Python numpy 模块,recfromcsv() 实例源码
我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用numpy.recfromcsv()。
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def load_csv_cached(filename='../apps/naive_c_stats.csv', cache={}):
"""
Get C statistics numpy record list, or return None if the file does not exist.
"""
if filename in cache:
return cache[filename]
if not os.path.exists(filename):
ans = None
else:
ans = numpy.recfromcsv(filename)
cache[filename] = ans
return ans
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def setUp(self):
self.data = {
"DC_PEC": '''
import numpy as np
from urllib.request import urlretrieve; urlretrieve('https://s3.amazonaws.com/assets.datacamp.com/production/course_998/datasets/titanic_sub.csv', 'titanic.csv')
''',
"DC_CODE": '''
file = 'titanic.csv'
# Import file using np.genfromtxt: data
data = np.genfromtxt(file , delimiter = ",", names = True , dtype = None)
# Print out datatype of data
print(type(data))
# Import file using np.recfromcsv: d
d = np.recfromcsv(file)
# Print out first three entries of d
print(d[:3])
''',
"DC_SOLUTION": '''
file = 'titanic.csv'
# Import file using np.genfromtxt: data
data = np.genfromtxt(file , delimiter = ",", names = True , dtype = None)
# Print out datatype of data
print(type(data))
# Import file using np.recfromcsv: d
d = np.recfromcsv(file)
# Print out first three entries of d
print(d[:3])
'''
}
def test_Pass(self):
self.data["DC_SCT"] = '''
# Test: Predefined code
predef_msg = "You don't have to change any of the predefined code."
test_object("file", undefined_msg = predef_msg, incorrect_msg = predef_msg)
# [6-21-2016: UPDATED WITH FIX]
# Test: call to np.genfromtxt() and 'data' variable
test_object("data", do_eval = False)
test_function(
"numpy.genfromtxt",
not_called_msg = "Make sure you call `np.genfromtxt()`.",
incorrect_msg = "Did you pass the correct arguments to `np.genfromtxt()`?")
# [6-21-2016: NEEDS FIX]
# Test: Predefined code
test_function("type", do_eval = False, not_called_msg = "error in type", incorrect_msg = "error in type")
test_function("print", not_called_msg = predef_msg, incorrect_msg = predef_msg)
# [6-21-2016: UPDATED WITH FIX]
# Test: call to np.recfromcsv() and 'd' variable
test_object("d", do_eval = False)
test_function(
"numpy.recfromcsv",
not_called_msg = "Make sure you call `np.recfromcsv()`.",
incorrect_msg = "Did you pass the correct arguments to `np.recfromcsv()`?")
# Test: Predefined code
test_function("print", index = 2, incorrect_msg = "error is in print2")
success_msg("Good job!")
'''
sct_payload = helper.run(self.data)
self.assertTrue(sct_payload['correct'])
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def _load(self,filename):
kwargs = dict(delimiter=',')
if filename is None:
filename = os.path.join(self.DATADIR,"extras/extra_dwarfs.csv")
self.filename = filename
raw = np.recfromcsv(filename,**kwargs)
self.data.resize(len(raw))
self.data['name'] = raw['name']
self.data['ra'] = raw['ra']
self.data['dec'] = raw['dec']
self.data['glon'],self.data['glat'] = cel2gal(raw['ra'],raw['dec'])
def _load(self,filename):
kwargs = dict(delimiter=',')
if filename is None:
filename = os.path.join(self.DATADIR,"extras/extra_clusters.csv")
self.filename = filename
raw = np.recfromcsv(filename,**kwargs)
self.data.resize(len(raw))
self.data['name'] = raw['name']
self.data['ra'] = raw['ra']
self.data['dec'] = raw['dec']
self.data['glon'],self.data['glat'] = cel2gal(raw['ra'],raw['dec'])
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def test_recfromcsv(self):
with temppath(suffix='.txt') as path:
path = Path(path)
with path.open('w') as f:
f.write(u'A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(path, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
def load_data_file(name, skip_header=None) -> np.recarray:
"""Load a data file.
Returns
-------
data : :class:`numpy.recarray`
data values
"""
fname = os.path.join(os.path.dirname(__file__), 'data', name)
return np.recfromcsv(
fname, skip_header=skip_header, case_sensitive=True).view(np.recarray)
def test_dtype_with_converters_and_usecols(self):
dstr = "1,5,-1,1:1\n2,8,-1,1:n\n3,3,-2,m:n\n"
dmap = {'1:1':0, '1:n':1, 'm:1':2, 'm:n':3}
dtyp = [('e1','i4'),('e2','i4'),('e3','i2'),('n', 'i1')]
conv = {0: int, 1: int, 2: int, 3: lambda r: dmap[r.decode()]}
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
names=None, converters=conv)
control = np.rec.array([[1,5,-1,0], [2,8,-1,1], [3,3,-2,3]], dtype=dtyp)
assert_equal(test, control)
dtyp = [('e1','i4'),('e2','i4'),('n', 'i1')]
test = np.recfromcsv(TextIO(dstr,), dtype=dtyp, delimiter=',',
usecols=(0,1,3), names=None, converters=conv)
control = np.rec.array([[1,5,0], [2,8,1], [3,3,3]], dtype=dtyp)
assert_equal(test, control)
def test_recfromcsv(self):
#
data = TextIO('A,B\n0,1\n2,3')
kwargs = dict(missing_values="N/A", names=True, case_sensitive=True)
test = np.recfromcsv(data, dtype=None, **kwargs)
control = np.array([(0, 1), (2, 3)],
dtype=[('A', np.int), ('B', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,N/A')
test = np.recfromcsv(data, dtype=None, usemask=True, **kwargs)
control = ma.array([(0, 1), (2, -1)],
mask=[(False, False), (False, True)],
dtype=[('A', np.int), ('B', np.int)])
assert_equal(test, control)
assert_equal(test.mask, control.mask)
assert_equal(test.A, [0, 2])
#
data = TextIO('A,B\n0,1\n2,3')
test = np.recfromcsv(data, missing_values='N/A',)
control = np.array([(0, 1), (2, 3)],
dtype=[('a', np.int), ('b', np.int)])
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)
#
data = TextIO('A,B\n0,1\n2,3')
dtype = [('a', np.int), ('b', np.float)]
test = np.recfromcsv(data, missing_values='N/A', dtype=dtype)
control = np.array([(0, 1), (2, 3)],
dtype=dtype)
self.assertTrue(isinstance(test, np.recarray))
assert_equal(test, control)