Python numpy 模块,ubyte() 实例源码
我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用numpy.ubyte()。
def load_raw(filename, volsize):
""" inspired by mhd_utils from github"""
dim = 3
element_channels = 1
np_type = np.ubyte
arr = list(volsize)
volume = np.prod(arr[0:dim - 1])
shape = (arr[dim - 1], volume, element_channels)
with open(filename,'rb') as fid:
data = np.fromfile(fid, count=np.prod(shape),dtype = np_type)
data.shape = shape
arr.reverse()
data = data.reshape(arr)
return data
def getColors(self, mode=None):
"""Return list of all color stops converted to the specified mode.
If mode is None, then no conversion is done."""
if isinstance(mode, basestring):
mode = self.enumMap[mode.lower()]
color = self.color
if mode in [self.BYTE, self.QCOLOR] and color.dtype.kind == 'f':
color = (color * 255).astype(np.ubyte)
elif mode == self.FLOAT and color.dtype.kind != 'f':
color = color.astype(float) / 255.
if mode == self.QCOLOR:
color = [QtGui.QColor(*x) for x in color]
return color
def getStops(self, mode):
## Get fully-expanded set of RGBA stops in either float or byte mode.
if mode not in self.stopsCache:
color = self.color
if mode == self.BYTE and color.dtype.kind == 'f':
color = (color * 255).astype(np.ubyte)
elif mode == self.FLOAT and color.dtype.kind != 'f':
color = color.astype(float) / 255.
## to support HSV mode, we need to do a little more work..
#stops = []
#for i in range(len(self.pos)):
#pos = self.pos[i]
#color = color[i]
#imode = self.mode[i]
#if imode == self.RGB:
#stops.append((x,color))
#else:
#ns =
self.stopsCache[mode] = (self.pos, color)
return self.stopsCache[mode]
def getLookupTable(self, nPts, alpha=None):
"""
Return an RGB(A) lookup table (ndarray).
============== ============================================================================
**Arguments:**
nPts The number of points in the returned lookup table.
alpha True, False, or None - Specifies whether or not alpha values are included
in the table.If alpha is None, alpha will be automatically determined.
============== ============================================================================
"""
if alpha is None:
alpha = self.usesAlpha()
if alpha:
table = np.empty((nPts,4), dtype=np.ubyte)
else:
table = np.empty((nPts,3), dtype=np.ubyte)
for i in range(nPts):
x = float(i)/(nPts-1)
color = self.getColor(x, toQColor=False)
table[i] = color[:table.shape[1]]
return table
def test_rescaleData():
dtypes = map(np.dtype, ('ubyte', 'uint16', 'byte', 'int16', 'int', 'float'))
for dtype1 in dtypes:
for dtype2 in dtypes:
data = (np.random.random(size=10) * 2**32 - 2**31).astype(dtype1)
for scale, offset in [(10, 0), (10., 0.), (1, -50), (0.2, 0.5), (0.001, 0)]:
if dtype2.kind in 'iu':
lim = np.iinfo(dtype2)
lim = lim.min, lim.max
else:
lim = (-np.inf, np.inf)
s1 = np.clip(float(scale) * (data-float(offset)), *lim).astype(dtype2)
s2 = pg.rescaleData(data, scale, offset, dtype2)
assert s1.dtype == s2.dtype
if dtype2.kind in 'iu':
assert np.all(s1 == s2)
else:
assert np.allclose(s1, s2)
def getStops(self, mode):
## Get fully-expanded set of RGBA stops in either float or byte mode.
if mode not in self.stopsCache:
color = self.color
if mode == self.BYTE and color.dtype.kind == 'f':
color = (color * 255).astype(np.ubyte)
elif mode == self.FLOAT and color.dtype.kind != 'f':
color = color.astype(float) / 255.
## to support HSV mode, we need to do a little more work..
#stops = []
#for i in range(len(self.pos)):
#pos = self.pos[i]
#color = color[i]
#imode = self.mode[i]
#if imode == self.RGB:
#stops.append((x,color))
#else:
#ns =
self.stopsCache[mode] = (self.pos, color)
return self.stopsCache[mode]
def getLookupTable(self, nPts, alpha=None):
"""
Return an RGB(A) lookup table (ndarray).
============== ============================================================================
**Arguments:**
nPts The number of points in the returned lookup table.
alpha True, False, or None - Specifies whether or not alpha values are included
in the table.If alpha is None, alpha will be automatically determined.
============== ============================================================================
"""
if alpha is None:
alpha = self.usesAlpha()
if alpha:
table = np.empty((nPts,4), dtype=np.ubyte)
else:
table = np.empty((nPts,3), dtype=np.ubyte)
for i in range(nPts):
x = float(i)/(nPts-1)
color = self.getColor(x, toQColor=False)
table[i] = color[:table.shape[1]]
return table
def readQImage(self):
"""
Read the current buffer pixels out as a QImage.
"""
w = self.width()
h = self.height()
self.repaint()
pixels = np.empty((h, w, 4), dtype=np.ubyte)
pixels[:] = 128
pixels[...,0] = 50
pixels[...,3] = 255
glReadPixels(0, 0, w, h, GL_RGBA, GL_UNSIGNED_BYTE, pixels)
# swap B,R channels for Qt
tmp = pixels[...,0].copy()
pixels[...,0] = pixels[...,2]
pixels[...,2] = tmp
pixels = pixels[::-1] # flip vertical
img = fn.makeQImage(pixels, transpose=False)
return img
def boolToUbyte(x):
"Convert a boolean vector to a ubyte vector which is much more space efficient."
assert isinstance(x,np.ndarray)
assert x.dtype in [np.bool]
assert len(x.shape) == 1
assert x.shape[0] % 8 == 0
out = 1*x[7::8] + \
2*x[6::8] + \
4*x[5::8] + \
8*x[4::8] + \
16*x[3::8] + \
32*x[2::8] + \
64*x[1::8] + \
128*x[0::8]
out = out.astype(np.ubyte)
return out
def ubyteToBool(x):
"Convert a byte vector to a bool vector."
assert isinstance(x,np.ndarray)
assert x.dtype in [np.ubyte]
assert len(x.shape) == 1
out = np.zeros(x.shape[0]*8,dtype=np.bool)
out[7::8] = 1&x > 0
out[6::8] = 2&x > 0
out[5::8] = 4&x > 0
out[4::8] = 8&x > 0
out[3::8] = 16&x > 0
out[2::8] = 32&x > 0
out[1::8] = 64&x > 0
out[0::8] = 128&x > 0
return out
def load_data(images_url: str, labels_url: str) -> (np.array, np.array):
images_decompressed = downloader(images_url)
# Big endian 4 ????? ???? unsigned int, ?????? ?? 4 ?????
magic, size, rows, cols = struct.unpack(">IIII", images_decompressed[:16])
if magic != 2051:
print("Wrong magic for", images_url, "Probably file corrupted")
exit(2)
image_data = np.array(np.frombuffer(images_decompressed[16:], dtype=np.dtype((np.ubyte, (rows * cols,)))) / 255,
dtype=np.float32)
labels_decompressed = downloader(labels_url)
# Big endian 2 ????? ???? unsigned int, ?????? ?? 4 ?????
magic, size = struct.unpack(">II", labels_decompressed[:8])
if magic != 2049:
print("Wrong magic for", labels_url, "Probably file corrupted")
exit(2)
labels = np.frombuffer(labels_decompressed[8:], dtype=np.ubyte)
return image_data, labels
def load_MNIST_images(filename):
"""
returns a 28x28x[number of MNIST images] matrix containing
the raw MNIST images
:param filename: input data file
"""
with open(filename, "r") as f:
magic = np.fromfile(f, dtype=np.dtype('>i4'), count=1)
num_images = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
num_rows = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
num_cols = int(np.fromfile(f, dtype=np.dtype('>i4'), count=1))
images = np.fromfile(f, dtype=np.ubyte)
images = images.reshape((num_images, num_rows * num_cols)).transpose()
images = images.astype(np.float64) / 255
f.close()
return images
def test_check_argument_list4():
kernel_name = "test_kernel"
kernel_string = """__kernel void test_kernel(__global const ushort number, __global half * factors, __global long * numbers) {
numbers[get_global_id(0)] = numbers[get_global_id(0)] * factors[get_global_id(0)] + number;
}
"""
args = [numpy.uint16(42), numpy.float16([3, 4, 6]), numpy.int64([300]), numpy.ubyte(32)]
try:
check_argument_list(kernel_name, kernel_string, args)
print("Expected a TypeError to be raised")
assert False
except TypeError as expected_error:
print(str(expected_error))
assert "do not match in size" in str(expected_error)
except Exception:
print("Expected a TypeError to be raised")
assert False
def test_sequential_runner_not_matching_answer2():
kernel_string = """__global__ void vector_add(float *c, float *a, float *b, int n) {
int i = blockIdx.x * block_size_x + threadIdx.x;
if (i<n) {
c[i] = a[i] + b[i];
}
} """
args = get_vector_add_args()
answer = [np.ubyte([12]), None, None, None]
tune_params = {"block_size_x": [128 + 64 * i for i in range(5)]}
try:
kernel_tuner.tune_kernel(
"vector_add", kernel_string, args[-1], args, tune_params,
method="diff_evo", verbose=True, answer=answer)
print("Expected a TypeError to be raised")
assert False
except TypeError as expected_error:
print(str(expected_error))
assert "Element 0" in str(expected_error)
except Exception:
print("Expected a TypeError to be raised")
assert False
def load_transferfunction(filename):
with open(filename,'rb') as fid:
data = np.fromfile(fid, count=-1,dtype=np.ubyte)
return data
def colorMap(self):
"""Return a ColorMap object representing the current state of the editor."""
if self.colorMode == 'hsv':
raise NotImplementedError('hsv colormaps not yet supported')
pos = []
color = []
for t,x in self.listTicks():
pos.append(x)
c = t.color
color.append([c.red(), c.green(), c.blue(), c.alpha()])
return ColorMap(np.array(pos), np.array(color, dtype=np.ubyte))
def saveFailedTest(data, expect, filename):
"""Upload failed test images to web server to allow CI test debugging.
"""
commit = runSubprocess(['git', 'rev-parse', 'HEAD'])
name = filename.split('/')
name.insert(-1, commit.strip())
filename = '/'.join(name)
host = 'data.pyqtgraph.org'
# concatenate data, expect, and diff into a single image
ds = data.shape
es = expect.shape
shape = (max(ds[0], es[0]) + 4, ds[1] + es[1] + 8 + max(ds[1], es[1]), 4)
img = np.empty(shape, dtype=np.ubyte)
img[..., :3] = 100
img[..., 3] = 255
img[2:2+ds[0], 2:2+ds[1], :ds[2]] = data
img[2:2+es[0], ds[1]+4:ds[1]+4+es[1], :es[2]] = expect
diff = makeDiffImage(data, expect)
img[2:2+diff.shape[0], -diff.shape[1]-2:-2] = diff
png = makePng(img)
conn = httplib.HTTPConnection(host)
req = urllib.urlencode({'name': filename,
'data': base64.b64encode(png)})
conn.request('POST', '/upload.py', req)
response = conn.getresponse().read()
conn.close()
print("\nImage comparison failed. Test result: %s %s Expected result: "
"%s %s" % (data.shape, data.dtype, expect.shape, expect.dtype))
print("Uploaded to: \nhttp://%s/data/%s" % (host, filename))
if not response.startswith(b'OK'):
print("WARNING: Error uploading data to %s" % host)
print(response)
def makeDiffImage(im1, im2):
"""Return image array showing the differences between im1 and im2.
Handles images of different shape. Alpha channels are not compared.
"""
ds = im1.shape
es = im2.shape
diff = np.empty((max(ds[0], es[0]), max(ds[1], es[1]), 4), dtype=int)
diff[..., :3] = 128
diff[..., 3] = 255
diff[:ds[0], :ds[1], :min(ds[2], 3)] += im1[..., :3]
diff[:es[0], :es[1], :min(es[2], 3)] -= im2[..., :3]
diff = np.clip(diff, 0, 255).astype(np.ubyte)
return diff
def test(self, im1, im2, message):
"""Ask the user to decide whether an image test passes or fails.
This method displays the test image, reference image, and the difference
between the two. It then blocks until the user selects the test output
by clicking a pass/fail button or typing p/f. If the user fails the test,
then an exception is raised.
"""
self.show()
if im2 is None:
message += '\nImage1: %s %s Image2: [no standard]' % (im1.shape, im1.dtype)
im2 = np.zeros((1, 1, 3), dtype=np.ubyte)
else:
message += '\nImage1: %s %s Image2: %s %s' % (im1.shape, im1.dtype, im2.shape, im2.dtype)
self.label.setText(message)
self.views[0].image.setImage(im1)
self.views[1].image.setImage(im2)
diff = makeDiffImage(im1, im2)
self.views[2].image.setImage(diff)
self.views[0].autoRange()
while True:
QtGui.QApplication.processEvents()
lastKey = self.lastKey
self.lastKey = None
if lastKey in ('f', 'esc') or not self.isVisible():
raise Exception("User rejected test result.")
elif lastKey == 'p':
break
time.sleep(0.03)
for v in self.views:
v.image.setImage(np.zeros((1, 1, 3), dtype=np.ubyte))
def initializeGL(self):
## Generate texture for rendering points
w = 64
def fn(x,y):
r = ((x-w/2.)**2 + (y-w/2.)**2) ** 0.5
return 255 * (w/2. - np.clip(r, w/2.-1.0, w/2.))
pData = np.empty((w, w, 4))
pData[:] = 255
pData[:,:,3] = np.fromfunction(fn, pData.shape[:2])
#print pData.shape, pData.min(), pData.max()
pData = pData.astype(np.ubyte)
if getattr(self, "pointTexture", None) is None:
self.pointTexture = glGenTextures(1)
glActiveTexture(GL_TEXTURE0)
glEnable(GL_TEXTURE_2D)
glBindTexture(GL_TEXTURE_2D, self.pointTexture)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pData.shape[0], pData.shape[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, pData)
self.shader = shaders.getShaderProgram('pointSprite')
#def getVBO(self, name):
#if name not in self.vbo:
#self.vbo[name] = vbo.VBO(getattr(self, name).astype('f'))
#return self.vbo[name]
#def setupGLState(self):
#"""Prepare OpenGL state for drawing. This function is called immediately before painting."""
##glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ## requires z-sorting to render properly.
#glBlendFunc(GL_SRC_ALPHA, GL_ONE)
#glEnable( GL_BLEND )
#glEnable( GL_ALPHA_TEST )
#glDisable( GL_DEPTH_TEST )
##glEnable( GL_POINT_SMOOTH )
##glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)
##glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, (0, 0, -1e-3))
##glPointParameterfv(GL_POINT_SIZE_MAX, (65500,))
##glPointParameterfv(GL_POINT_SIZE_MIN, (0,))
def imageToArray(img, copy=False, transpose=True):
"""
Convert a QImage into numpy array. The image must have format RGB32, ARGB32, or ARGB32_Premultiplied.
By default, the image is not copied; changes made to the array will appear in the QImage as well (beware: if
the QImage is collected before the array, there may be trouble).
The array will have shape (width, height, (b,g,r,a)).
"""
fmt = img.format()
ptr = img.bits()
if USE_PYSIDE:
arr = np.frombuffer(ptr, dtype=np.ubyte)
else:
ptr.setsize(img.byteCount())
arr = np.asarray(ptr)
if img.byteCount() != arr.size * arr.itemsize:
# Required for Python 2.6, PyQt 4.10
# If this works on all platforms, then there is no need to use np.asarray..
arr = np.frombuffer(ptr, np.ubyte, img.byteCount())
arr = arr.reshape(img.height(), img.width(), 4)
if fmt == img.Format_RGB32:
arr[...,3] = 255
if copy:
arr = arr.copy()
if transpose:
return arr.transpose((1,0,2))
else:
return arr
def colorMap(self):
"""Return a ColorMap object representing the current state of the editor."""
if self.colorMode == 'hsv':
raise NotImplementedError('hsv colormaps not yet supported')
pos = []
color = []
for t,x in self.listTicks():
pos.append(x)
c = t.color
color.append([c.red(), c.green(), c.blue(), c.alpha()])
return ColorMap(np.array(pos), np.array(color, dtype=np.ubyte))
def saveFailedTest(data, expect, filename):
"""Upload failed test images to web server to allow CI test debugging.
"""
commit = runSubprocess(['git', 'rev-parse', 'HEAD'])
name = filename.split('/')
name.insert(-1, commit.strip())
filename = '/'.join(name)
host = 'data.pyqtgraph.org'
# concatenate data, expect, and diff into a single image
ds = data.shape
es = expect.shape
shape = (max(ds[0], es[0]) + 4, ds[1] + es[1] + 8 + max(ds[1], es[1]), 4)
img = np.empty(shape, dtype=np.ubyte)
img[..., :3] = 100
img[..., 3] = 255
img[2:2+ds[0], 2:2+ds[1], :ds[2]] = data
img[2:2+es[0], ds[1]+4:ds[1]+4+es[1], :es[2]] = expect
diff = makeDiffImage(data, expect)
img[2:2+diff.shape[0], -diff.shape[1]-2:-2] = diff
png = makePng(img)
conn = httplib.HTTPConnection(host)
req = urllib.urlencode({'name': filename,
'data': base64.b64encode(png)})
conn.request('POST', '/upload.py', req)
response = conn.getresponse().read()
conn.close()
print("\nImage comparison failed. Test result: %s %s Expected result: "
"%s %s" % (data.shape, data.dtype, expect.shape, expect.dtype))
print("Uploaded to: \nhttp://%s/data/%s" % (host, filename))
if not response.startswith(b'OK'):
print("WARNING: Error uploading data to %s" % host)
print(response)
def makeDiffImage(im1, im2):
"""Return image array showing the differences between im1 and im2.
Handles images of different shape. Alpha channels are not compared.
"""
ds = im1.shape
es = im2.shape
diff = np.empty((max(ds[0], es[0]), max(ds[1], es[1]), 4), dtype=int)
diff[..., :3] = 128
diff[..., 3] = 255
diff[:ds[0], :ds[1], :min(ds[2], 3)] += im1[..., :3]
diff[:es[0], :es[1], :min(es[2], 3)] -= im2[..., :3]
diff = np.clip(diff, 0, 255).astype(np.ubyte)
return diff
def test(self, im1, im2, message):
"""Ask the user to decide whether an image test passes or fails.
This method displays the test image, reference image, and the difference
between the two. It then blocks until the user selects the test output
by clicking a pass/fail button or typing p/f. If the user fails the test,
then an exception is raised.
"""
self.show()
if im2 is None:
message += '\nImage1: %s %s Image2: [no standard]' % (im1.shape, im1.dtype)
im2 = np.zeros((1, 1, 3), dtype=np.ubyte)
else:
message += '\nImage1: %s %s Image2: %s %s' % (im1.shape, im1.dtype, im2.shape, im2.dtype)
self.label.setText(message)
self.views[0].image.setImage(im1)
self.views[1].image.setImage(im2)
diff = makeDiffImage(im1, im2)
self.views[2].image.setImage(diff)
self.views[0].autoRange()
while True:
QtGui.QApplication.processEvents()
lastKey = self.lastKey
self.lastKey = None
if lastKey in ('f', 'esc') or not self.isVisible():
raise Exception("User rejected test result.")
elif lastKey == 'p':
break
time.sleep(0.03)
for v in self.views:
v.image.setImage(np.zeros((1, 1, 3), dtype=np.ubyte))
def initializeGL(self):
## Generate texture for rendering points
w = 64
def fn(x,y):
r = ((x-w/2.)**2 + (y-w/2.)**2) ** 0.5
return 255 * (w/2. - np.clip(r, w/2.-1.0, w/2.))
pData = np.empty((w, w, 4))
pData[:] = 255
pData[:,:,3] = np.fromfunction(fn, pData.shape[:2])
#print pData.shape, pData.min(), pData.max()
pData = pData.astype(np.ubyte)
if getattr(self, "pointTexture", None) is None:
self.pointTexture = glGenTextures(1)
glActiveTexture(GL_TEXTURE0)
glEnable(GL_TEXTURE_2D)
glBindTexture(GL_TEXTURE_2D, self.pointTexture)
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pData.shape[0], pData.shape[1], 0, GL_RGBA, GL_UNSIGNED_BYTE, pData)
self.shader = shaders.getShaderProgram('pointSprite')
#def getVBO(self, name):
#if name not in self.vbo:
#self.vbo[name] = vbo.VBO(getattr(self, name).astype('f'))
#return self.vbo[name]
#def setupGLState(self):
#"""Prepare OpenGL state for drawing. This function is called immediately before painting."""
##glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) ## requires z-sorting to render properly.
#glBlendFunc(GL_SRC_ALPHA, GL_ONE)
#glEnable( GL_BLEND )
#glEnable( GL_ALPHA_TEST )
#glDisable( GL_DEPTH_TEST )
##glEnable( GL_POINT_SMOOTH )
##glHint(GL_POINT_SMOOTH_HINT, GL_NICEST)
##glPointParameterfv(GL_POINT_DISTANCE_ATTENUATION, (0, 0, -1e-3))
##glPointParameterfv(GL_POINT_SIZE_MAX, (65500,))
##glPointParameterfv(GL_POINT_SIZE_MIN, (0,))
def imageToArray(img, copy=False, transpose=True):
"""
Convert a QImage into numpy array. The image must have format RGB32, ARGB32, or ARGB32_Premultiplied.
By default, the image is not copied; changes made to the array will appear in the QImage as well (beware: if
the QImage is collected before the array, there may be trouble).
The array will have shape (width, height, (b,g,r,a)).
"""
fmt = img.format()
ptr = img.bits()
if USE_PYSIDE:
arr = np.frombuffer(ptr, dtype=np.ubyte)
else:
ptr.setsize(img.byteCount())
arr = np.asarray(ptr)
if img.byteCount() != arr.size * arr.itemsize:
# Required for Python 2.6, PyQt 4.10
# If this works on all platforms, then there is no need to use np.asarray..
arr = np.frombuffer(ptr, np.ubyte, img.byteCount())
arr = arr.reshape(img.height(), img.width(), 4)
if fmt == img.Format_RGB32:
arr[...,3] = 255
if copy:
arr = arr.copy()
if transpose:
return arr.transpose((1,0,2))
else:
return arr
def parse(x):
#parse the digits file into tuples of
digit = loads(x)
array = np.fromstring(b64decode(digit["data"]),dtype=np.ubyte)
array = array.astype(np.float64)
return (digit["label"], array)
def setup_textures(gltf, uri_path):
# TODO: support data URIs
pil_images = {}
for image_name, image in gltf.get('images', {}).items():
filename = os.path.join(uri_path, image['uri'])
pil_image = Image.open(filename)
pil_images[image_name] = pil_image
_logger.debug('* loaded image "%s" (from %s)', image_name, filename)
for texture_name, texture in gltf.get('textures', {}).items():
sampler = gltf['samplers'][texture['sampler']]
texture_id = gl.glGenTextures(1)
gl.glBindTexture(texture['target'], texture_id)
sampler_id = gl.glGenSamplers(1)
gl.glSamplerParameteri(sampler_id, gl.GL_TEXTURE_MIN_FILTER, sampler.get('minFilter', 9986))
gl.glSamplerParameteri(sampler_id, gl.GL_TEXTURE_MAG_FILTER, sampler.get('magFilter', 9729))
gl.glSamplerParameteri(sampler_id, gl.GL_TEXTURE_WRAP_S, sampler.get('wrapS', 10497))
gl.glSamplerParameteri(sampler_id, gl.GL_TEXTURE_WRAP_T, sampler.get('wrapT', 10497))
sampler['id'] = sampler_id
gl.glPixelStorei(gl.GL_UNPACK_ALIGNMENT, 1)
if texture['type'] != gl.GL_UNSIGNED_BYTE:
raise Exception('TODO')
gl.glTexImage2D(texture['target'], 0,
texture['internalFormat'],
pil_image.width, pil_image.height, 0,
gl.GL_RGB, #texture['format'], # INVESTIGATE
texture['type'],
np.array(list(pil_image.getdata()), dtype=(np.ubyte if texture['type'] == gl.GL_UNSIGNED_BYTE else np.ushort)))
gl.glGenerateMipmap(texture['target'])
if gl.glGetError() != gl.GL_NO_ERROR:
raise Exception('failed to create texture "%s"' % texture_name)
texture['id'] = texture_id
_logger.debug('* created texture "%s"', texture_name)
def hamming(a,b):
if a.dtype == np.bool and b.dtype == bool:
return (a ^ b).sum()
elif a.dtype == np.ubyte and b.dtype == np.ubyte:
return hamming_table[a^b].sum()
else:
raise NotImplementedError("Unsupported array types %s and %s",a.dtype,b.dtype)
def colormap_lut(color = 'viridis', ncolors = None):
# build lookup table
if color == 'r':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [255,0,0,255]], dtype=np.ubyte)
ncolors = 512;
elif color =='g':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [0,255,0,255]], dtype=np.ubyte)
ncolors = 512;
elif color =='b':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [0,0,255,255]], dtype=np.ubyte)
ncolors = 512;
else:
#pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
#color = np.array([[0,0,255,255], [0,255,255,255], [0,255,0,255], [255,255,0,255], [255,0,0,255]], dtype=np.ubyte)
#color = np.array([[0,0,128,255], [0,255,255,255], [0,255,0,255], [255,255,0,255], [128,0,0,255]], dtype=np.ubyte)
cmap = cm.get_cmap(color);
if ncolors is None:
ncolors = cmap.N;
pos = np.linspace(0.0, 1.0, ncolors);
color = cmap(pos, bytes = True);
cmap = pg.ColorMap(pos, color)
return cmap.getLookupTable(0.0, 1.0, ncolors);
def colormap_lut(color = 'viridis', ncolors = None):
# build lookup table
if color == 'r':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [255,0,0,255]], dtype=np.ubyte)
ncolors = 512;
elif color =='g':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [0,255,0,255]], dtype=np.ubyte)
ncolors = 512;
elif color =='b':
pos = np.array([0.0, 1.0])
color = np.array([[0,0,0,255], [0,0,255,255]], dtype=np.ubyte)
ncolors = 512;
else:
#pos = np.array([0.0, 0.25, 0.5, 0.75, 1.0])
#color = np.array([[0,0,255,255], [0,255,255,255], [0,255,0,255], [255,255,0,255], [255,0,0,255]], dtype=np.ubyte)
#color = np.array([[0,0,128,255], [0,255,255,255], [0,255,0,255], [255,255,0,255], [128,0,0,255]], dtype=np.ubyte)
cmap = cm.get_cmap(color);
if ncolors is None:
ncolors = cmap.N;
pos = np.linspace(0.0, 1.0, ncolors);
color = cmap(pos, bytes = True);
cmap = pg.ColorMap(pos, color)
return cmap.getLookupTable(0.0, 1.0, ncolors);
def adjust_contrast(image, contrast):
if (contrast < 0):
contrast = 0
elif (contrast > 200):
contrast = 200
contrast = contrast / 100
img = image.astype(np.float) * contrast
img[img > 255] = 255
img[img < 0] = 0
return img.astype(np.ubyte)
def adjust_brightness(image, brightness):
if (brightness < 0):
brightness = 0
elif (brightness > 200):
brightness = 200
brightness = (((brightness) * (510)) / 200) - 255
img = image.astype(np.float) + brightness
img[img > 255] = 255
img[img < 0] = 0
return img.astype(np.ubyte)
def kmeans(X, n_clusters, **kwargs):
"""Classify vectors in X using K-Means algorithm with n_clusters.
Arguments in kwargs are passed to scikit-learn MiniBatchKMeans.
Returns a tuple of cluster centers and predicted labels."""
clf = MiniBatchKMeans(n_clusters=n_clusters, **kwargs)
labels = clf.fit_predict(X)
centers = clf.cluster_centers_.astype(np.ubyte)
return centers, labels
def get_mask_polygons(polygons, height, width):
"""Turn a list of polygons into a mask image of height by width.
Each polygon is expressed as a list of [x, y] points."""
mask = np.zeros((height, width), dtype=np.ubyte)
cv2.fillPoly(mask, np.int32(polygons), color=255)
return mask
def convert(image):
"""Convert a scikit-image binary image matrix to OpenCV"""
with warnings.catch_warnings(record=True):
warnings.filterwarnings('ignore', category=DataConversionWarning)
return minmax_scale(image, (0, 255)).astype(np.ubyte)
def getpgcmap(cmp='BuRd'):
import pyqtgraph as pg
import numpy as np
if cmp =='bryw':
STEPS = np.array([0.0, 0.2, 0.6, 1.0])
CLRS = ['k', 'r', 'y', 'w']
## Create a ColorMap
clrmp = pg.ColorMap(STEPS, np.array([pg.colorTuple(pg.Color(c)) for c in CLRS]))
## Get the LookupTable
lut = clrmp.getLookupTable()
elif cmp == 'TrmBlk':
pos = np.array([0.0, 0.5, 1.0])
color = np.array([[0,0,0,255], [255,128,0,255], [255,255,0,255]], dtype=np.ubyte)
map = pg.ColorMap(pos, color)
lut = map.getLookupTable(0.0, 1.0, 256)
elif cmp == 'RdBu':
pos = np.array([0.0,0.5,1.0])
color = np.array([[255,0,0,0],[255,255,255,255],[0,0,255,0]],dtype=np.ubyte)
map = pg.ColorMap(pos,color)
lut = map.getLookupTable(0.0,1.0,256)
elif cmp == 'BuRd':
pos = np.array([0.0,0.5,1.0])
color = np.array([[0,0,255,0],[255,255,255,255],[255,0,0,0]],dtype=np.ubyte)
map = pg.ColorMap(pos,color)
lut = map.getLookupTable(0.0,1.0,256)
return lut
def get_mnist_images():
import gzip
from tensorflow.contrib.learn.python.learn.datasets import base
import numpy
def extract_images(f):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth].
Args:
f: A file object that can be passed into a gzip reader.
Returns:
data: A 4D uint8 numpy array [index, y, x, depth].
Raises:
ValueError: If the bytestream does not start with 2051.
"""
print('Extracting', f.name)
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' %
(magic, f.name))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
source_url = 'https://storage.googleapis.com/cvdf-datasets/mnist/'
local_file = base.maybe_download(TRAIN_IMAGES, '/tmp',
source_url + TRAIN_IMAGES)
train_images = extract_images(open(local_file, 'rb'))
train_images = train_images.reshape(60000, 28**2).T.astype(np.float64)/255
return train_images
# helper utilities
def _update(self):
""" Upload all pending data to GPU. """
if self.pending_data:
start, stop = self.pending_data
offset, nbytes = start, stop-start
# offset, nbytes = self.pending_data
data = self.ravel().view(np.ubyte)[offset:offset + nbytes]
gl.glBufferSubData(self.target, offset, nbytes, data)
self._pending_data = None
self._need_update = False
def calculate_numpy_brga_for(name: str) -> np.ndarray:
colormap = maps.get(name, maps[default_colormap])
result = np.zeros((len(colormap), 4), dtype=np.ubyte)
for i, color in enumerate(colormap):
result[i] = (int(255 * color[2]), int(255 * color[1]), int(255 * color[0]), 255)
return result
def amean (inarray,dimension=None,keepdims=0):
"""
Calculates the arithmatic mean of the values in the passed array.
That is: 1/n * (x1 + x2 + ... + xn). Defaults to ALL values in the
passed array. Use dimension=None to flatten array first. REMEMBER: if
dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
if dimension is a sequence, it collapses over all specified dimensions. If
keepdims is set to 1, the resulting array will have as many dimensions as
inarray, with only 1 'level' per dim that was collapsed over.
Usage: amean(inarray,dimension=None,keepdims=0)
Returns: arithematic mean calculated over dim(s) in dimension
"""
if inarray.dtype in [N.int_, N.short,N.ubyte]:
inarray = inarray.astype(N.float_)
if dimension == None:
inarray = N.ravel(inarray)
sum = N.add.reduce(inarray)
denom = float(len(inarray))
elif type(dimension) in [IntType,FloatType]:
sum = asum(inarray,dimension)
denom = float(inarray.shape[dimension])
if keepdims == 1:
shp = list(inarray.shape)
shp[dimension] = 1
sum = N.reshape(sum,shp)
else: # must be a TUPLE of dims to average over
dims = list(dimension)
dims.sort()
dims.reverse()
sum = inarray *1.0
for dim in dims:
sum = N.add.reduce(sum,dim)
denom = N.array(N.multiply.reduce(N.take(inarray.shape,dims)),N.float_)
if keepdims == 1:
shp = list(inarray.shape)
for dim in dims:
shp[dim] = 1
sum = N.reshape(sum,shp)
return sum/denom
def atmean(a,limits=None,inclusive=(1,1)):
"""
Returns the arithmetic mean of all values in an array, ignoring values
strictly outside the sequence passed to 'limits'. Note: either limit
in the sequence, or the value of limits itself, can be set to None. The
inclusive list/tuple determines whether the lower and upper limiting bounds
(respectively) are open/exclusive (0) or closed/inclusive (1).
Usage: atmean(a,limits=None,inclusive=(1,1))
"""
if a.dtype in [N.int_, N.short,N.ubyte]:
a = a.astype(N.float_)
if limits == None:
return mean(a)
assert type(limits) in [ListType,TupleType,N.ndarray], "Wrong type for limits in atmean"
if inclusive[0]: lowerfcn = N.greater_equal
else: lowerfcn = N.greater
if inclusive[1]: upperfcn = N.less_equal
else: upperfcn = N.less
if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
raise ValueError, "No array values within given limits (atmean)."
elif limits[0]==None and limits[1]<>None:
mask = upperfcn(a,limits[1])
elif limits[0]<>None and limits[1]==None:
mask = lowerfcn(a,limits[0])
elif limits[0]<>None and limits[1]<>None:
mask = lowerfcn(a,limits[0])*upperfcn(a,limits[1])
s = float(N.add.reduce(N.ravel(a*mask)))
n = float(N.add.reduce(N.ravel(mask)))
return s/n
def asum (a, dimension=None,keepdims=0):
"""
An alternative to the Numeric.add.reduce function, which allows one to
(1) collapse over multiple dimensions at once, and/or (2) to retain
all dimensions in the original array (squashing one down to size.
Dimension can equal None (ravel array first), an integer (the
dimension over which to operate), or a sequence (operate over multiple
dimensions). If keepdims=1, the resulting array will have as many
dimensions as the input array.
Usage: asum(a, dimension=None, keepdims=0)
Returns: array summed along 'dimension'(s), same _number_ of dims if keepdims=1
"""
if type(a) == N.ndarray and a.dtype in [N.int_, N.short, N.ubyte]:
a = a.astype(N.float_)
if dimension == None:
s = N.sum(N.ravel(a))
elif type(dimension) in [IntType,FloatType]:
s = N.add.reduce(a, dimension)
if keepdims == 1:
shp = list(a.shape)
shp[dimension] = 1
s = N.reshape(s,shp)
else: # must be a SEQUENCE of dims to sum over
dims = list(dimension)
dims.sort()
dims.reverse()
s = a *1.0
for dim in dims:
s = N.add.reduce(s,dim)
if keepdims == 1:
shp = list(a.shape)
for dim in dims:
shp[dim] = 1
s = N.reshape(s,shp)
return s
def render(self):
# Convert data to QImage for display.
profile = debug.Profiler()
if self.image is None or self.image.size == 0:
return
if isinstance(self.lut, collections.Callable):
lut = self.lut(self.image)
else:
lut = self.lut
if self.autoDownsample:
# reduce dimensions of image based on screen resolution
o = self.mapToDevice(QtCore.QPointF(0,0))
x = self.mapToDevice(QtCore.QPointF(1,0))
y = self.mapToDevice(QtCore.QPointF(0,1))
w = Point(x-o).length()
h = Point(y-o).length()
if w == 0 or h == 0:
self.qimage = None
return
xds = max(1, int(1.0 / w))
yds = max(1, int(1.0 / h))
axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
image = fn.downsample(self.image, xds, axis=axes[0])
image = fn.downsample(image, yds, axis=axes[1])
self._lastDownsample = (xds, yds)
else:
image = self.image
# if the image data is a small int, then we can combine levels + lut
# into a single lut for better performance
levels = self.levels
if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16):
if self._effectiveLut is None:
eflsize = 2**(image.itemsize*8)
ind = np.arange(eflsize)
minlev, maxlev = levels
levdiff = maxlev - minlev
levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0
if lut is None:
efflut = fn.rescaleData(ind, scale=255./levdiff,
offset=minlev, dtype=np.ubyte)
else:
lutdtype = np.min_scalar_type(lut.shape[0]-1)
efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff,
offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1))
efflut = lut[efflut]
self._effectiveLut = efflut
lut = self._effectiveLut
levels = None
# Assume images are in column-major order for backward compatibility
# (most images are in row-major order)
if self.axisOrder == 'col-major':
image = image.transpose((1, 0, 2)[:image.ndim])
argb, alpha = fn.makeARGB(image, lut=lut, levels=levels)
self.qimage = fn.makeQImage(argb, alpha, transpose=False)
def renderToArray(self, size, format=GL_BGRA, type=GL_UNSIGNED_BYTE, textureSize=1024, padding=256):
w,h = map(int, size)
self.makeCurrent()
tex = None
fb = None
try:
output = np.empty((w, h, 4), dtype=np.ubyte)
fb = glfbo.glGenFramebuffers(1)
glfbo.glBindFramebuffer(glfbo.GL_FRAMEBUFFER, fb )
glEnable(GL_TEXTURE_2D)
tex = glGenTextures(1)
glBindTexture(GL_TEXTURE_2D, tex)
texwidth = textureSize
data = np.zeros((texwidth,texwidth,4), dtype=np.ubyte)
## Test texture dimensions first
glTexImage2D(GL_PROXY_TEXTURE_2D, 0, GL_RGBA, texwidth, texwidth, 0, GL_RGBA, GL_UNSIGNED_BYTE, None)
if glGetTexLevelParameteriv(GL_PROXY_TEXTURE_2D, 0, GL_TEXTURE_WIDTH) == 0:
raise Exception("OpenGL failed to create 2D texture (%dx%d); too large for this hardware." % shape[:2])
## create teture
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, texwidth, texwidth, 0, GL_RGBA, GL_UNSIGNED_BYTE, data.transpose((1,0,2)))
self.opts['viewport'] = (0, 0, w, h) # viewport is the complete image; this ensures that paintGL(region=...)
# is interpreted correctly.
p2 = 2 * padding
for x in range(-padding, w-padding, texwidth-p2):
for y in range(-padding, h-padding, texwidth-p2):
x2 = min(x+texwidth, w+padding)
y2 = min(y+texwidth, h+padding)
w2 = x2-x
h2 = y2-y
## render to texture
glfbo.glFramebufferTexture2D(glfbo.GL_FRAMEBUFFER, glfbo.GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, tex, 0)
self.paintGL(region=(x, h-y-h2, w2, h2), viewport=(0, 0, w2, h2)) # only render sub-region
## read texture back to array
data = glGetTexImage(GL_TEXTURE_2D, 0, format, type)
data = np.fromstring(data, dtype=np.ubyte).reshape(texwidth,texwidth,4).transpose(1,0,2)[:, ::-1]
output[x+padding:x2-padding, y+padding:y2-padding] = data[padding:w2-padding, -(h2-padding):-padding]
finally:
self.opts['viewport'] = None
glfbo.glBindFramebuffer(glfbo.GL_FRAMEBUFFER, 0)
glBindTexture(GL_TEXTURE_2D, 0)
if tex is not None:
glDeleteTextures([tex])
if fb is not None:
glfbo.glDeleteFramebuffers([fb])
return output
def map(self, data, mode='byte'):
"""
Return an array of colors corresponding to *data*.
============== =================================================================
**Arguments:**
data A numpy record array where the fields in data.dtype match those
defined by a prior call to setFields().
mode Either 'byte' or 'float'. For 'byte', the method returns an array
of dtype ubyte with values scaled 0-255. For 'float', colors are
returned as 0.0-1.0 float values.
============== =================================================================
"""
if isinstance(data, dict):
data = np.array([tuple(data.values())], dtype=[(k, float) for k in data.keys()])
colors = np.zeros((len(data),4))
for item in self.children():
if not item['Enabled']:
continue
chans = item.param('Channels..')
mask = np.empty((len(data), 4), dtype=bool)
for i,f in enumerate(['Red', 'Green', 'Blue', 'Alpha']):
mask[:,i] = chans[f]
colors2 = item.map(data)
op = item['Operation']
if op == 'Add':
colors[mask] = colors[mask] + colors2[mask]
elif op == 'Multiply':
colors[mask] *= colors2[mask]
elif op == 'Overlay':
a = colors2[:,3:4]
c3 = colors * (1-a) + colors2 * a
c3[:,3:4] = colors[:,3:4] + (1-colors[:,3:4]) * a
colors = c3
elif op == 'Set':
colors[mask] = colors2[mask]
colors = np.clip(colors, 0, 1)
if mode == 'byte':
colors = (colors * 255).astype(np.ubyte)
return colors
def export(self, fileName=None, toBytes=False, copy=False):
if fileName is None and not toBytes and not copy:
if USE_PYSIDE:
filter = ["*."+str(f) for f in QtGui.QImageWriter.supportedImageFormats()]
else:
filter = ["*."+bytes(f).decode('utf-8') for f in QtGui.QImageWriter.supportedImageFormats()]
preferred = ['*.png', '*.tif', '*.jpg']
for p in preferred[::-1]:
if p in filter:
filter.remove(p)
filter.insert(0, p)
self.fileSaveDialog(filter=filter)
return
targetRect = QtCore.QRect(0, 0, self.params['width'], self.params['height'])
sourceRect = self.getSourceRect()
#self.png = QtGui.QImage(targetRect.size(), QtGui.QImage.Format_ARGB32)
#self.png.fill(pyqtgraph.mkColor(self.params['background']))
w, h = self.params['width'], self.params['height']
if w == 0 or h == 0:
raise Exception("Cannot export image with size=0 (requested export size is %dx%d)" % (w,h))
bg = np.empty((self.params['width'], self.params['height'], 4), dtype=np.ubyte)
color = self.params['background']
bg[:,:,0] = color.blue()
bg[:,:,1] = color.green()
bg[:,:,2] = color.red()
bg[:,:,3] = color.alpha()
self.png = fn.makeQImage(bg, alpha=True)
## set resolution of image:
origTargetRect = self.getTargetRect()
resolutionScale = targetRect.width() / origTargetRect.width()
#self.png.setDotsPerMeterX(self.png.dotsPerMeterX() * resolutionScale)
#self.png.setDotsPerMeterY(self.png.dotsPerMeterY() * resolutionScale)
painter = QtGui.QPainter(self.png)
#dtr = painter.deviceTransform()
try:
self.setExportMode(True, {'antialias': self.params['antialias'], 'background': self.params['background'], 'painter': painter, 'resolutionScale': resolutionScale})
painter.setRenderHint(QtGui.QPainter.Antialiasing, self.params['antialias'])
self.getScene().render(painter, QtCore.QRectF(targetRect), QtCore.QRectF(sourceRect))
finally:
self.setExportMode(False)
painter.end()
if copy:
QtGui.QApplication.clipboard().setImage(self.png)
elif toBytes:
return self.png
else:
self.png.save(fileName)
def render(self):
# Convert data to QImage for display.
profile = debug.Profiler()
if self.image is None or self.image.size == 0:
return
if isinstance(self.lut, collections.Callable):
lut = self.lut(self.image)
else:
lut = self.lut
if self.autoDownsample:
# reduce dimensions of image based on screen resolution
o = self.mapToDevice(QtCore.QPointF(0,0))
x = self.mapToDevice(QtCore.QPointF(1,0))
y = self.mapToDevice(QtCore.QPointF(0,1))
w = Point(x-o).length()
h = Point(y-o).length()
if w == 0 or h == 0:
self.qimage = None
return
xds = max(1, int(1.0 / w))
yds = max(1, int(1.0 / h))
axes = [1, 0] if self.axisOrder == 'row-major' else [0, 1]
image = fn.downsample(self.image, xds, axis=axes[0])
image = fn.downsample(image, yds, axis=axes[1])
self._lastDownsample = (xds, yds)
else:
image = self.image
# if the image data is a small int, then we can combine levels + lut
# into a single lut for better performance
levels = self.levels
if levels is not None and levels.ndim == 1 and image.dtype in (np.ubyte, np.uint16):
if self._effectiveLut is None:
eflsize = 2**(image.itemsize*8)
ind = np.arange(eflsize)
minlev, maxlev = levels
levdiff = maxlev - minlev
levdiff = 1 if levdiff == 0 else levdiff # don't allow division by 0
if lut is None:
efflut = fn.rescaleData(ind, scale=255./levdiff,
offset=minlev, dtype=np.ubyte)
else:
lutdtype = np.min_scalar_type(lut.shape[0]-1)
efflut = fn.rescaleData(ind, scale=(lut.shape[0]-1)/levdiff,
offset=minlev, dtype=lutdtype, clip=(0, lut.shape[0]-1))
efflut = lut[efflut]
self._effectiveLut = efflut
lut = self._effectiveLut
levels = None
# Assume images are in column-major order for backward compatibility
# (most images are in row-major order)
if self.axisOrder == 'col-major':
image = image.transpose((1, 0, 2)[:image.ndim])
argb, alpha = fn.makeARGB(image, lut=lut, levels=levels)
self.qimage = fn.makeQImage(argb, alpha, transpose=False)