes, n_instances = np.unique(y_true, return_counts=True)
median_instances = np.median(n_instances[1:])
n_classes = classes.size
idx_rest = np.where(y_true == 0)[0] # Find rest instances
idx_else = np.where(y_true != 0)[0] # Find all other instances
if method == 'random':
if random_state is not None:
np.random.seed(random_state)
idx_keep = np.random.choice(idx_rest,median_instances, replace=False) # Keep a random subset
idx_final = np.sort(np.hstack((idx_keep, idx_else)))
if method == 'edges':
samples_per_rest_repetition = np.fix(median_instances / (2*n_classes - 1)).astype('int'); # How many we want to keep for each rest repetition
if samples_per_rest_repetition < 1:
samples_per_rest_repetition = 1;
changes = np.diff(y_true) # Stimulus change
idx_changes = np.nonzero(changes)[0] # Stimulus change
idx_from_rest = idx_changes[np.arange(start=0,stop=idx_changes.size,step=2)] # Changing from rest to movement
idx_to_rest = idx_changes[np.arange(start=1,stop=idx_changes.size,step=2)] # Changing from rest to movement
idx_to_rest = np.hstack(([0], idx_to_rest))
idx_keep = []
for ii,jj in zip(idx_to_rest,idx_from_rest):
center = np.fix(ii + (jj-ii)/2)
idx_keep.extend(np.arange(center,center+samples_per_rest_repetition))
idx_keep = np.asarray(idx_keep, dtype='int')
idx_final = np.sort(np.hstack((idx_keep, idx_else)))
true_new = y_true[idx_final]
pred_new = y_pred[idx_final]
return log_loss(true_new, pred_new)
def frequest(im,orientim,windsze,minWaveLength,maxWaveLength):
rows,cols = np.shape(im);
# Find mean orientation within the block. This is done by averaging the
# sines and cosines of the doubled angles before reconstructing the
# angle again. This avoids wraparound problems at the origin.
cosorient = np.mean(np.cos(2*orientim));
sinorient = np.mean(np.sin(2*orientim));
orient = math.atan2(sinorient,cosorient)/2;
# Rotate the image block so that the ridges are vertical
#ROT_mat = cv2.getRotationMatrix2D((cols/2,rows/2),orient/np.pi*180 + 90,1)
#rotim = cv2.warpAffine(im,ROT_mat,(cols,rows))
rotim = scipy.ndimage.rotate(im,orient/np.pi*180 + 90,axes=(1,0),reshape = False,order = 3,mode = 'nearest');
# Now crop the image so that the rotated image does not contain any
# invalid regions. This prevents the projection down the columns
# from being mucked up.
cropsze = int(np.fix(rows/np.sqrt(2)));
offset = int(np.fix((rows-cropsze)/2));
rotim = rotim[offset:offset+cropsze][:,offset:offset+cropsze];
# Sum down the columns to get a projection of the grey values down
# the ridges.
proj = np.sum(rotim,axis = 0);
dilation = scipy.ndimage.grey_dilation(proj, windsze,structure=np.ones(windsze));
temp = np.abs(dilation - proj);
peak_thresh = 2;
maxpts = (temp<peak_thresh) & (proj > np.mean(proj));
maxind = np.where(maxpts);
rows_maxind,cols_maxind = np.shape(maxind);
# Determine the spatial frequency of the ridges by divinding the
# distance between the 1st and last peaks by the (No of peaks-1). If no
# peaks are detected, or the wavelength is outside the allowed bounds,
# the frequency image is set to 0
if(cols_maxind<2):
freqim = np.zeros(im.shape);
else:
NoOfPeaks = cols_maxind;
waveLength = (maxind[0][cols_maxind-1] - maxind[0][0])/(NoOfPeaks - 1);
if waveLength>=minWaveLength and waveLength<=maxWaveLength:
freqim = 1/np.double(waveLength) * np.ones(im.shape);
else:
freqim = np.zeros(im.shape);
return(freqim);
def filter_window_polar(img, wsize, fun, rscale, random=False):
r"""Apply a filter of an approximated square window of half size `fsize`
on a given polar image `img`.
Parameters
----------
img : :class:`numpy:numpy.ndarray`
2d array of values to which the filter is to be applied
wsize : float
Half size of the window centred on the pixel [m]
fun : string
name of the 1d filter from :mod:`scipy:scipy.ndimage`
rscale : float
range [m] scale of the polar grid
random: bool
True to use random azimuthal size to avoid long-term biases.
Returns
-------
output : :class:`numpy:numpy.ndarray`
Array with the same shape as `img`, containing the filter's results.
"""
ascale = 2 * np.pi / img.shape[0]
data_filtered = np.empty(img.shape, dtype=img.dtype)
fun = getattr(filters, "%s_filter1d" % fun)
nbins = img.shape[-1]
ranges = np.arange(nbins) * rscale + rscale / 2
asize = ranges * ascale
if random:
na = prob_round(wsize / asize).astype(int)
else:
na = np.fix(wsize / asize + 0.5).astype(int)
# Maximum of adjacent azimuths (higher close to the origin) to
# increase performance
na[na > 20] = 20
sr = np.fix(wsize / rscale + 0.5).astype(int)
for sa in np.unique(na):
imax = np.where(na >= sa)[0][-1] + 1
imin = np.where(na <= sa)[0][0]
if sa == 0:
data_filtered[:, imin:imax] = img[:, imin:imax]
imin2 = max(imin - sr, 0)
imax2 = min(imax + sr, nbins)
temp = img[:, imin2:imax2]
temp = fun(temp, size=2 * sa + 1, mode='wrap', axis=0)
temp = fun(temp, size=2 * sr + 1, axis=1)
imin3 = imin - imin2
imax3 = imin3 + imax - imin
data_filtered[:, imin:imax] = temp[:, imin3:imax3]
return data_filtered