Python numpy 模块,right_shift() 实例源码
我们从Python开源项目中,提取了以下20个代码示例,用于说明如何使用numpy.right_shift()。
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def dec10216(data):
"""Unpacking the 10 bit data to 16 bit"""
arr10 = data.astype(np.uint16).flat
new_shape = list(data.shape[:-1]) + [(data.shape[-1] * 8) / 10]
new_shape = [int(s) for s in new_shape]
arr16 = np.zeros(new_shape, dtype=np.uint16)
arr16.flat[::4] = np.left_shift(arr10[::5], 2) + \
np.right_shift((arr10[1::5]), 6)
arr16.flat[1::4] = np.left_shift((arr10[1::5] & 63), 4) + \
np.right_shift((arr10[2::5]), 4)
arr16.flat[2::4] = np.left_shift(arr10[2::5] & 15, 6) + \
np.right_shift((arr10[3::5]), 2)
arr16.flat[3::4] = np.left_shift(arr10[3::5] & 3, 8) + \
arr10[4::5]
return arr16
def dec10216(inbuf):
arr10 = inbuf.astype(np.uint16)
arr16 = np.zeros((int(len(arr10) * 4 / 5),), dtype=np.uint16)
arr10_len = int((len(arr16) * 5) / 4)
arr10 = arr10[:arr10_len] # adjust size
"""
/*
* pack 4 10-bit words in 5 bytes into 4 16-bit words
*
* 0 1 2 3 4 5
* 01234567890123456789012345678901234567890
* 0 1 2 3 4
*/
ip = &in_buffer[i];
op = &out_buffer[j];
op[0] = ip[0]*4 + ip[1]/64;
op[1] = (ip[1] & 0x3F)*16 + ip[2]/16;
op[2] = (ip[2] & 0x0F)*64 + ip[3]/4;
op[3] = (ip[3] & 0x03)*256 +ip[4];
"""
arr16.flat[::4] = np.left_shift(arr10[::5], 2) + \
np.right_shift((arr10[1::5]), 6)
arr16.flat[1::4] = np.left_shift((arr10[1::5] & 63), 4) + \
np.right_shift((arr10[2::5]), 4)
arr16.flat[2::4] = np.left_shift(arr10[2::5] & 15, 6) + \
np.right_shift((arr10[3::5]), 2)
arr16.flat[3::4] = np.left_shift(arr10[3::5] & 3, 8) + \
arr10[4::5]
return arr16
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def flatten_and_pack(img, bits):
"""
Packs reduced bit depth images into bytes and returns a flattened array
Args:
img (uint8 numpy array): grayscale or multi-channel image
bits (int): 1, 2, 4, or 8 bits per channel
Returns:
uint8 numpy array: flattened and packed array
"""
# pad the image at the end of the rows, so that each row ends on a byte boundary
pixels_per_byte = 8 // bits
if len(img.shape) > 1:
if img.shape[1] % pixels_per_byte != 0:
img = np.hstack((img, np.zeros((img.shape[0], pixels_per_byte - img.shape[1] % pixels_per_byte), dtype=np.uint8)))
a = np.right_shift(img, 8-bits) # reduce bit depth
b = a.flatten() # flatten
c = np.zeros(b.size // pixels_per_byte, dtype=np.uint8)
for i in range(0, pixels_per_byte):
c += np.left_shift(b[i::pixels_per_byte], (pixels_per_byte-1-i)*bits) # pack pixels and add to result
return c
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def test_NotImplemented_not_returned(self):
# See gh-5964 and gh-2091. Some of these functions are not operator
# related and were fixed for other reasons in the past.
binary_funcs = [
np.power, np.add, np.subtract, np.multiply, np.divide,
np.true_divide, np.floor_divide, np.bitwise_and, np.bitwise_or,
np.bitwise_xor, np.left_shift, np.right_shift, np.fmax,
np.fmin, np.fmod, np.hypot, np.logaddexp, np.logaddexp2,
np.logical_and, np.logical_or, np.logical_xor, np.maximum,
np.minimum, np.mod
]
# These functions still return NotImplemented. Will be fixed in
# future.
# bad = [np.greater, np.greater_equal, np.less, np.less_equal, np.not_equal]
a = np.array('1')
b = 1
for f in binary_funcs:
assert_raises(TypeError, f, a, b)
def _rgb_integers_to_components(self, rgb_integers):
red_mask = 0x00FF0000
green_mask = 0x0000FF00
blue_mask = 0x000000FF
masks = np.asarray([[red_mask, green_mask, blue_mask]])
masked_rgb_components = np.bitwise_and(rgb_integers, masks)
red_shifted = np.right_shift(masked_rgb_components[:,0], 16)
green_shifted = np.right_shift(masked_rgb_components[:,1], 8)
blue_shifted = np.right_shift(masked_rgb_components[:,2], 0)
return np.array([red_shifted, green_shifted, blue_shifted]).transpose()
def doDecompression( packedDataList, shape, n_threads ):
blosc.set_nthreads( n_threads )
dataList = [None] * len(packedDataList)
for J in np.arange(len(packedDataList) ):
# dataStack[J,:,:] = np.reshape(
# np.frombuffer( blosc.decompress( packedDataList[J] ), dtype='uint8' ),
# shape[1:] )
# Something here Numpy-side is very slow, so let's not include that in our
# benchmark.
dataList[J] = blosc.decompress( packedDataList[J] )
return dataList
#t_half0 = time.time()
#halfimage = dm4image_8bit[:,:,::2] + np.left_shift(dm4image_8bit[:,:,1::2],4)
#t_half1 = time.time()
#restoreimage = np.empty( header['dimensions'], dtype='uint8' )
##image[0::2] = np.left_shift(interlaced_image,4)/16
##image[1::2] = np.right_shift(interlaced_image,4)
## Different interlace option
## TODO: AND array with 15 instead?
#restoreimage[:,:,::2] = (np.left_shift( halfimage, 4 ) & 15 )
#restoreimage[:,:,1::2] = np.right_shift( halfimage, 4 )
#t_half2 = time.time()
#
#print( "4-byte encoding time (s): %f" % (t_half1 - t_half0) )
#print( "4-byte DEcoding time (s): %f" % (t_half2 - t_half1) )
def numpy_int16_to_uint8(depth):
x, y = depth.shape
out = np.ndarray((x, y, 2), dtype=np.uint8)
out[:, :, 0] = np.right_shift(depth, 8)
out[:, :, 1] = depth.astype(np.uint8)
return out
def binary_permutations(n_bits):
"""
Given some number of bits, return a shape (2**n_bits, n_bits) boolean array containing every permoutation
of those bits as a row.
:param n_bits: An integer number of bits
:return: A shape (2**n_bits, n_bits) boolean array containing every permoutation
of those bits as a row.
"""
return np.right_shift(np.arange(2**n_bits)[:, None], np.arange(n_bits-1, -1, -1)[None, :]) & 1
def _mix(a, b, f):
#Used for the blend function (mixes colors according to their alpha values)
c = numpy.multiply(numpy.subtract(b,a),f)
return numpy.add(numpy.right_shift(c,8),a)
def complex_data(self):
'''
This will cast each byte to an int8 and interpret each byte
as 4 bits real values and 4 bits imag values (RRRRIIII). The data are then
used to create a 3D numpy array of dtype=complex, which is returned.
The shape of the numpy array is N half frames, M subbands, K data points per half frame,
where K = constants.bins_per_half_frame, N is typically 129 and M is typically 1 for
compamp files and 16 for archive-compamp files.
Note that this returns a Numpy array of type complex64. This data is not retained within Compamp objects.
'''
#note that since we can only pack into int8 types, we must pad each 4-bit value with 4, 0 bits
#this effectively multiplies each 4-bit value by 16 when that value is represented as an 8-bit signed integer.
packed_data = self._packed_data()
header = self.header()
real_val = np.bitwise_and(packed_data, 0xf0).astype(np.int8) # coef's are: RRRRIIII (4 bits real,
imag_val = np.left_shift(np.bitwise_and(packed_data, 0x0f), 4).astype(np.int8) # 4 bits imaginary in 2's complement)
cdata = np.empty(len(real_val), np.complex64)
#"Normalize" by making appropriate bit-shift. Otherwise, values for real and imaginary coefficients are
#inflated by 16x.
cdata.real = np.right_shift(real_val, 4)
cdata.imag = np.right_shift(imag_val, 4)
# expose compamp measurement blocks
cdata = cdata.reshape((header['number_of_half_frames'], header['number_of_subbands'], constants.bins_per_half_frame))
return cdata
def _get_voc_color_map(n=256):
color_map = np.zeros((n, 3))
for i in xrange(n):
r = b = g = 0
cid = i
for j in xrange(0, 8):
r = np.bitwise_or(r, np.left_shift(np.unpackbits(np.array([cid], dtype=np.uint8))[-1], 7-j))
g = np.bitwise_or(g, np.left_shift(np.unpackbits(np.array([cid], dtype=np.uint8))[-2], 7-j))
b = np.bitwise_or(b, np.left_shift(np.unpackbits(np.array([cid], dtype=np.uint8))[-3], 7-j))
cid = np.right_shift(cid, 3)
color_map[i][0] = r
color_map[i][1] = g
color_map[i][2] = b
return color_map