Python numpy 模块,isneginf() 实例源码
我们从Python开源项目中,提取了以下16个代码示例,用于说明如何使用numpy.isneginf()。
def PPMI_matrix(M):
M = scale_sim_mat(M)
nm_nodes = len(M)
col_s = np.sum(M, axis=0).reshape(1,nm_nodes)
row_s = np.sum(M, axis=1).reshape(nm_nodes,1)
D = np.sum(col_s)
rowcol_s = np.dot(row_s,col_s)
PPMI = np.log(np.divide(D*M,rowcol_s))
PPMI[np.isnan(PPMI)] = 0.0
PPMI[np.isinf(PPMI)] = 0.0
PPMI[np.isneginf(PPMI)] = 0.0
PPMI[PPMI<0] = 0.0
return PPMI
def heatmap (d, bins=(100, 100), smoothing=1.3, cmap='jet'):
def getx (pt):
return pt.coords[0][0]
def gety (pt):
return pt.coords[0][1]
x = list(d.geometry.apply(getx))
y = list(d.geometry.apply(gety))
heatmap, xedges, yedges = np.histogram2d(y, x, bins=bins)
extent = [yedges[0], yedges[-1], xedges[-1], xedges[0]] # bin edges along the x and y dimensions, ordered
# why are we taking log?
logheatmap = np.log(heatmap)
logheatmap[np.isneginf(logheatmap)] = 0
logheatmap = ndimage.filters.gaussian_filter(logheatmap, smoothing, mode='nearest')
return (logheatmap, extent)
def test_lnprob_does_not_raise_on_LinAlgError(datasets_db):
"""lnprob() should catch LinAlgError raised by equilibrium and return -np.inf"""
datasets_db.insert(zpf_json)
res = lnprob([10], comps=['CU','MG', 'VA'], dbf=dbf,
phases=['LIQUID', 'FCC_A1', 'HCP_A3', 'LAVES_C15', 'CUMG2'],
datasets=datasets_db, symbols_to_fit=['VV0001'], phase_models=None, scheduler=None)
assert np.isneginf(res)
def test_lnprob_does_not_raise_on_ValueError(datasets_db):
"""lnprob() should catch ValueError raised by equilibrium and return -np.inf"""
datasets_db.insert(zpf_json)
res = lnprob([10], comps=['CU','MG', 'VA'], dbf=dbf,
phases=['LIQUID', 'FCC_A1', 'HCP_A3', 'LAVES_C15', 'CUMG2'],
datasets=datasets_db, symbols_to_fit=['VV0001'], phase_models=None, scheduler=None)
assert np.isneginf(res)
def tolerant_eq(a, b):
return (True
if (numpy.isinf(a) and numpy.isinf(b))
or (numpy.isneginf(a) and numpy.isneginf(b))
or abs(a-b) < 1e-10
else False)
def is_invalid(arr):
return any([f(arr).any() for f in [numpy.isinf, numpy.isnan, numpy.isneginf]])
def get_mask_invalid(matrix):
mask = np.isposinf(matrix) + np.isneginf(matrix) + np.isnan(matrix)
return mask
def test_known_value_0_0(self):
x = lin2db(0.0)
self.assertTrue(np.isneginf(x))
def test_known_value_0_0(self):
x = pow2db(0.0)
self.assertTrue(np.isneginf(x))
def set_logp_to_neg_inf(X, logp, bounds):
"""Set `logp` to negative infinity when `X` is outside the allowed bounds.
# Arguments
X: tensorflow.Tensor
The variable to apply the bounds to
logp: tensorflow.Tensor
The log probability corrosponding to `X`
bounds: list of `Region` objects
The regions corrosponding to allowed regions of `X`
# Returns
logp: tensorflow.Tensor
The newly bounded log probability
"""
conditions = []
for l, u in bounds:
lower_is_neg_inf = not isinstance(l, tf.Tensor) and np.isneginf(l)
upper_is_pos_inf = not isinstance(u, tf.Tensor) and np.isposinf(u)
if not lower_is_neg_inf and upper_is_pos_inf:
conditions.append(tf.greater(X, l))
elif lower_is_neg_inf and not upper_is_pos_inf:
conditions.append(tf.less(X, u))
elif not (lower_is_neg_inf or upper_is_pos_inf):
conditions.append(tf.logical_and(tf.greater(X, l), tf.less(X, u)))
if len(conditions) > 0:
is_inside_bounds = conditions[0]
for condition in conditions[1:]:
is_inside_bounds = tf.logical_or(is_inside_bounds, condition)
logp = tf.select(
is_inside_bounds,
logp,
tf.fill(tf.shape(X), config.dtype(-np.inf))
)
return logp
def modified_topology_features(ds, seg_id, use_2d_edges):
modified_features = ds.topology_features(seg_id, use_2d_edges)
if not ds.defect_slices:
return modified_features
skip_edges = get_skip_edges( ds, seg_id)
skip_ranges = get_skip_ranges( ds, seg_id)
skip_starts = get_skip_starts( ds, seg_id)
delete_edge_ids = get_delete_edge_ids(ds, seg_id)
# delete all features corresponding to delete - edges
modified_features = np.delete(modified_features, delete_edge_ids, axis = 0)
# get topo features for the new skip edges
seg = ds.seg(seg_id)
lower_slices = np.unique(skip_starts)
skip_edge_pairs_to_slice = {z : skip_edges[skip_starts == z] for z in lower_slices}
skip_edge_indices_to_slice = {z : np.where(skip_starts == z)[0] for z in lower_slices}
skip_edge_ranges_to_slice = {z : skip_ranges[skip_starts == z] for z in lower_slices}
n_feats = modified_features.shape[1]
skip_topo_features = np.zeros( (skip_edges.shape[0], n_feats) )
for z in lower_slices:
_get_skip_topo_features_for_slices(
z,
seg,
skip_edge_pairs_to_slice[z],
skip_edge_ranges_to_slice[z],
skip_edge_indices_to_slice[z],
use_2d_edges,
skip_topo_features)
skip_topo_features[np.isinf(skip_topo_features)] = 0.
skip_topo_features[np.isneginf(skip_topo_features)] = 0.
skip_topo_features = np.nan_to_num(skip_topo_features)
assert skip_topo_features.shape[1] == modified_features.shape[1]
return np.concatenate([modified_features, skip_topo_features],axis = 0)
# the last argument is only for caching results with different features correctly
def _numpy(self, data, weights, shape):
q = self.quantity(data)
self._checkNPQuantity(q, shape)
self._checkNPWeights(weights, shape)
weights = self._makeNPWeights(weights, shape)
newentries = weights.sum()
import numpy
selection = numpy.isnan(q)
numpy.bitwise_not(selection, selection)
subweights = weights.copy()
subweights[selection] = 0.0
self.nanflow._numpy(data, subweights, shape)
# switch to float here like in bin.py else numpy throws
# TypeError on trivial integer cases such as:
# >>> q = numpy.array([1,2,3,4])
# >>> np.divide(q,1,q)
# >>> np.floor(q,q)
q = numpy.array(q, dtype=numpy.float64)
neginfs = numpy.isneginf(q)
posinfs = numpy.isposinf(q)
numpy.subtract(q, self.origin, q)
numpy.divide(q, self.binWidth, q)
numpy.floor(q, q)
q = numpy.array(q, dtype=numpy.int64)
q[neginfs] = LONG_MINUSINF
q[posinfs] = LONG_PLUSINF
selected = q[weights > 0.0]
selection = numpy.empty(q.shape, dtype=numpy.bool)
for index in numpy.unique(selected):
if index != LONG_NAN:
bin = self.bins.get(index)
if bin is None:
bin = self.value.zero()
self.bins[index] = bin
numpy.not_equal(q, index, selection)
subweights[:] = weights
subweights[selection] = 0.0
bin._numpy(data, subweights, shape)
# no possibility of exception from here on out (for rollback)
self.entries += float(newentries)
def _propose_anchors(self, num_anchors):
if num_anchors != 2:
raise Exception('PointInformedSplitMergeSetupKernel only works for 2 anchors')
anchor_1 = np.random.randint(0, self.num_data_points)
if anchor_1 not in self.data_to_clusters:
self._set_data_to_clusters(anchor_1)
log_p_anchor = self.data_to_clusters[anchor_1].copy()
u = np.random.random()
alpha = np.random.beta(1, 9) * 100
if u <= 0.5:
x = np.percentile(log_p_anchor, alpha)
log_p_anchor[log_p_anchor > x] = float('-inf')
log_p_anchor[log_p_anchor <= x] = 0
else:
x = np.percentile(log_p_anchor, 100 - alpha)
log_p_anchor[log_p_anchor > x] = 0
log_p_anchor[log_p_anchor <= x] = float('-inf')
log_p_anchor[anchor_1] = float('-inf')
if np.isneginf(np.max(log_p_anchor)):
idx = np.arange(self.num_data_points)
idx = list(idx)
idx.remove(anchor_1)
anchor_2 = np.random.choice(idx)
else:
idx = np.where(~np.isneginf(log_p_anchor))[0].flatten()
anchor_2 = np.random.choice(idx)
return anchor_1, anchor_2
def elliptical_slice(xx, log_like_fn, prior_chol, prior_mean, *log_like_args, **sampler_args):
cur_log_like = sampler_args.get('cur_log_like', None)
angle_range = sampler_args.get('angle_range', 0)
if cur_log_like is None:
cur_log_like = log_like_fn(xx, *log_like_args)
if np.isneginf(cur_log_like):
raise Exception("Elliptical Slice Sampler: initial logprob is -inf for inputs %s" % xx)
if np.isnan(cur_log_like):
raise Exception("Elliptical Slice Sampler: initial logprob is NaN for inputs %s" % xx)
nu = np.dot(prior_chol, npr.randn(xx.shape[0])) # don't bother adding mean here, would just subtract it at update step
hh = np.log(npr.rand()) + cur_log_like
# log likelihood threshold -- LESS THAN THE INITIAL LOG LIKELIHOOD
# Set up a bracket of angles and pick a first proposal.
# "phi = (theta'-theta)" is a change in angle.
if angle_range <= 0:
# Bracket whole ellipse with both edges at first proposed point
phi = npr.rand()*2*math.pi
phi_min = phi - 2*math.pi
phi_max = phi
else:
# Randomly center bracket on current point
phi_min = -angle_range*npr.rand();
phi_max = phi_min + angle_range;
phi = npr.rand()*(phi_max - phi_min) + phi_min;
# Slice sampling loop
while True:
# Compute xx for proposed angle difference
# and check if it's on the slice
xx_prop = (xx-prior_mean)*np.cos(phi) + nu*np.sin(phi) + prior_mean
cur_log_like = log_like_fn(xx_prop, *log_like_args)
if cur_log_like > hh:
# New point is on slice, ** EXIT LOOP **
return xx_prop, cur_log_like
# Shrink slice to rejected point
if phi > 0:
phi_max = phi
elif phi < 0:
phi_min = phi
else:
sys.stderr.write('Initial x: %s\n' % xx)
# sys.stderr.write('initial log like = %f\n' % initial_log_like)
sys.stderr.write('Proposed x: %s\n' % xx_prop)
sys.stderr.write('ESS log lik = %f\n' % cur_log_like)
raise Exception('BUG DETECTED: Shrunk to current position '
'and still not acceptable.');
# Propose new angle difference
phi = npr.rand()*(phi_max - phi_min) + phi_min
def elliptical_slice(xx, log_like_fn, prior_chol, prior_mean, *log_like_args, **sampler_args):
cur_log_like = sampler_args.get('cur_log_like', None)
angle_range = sampler_args.get('angle_range', 0)
if cur_log_like is None:
cur_log_like = log_like_fn(xx, *log_like_args)
if np.isneginf(cur_log_like):
raise Exception("Elliptical Slice Sampler: initial logprob is -inf for inputs %s" % xx)
if np.isnan(cur_log_like):
raise Exception("Elliptical Slice Sampler: initial logprob is NaN for inputs %s" % xx)
nu = np.dot(prior_chol, npr.randn(xx.shape[0])) # don't bother adding mean here, would just subtract it at update step
hh = np.log(npr.rand()) + cur_log_like
# log likelihood threshold -- LESS THAN THE INITIAL LOG LIKELIHOOD
# Set up a bracket of angles and pick a first proposal.
# "phi = (theta'-theta)" is a change in angle.
if angle_range <= 0:
# Bracket whole ellipse with both edges at first proposed point
phi = npr.rand()*2*math.pi
phi_min = phi - 2*math.pi
phi_max = phi
else:
# Randomly center bracket on current point
phi_min = -angle_range*npr.rand();
phi_max = phi_min + angle_range;
phi = npr.rand()*(phi_max - phi_min) + phi_min;
# Slice sampling loop
while True:
# Compute xx for proposed angle difference
# and check if it's on the slice
xx_prop = (xx-prior_mean)*np.cos(phi) + nu*np.sin(phi) + prior_mean
cur_log_like = log_like_fn(xx_prop, *log_like_args)
if cur_log_like > hh:
# New point is on slice, ** EXIT LOOP **
return xx_prop, cur_log_like
# Shrink slice to rejected point
if phi > 0:
phi_max = phi
elif phi < 0:
phi_min = phi
else:
sys.stderr.write('Initial x: %s\n' % xx)
# sys.stderr.write('initial log like = %f\n' % initial_log_like)
sys.stderr.write('Proposed x: %s\n' % xx_prop)
sys.stderr.write('ESS log lik = %f\n' % cur_log_like)
raise Exception('BUG DETECTED: Shrunk to current position '
'and still not acceptable.');
# Propose new angle difference
phi = npr.rand()*(phi_max - phi_min) + phi_min
def initnw(layer):
"""
Nguyen-Widrow initialization function
"""
ci = layer.ci
cn = layer.cn
w_fix = 0.7 * cn ** (1. / ci)
w_rand = np.random.rand(cn, ci) * 2 - 1
# Normalize
if ci == 1:
w_rand = w_rand / np.abs(w_rand)
else:
w_rand = np.sqrt(1. / np.square(w_rand).sum(axis=1).reshape(cn, 1)) * w_rand
w = w_fix * w_rand
b = np.array([0]) if cn == 1 else w_fix * np.linspace(-1, 1, cn) * np.sign(w[:, 0])
# Scaleble to inp_active
amin, amax = layer.transf.inp_active
amin = -1 if amin == -np.Inf else amin
amax = 1 if amax == np.Inf else amax
x = 0.5 * (amax - amin)
y = 0.5 * (amax + amin)
w = x * w
b = x * b + y
# Scaleble to inp_minmax
minmax = layer.inp_minmax.copy()
minmax[np.isneginf(minmax)] = -1
minmax[np.isinf(minmax)] = 1
x = 2. / (minmax[:, 1] - minmax[:, 0])
y = 1. - minmax[:, 1] * x
w = w * x
b = np.dot(w, y) + b
layer.np['w'][:] = w
layer.np['b'][:] = b
return