Python numpy 模块,ufunc() 实例源码
我们从Python开源项目中,提取了以下19个代码示例,用于说明如何使用numpy.ufunc()。
def __deepcopy__(self, memo):
obj = type(self).__new__(type(self))
if isinstance(self.base_value, VectorizedIterable): # special case, but perhaps need to rethink
obj.base_value = self.base_value # whether deepcopy is appropriate everywhere
else:
try:
obj.base_value = deepcopy(self.base_value)
except TypeError: # base_value cannot be copied, e.g. is a generator (but see generator_tools from PyPI)
obj.base_value = self.base_value # so here we create a reference rather than deepcopying - could cause problems
obj._shape = self._shape
obj.dtype = self.dtype
obj.operations = []
for f, arg in self.operations:
if isinstance(f, numpy.ufunc):
obj.operations.append((f, deepcopy(arg)))
else:
obj.operations.append((deepcopy(f), deepcopy(arg)))
return obj
def __array_prepare__(self, result, context=None):
"""
Gets called prior to a ufunc
"""
# nice error message for non-ufunc types
if context is not None and not isinstance(self._values, np.ndarray):
obj = context[1][0]
raise TypeError("{obj} with dtype {dtype} cannot perform "
"the numpy op {op}".format(
obj=type(obj).__name__,
dtype=getattr(obj, 'dtype', None),
op=context[0].__name__))
return result
# complex
def __array_wrap__(self, result, context=None):
"""
Gets called after a ufunc. Needs additional handling as
PeriodIndex stores internal data as int dtype
Replace this to __numpy_ufunc__ in future version
"""
if isinstance(context, tuple) and len(context) > 0:
func = context[0]
if (func is np.add):
return self._add_delta(context[1][1])
elif (func is np.subtract):
return self._add_delta(-context[1][1])
elif isinstance(func, np.ufunc):
if 'M->M' not in func.types:
msg = "ufunc '{0}' not supported for the PeriodIndex"
# This should be TypeError, but TypeError cannot be raised
# from here because numpy catches.
raise ValueError(msg.format(func.__name__))
if com.is_bool_dtype(result):
return result
return PeriodIndex(result, freq=self.freq, name=self.name)
def __init__(self, scalar_op, inplace_pattern=None, name=None,
nfunc_spec=None, openmp=None):
if inplace_pattern is None:
inplace_pattern = {}
self.name = name
self.scalar_op = scalar_op
self.inplace_pattern = inplace_pattern
self.destroy_map = dict((o, [i]) for o, i in inplace_pattern.items())
self.ufunc = None
self.nfunc = None
if nfunc_spec is None:
nfunc_spec = getattr(scalar_op, 'nfunc_spec', None)
self.nfunc_spec = nfunc_spec
if nfunc_spec:
self.nfunc = getattr(numpy, nfunc_spec[0])
# precompute the hash of this node
self._rehash()
super(Elemwise, self).__init__(openmp=openmp)
def set_ufunc(self, scalar_op):
# This is probably a speed up of the implementation
if isinstance(scalar_op, theano.scalar.basic.Add):
self.ufunc = numpy.add
elif isinstance(scalar_op, theano.scalar.basic.Mul):
self.ufunc = numpy.multiply
elif isinstance(scalar_op, theano.scalar.basic.Maximum):
self.ufunc = numpy.maximum
elif isinstance(scalar_op, theano.scalar.basic.Minimum):
self.ufunc = numpy.minimum
elif isinstance(scalar_op, theano.scalar.basic.AND):
self.ufunc = numpy.bitwise_and
elif isinstance(scalar_op, theano.scalar.basic.OR):
self.ufunc = numpy.bitwise_or
elif isinstance(scalar_op, theano.scalar.basic.XOR):
self.ufunc = numpy.bitwise_xor
else:
self.ufunc = numpy.frompyfunc(scalar_op.impl, 2, 1)
def _check_binary_ufunc(ufunc):
""" Check that ufunc is suitable for ``ireduce_ufunc`` """
if not isinstance(ufunc, np.ufunc):
raise TypeError('{} is not a NumPy Ufunc'.format(ufunc.__name__))
if not ufunc.nin == 2:
raise ValueError('Only binary ufuncs are supported, and {} is \
not one of them'.format(ufunc.__name__))
# Ufuncs that always return bool are problematic because they can be reduced
# but not be accumulated.
# Recall: numpy.dtype('?') == np.bool
if all(type_signature[-1] == '?' for type_signature in ufunc.types):
raise ValueError('Only binary ufuncs that preserve type are supported, \
and {} is not one of them'.format(ufunc.__name__))
def _ireduce_ufunc_new_axis(arrays, ufunc, **kwargs):
"""
Reduction operation for arrays, in the direction of a new axis (i.e. stacking).
Parameters
----------
arrays : iterable
Arrays to be reduced.
ufunc : numpy.ufunc
Binary universal function. Must have a signature of the form ufunc(x1, x2, ...)
kwargs
Keyword arguments are passed to ``ufunc``.
Yields
------
reduced : ndarray
"""
arrays = iter(arrays)
first = next(arrays)
kwargs.pop('axis')
dtype = kwargs.get('dtype', None)
if dtype is None:
dtype = first.dtype
else:
kwargs['casting'] = 'unsafe'
# If the out parameter was already given
# we create the accumulator from it
# Otherwise, it is a copy of the first array
accumulator = kwargs.pop('out', None)
if accumulator is not None:
accumulator[:] = first
else:
accumulator = np.array(first, copy = True).astype(dtype)
yield accumulator
for array in arrays:
ufunc(accumulator, array, out = accumulator, **kwargs)
yield accumulator
def _ireduce_ufunc_all_axes(arrays, ufunc, **kwargs):
"""
Reduction operation for arrays, over all axes.
Parameters
----------
arrays : iterable
Arrays to be reduced.
ufunc : numpy.ufunc
Binary universal function. Must have a signature of the form ufunc(x1, x2, ...)
kwargs
Keyword arguments are passed to ``ufunc``. The ``out`` parameter is ignored.
Yields
------
reduced : scalar
"""
arrays = iter(arrays)
first = next(arrays)
kwargs['axis'] = None
kwargs.pop('out', None) # Remove the out-parameter if provided.
axis_reduce = partial(ufunc.reduce, **kwargs)
accumulator = axis_reduce(first)
yield accumulator
for array in arrays:
accumulator = axis_reduce([accumulator, axis_reduce(array)])
yield accumulator
def _validate_method(method, dy, fit_bias, nterms,
frequency, assume_regular_frequency):
fast_method_ok = hasattr(np.ufunc, 'at')
if not fast_method_ok:
warnings.warn("Fast Lomb-Scargle methods require numpy version 1.8 "
"or newer. Using slower methods instead.")
# automatically choose the appropiate method
if method == 'auto':
if nterms != 1:
if (fast_method_ok and len(frequency) > 100
and _is_regular(frequency, assume_regular_frequency)):
method = 'fastchi2'
else:
method = 'chi2'
elif (fast_method_ok and len(frequency) > 100
and _is_regular(frequency, assume_regular_frequency)):
method = 'fast'
elif dy is None and not fit_bias:
method = 'scipy'
else:
method = 'slow'
if method not in METHODS:
raise ValueError("invalid method: {0}".format(method))
return method
def _build_ufunc(func):
"""Return a ufunc that works with lazy arrays"""
def larray_compatible_ufunc(x):
if isinstance(x, larray):
y = deepcopy(x)
y.apply(func)
return y
else:
return func(x)
return larray_compatible_ufunc
def __array_wrap__(self, result, context=None):
"""
Gets called after a ufunc
"""
return self._constructor(result, index=self.index,
copy=False).__finalize__(self)
def apply(self, func, axis=0, broadcast=False, reduce=False):
"""
Analogous to DataFrame.apply, for SparseDataFrame
Parameters
----------
func : function
Function to apply to each column
axis : {0, 1, 'index', 'columns'}
broadcast : bool, default False
For aggregation functions, return object of same size with values
propagated
Returns
-------
applied : Series or SparseDataFrame
"""
if not len(self.columns):
return self
axis = self._get_axis_number(axis)
if isinstance(func, np.ufunc):
new_series = {}
for k, v in compat.iteritems(self):
applied = func(v)
applied.fill_value = func(applied.fill_value)
new_series[k] = applied
return self._constructor(
new_series, index=self.index, columns=self.columns,
default_fill_value=self._default_fill_value,
kind=self._default_kind).__finalize__(self)
else:
if not broadcast:
return self._apply_standard(func, axis, reduce=reduce)
else:
return self._apply_broadcast(func, axis)
def __getstate__(self):
d = copy(self.__dict__)
d.pop('ufunc')
d.pop('nfunc')
d.pop('__epydoc_asRoutine', None)
d.pop('_hashval')
return d
def __setstate__(self, d):
super(Elemwise, self).__setstate__(d)
self.ufunc = None
self.nfunc = None
if getattr(self, 'nfunc_spec', None):
self.nfunc = getattr(numpy, self.nfunc_spec[0])
elif 0 < self.scalar_op.nin < 32:
self.ufunc = numpy.frompyfunc(self.scalar_op.impl,
self.scalar_op.nin,
self.scalar_op.nout)
self._rehash()
def reduce_ufunc(*args, **kwargs):
"""
Streaming reduction generator function from a binary NumPy ufunc. Essentially the
function equivalent to `ireduce_ufunc`.
``ufunc`` must be a NumPy binary Ufunc (i.e. it takes two arguments). Moreover,
for performance reasons, ufunc must have the same return types as input types.
This precludes the use of ``numpy.greater``, for example.
Note that performance is much better for the default ``axis = -1``. In such a case,
reduction operations can occur in-place. This also allows to operate in constant-memory.
Parameters
----------
arrays : iterable
Arrays to be reduced.
ufunc : numpy.ufunc
Binary universal function.
axis : int or None, optional
Reduction axis. Default is to reduce the arrays in the stream as if
they had been stacked along a new axis, then reduce along this new axis.
If None, arrays are flattened before reduction. If `axis` is an int larger that
the number of dimensions in the arrays of the stream, arrays are reduced
along the new axis. Note that not all of NumPy Ufuncs support
``axis = None``, e.g. ``numpy.subtract``.
dtype : numpy.dtype or None, optional
Overrides the dtype of the calculation and output arrays.
ignore_nan : bool, optional
If True and ufunc has an identity value (e.g. ``numpy.add.identity`` is 0), then NaNs
are replaced with this identity. An error is raised if ``ufunc`` has no identity (e.g. ``numpy.maximum.identity`` is ``None``).
kwargs
Keyword arguments are passed to ``ufunc``. Note that some valid ufunc keyword arguments
(e.g. ``keepdims``) are not valid for all streaming functions. Note that
contrary to NumPy v. 1.10+, ``casting = 'unsafe`` is the default in npstreams.
Yields
------
reduced : ndarray or scalar
Raises
------
TypeError : if ``ufunc`` is not NumPy ufunc.
ValueError : if ``ignore_nan`` is True but ``ufunc`` has no identity
ValueError: if ``ufunc`` is not a binary ufunc
ValueError: if ``ufunc`` does not have the same input type as output type
"""
return last(ireduce_ufunc(*args, **kwargs))
def _ireduce_ufunc_existing_axis(arrays, ufunc, **kwargs):
"""
Reduction operation for arrays, in the direction of an existing axis.
Parameters
----------
arrays : iterable
Arrays to be reduced.
ufunc : numpy.ufunc
Binary universal function. Must have a signature of the form ufunc(x1, x2, ...)
kwargs
Keyword arguments are passed to ``ufunc``. The ``out`` parameter is ignored.
Yields
------
reduced : ndarray
"""
arrays = iter(arrays)
first = next(arrays)
if kwargs['axis'] not in range(first.ndim):
raise ValueError('Axis {} not supported on arrays of shape {}.'.format(kwargs['axis'], first.shape))
# Remove the out-parameter if provided.
kwargs.pop('out', None)
dtype = kwargs.get('dtype')
if dtype is None:
dtype = first.dtype
axis_reduce = partial(ufunc.reduce, **kwargs)
accumulator = np.atleast_1d(axis_reduce(first))
yield accumulator
# On the first pass of the following loop, accumulator is missing a dimensions
# therefore, the stacking function cannot be 'concatenate'
second = next(arrays)
accumulator = np.stack([accumulator, np.atleast_1d(axis_reduce(second))], axis = -1)
yield accumulator
# On the second pass, the new dimensions exists, and thus we switch to
# using concatenate.
for array in arrays:
reduced = np.expand_dims(np.atleast_1d(axis_reduce(array)), axis = accumulator.ndim - 1)
accumulator = np.concatenate([accumulator, reduced], axis = accumulator.ndim - 1)
yield accumulator
def compute_group(cls, data, scales, **params):
fun = params['fun']
n = params['n']
args = params['args']
xlim = params['xlim']
try:
range_x = xlim or scales.x.dimension((0, 0))
except AttributeError:
raise PlotnineError(
"Missing 'x' aesthetic and 'xlim' is {}".format(xlim))
if not hasattr(fun, '__call__'):
raise PlotnineError(
"stat_function requires parameter 'fun' to be " +
"a function or any other callable object")
old_fun = fun
if isinstance(args, (list, tuple)):
def fun(x):
return old_fun(x, *args)
elif isinstance(args, dict):
def fun(x):
return old_fun(x, **args)
elif args is not None:
def fun(x):
return old_fun(x, args)
else:
def fun(x):
return old_fun(x)
x = np.linspace(range_x[0], range_x[1], n)
# continuous scale
with suppress(AttributeError):
x = scales.x.trans.inverse(x)
# We know these can handle array-likes
if isinstance(old_fun, (np.ufunc, np.vectorize)):
y = fun(x)
else:
y = [fun(val) for val in x]
new_data = pd.DataFrame({'x': x, 'y': y})
return new_data
def prepare_node(self, node, storage_map, compute_map, impl):
# Postpone the ufunc building to the last minutes
# NumPy ufunc support only up to 31 inputs.
# But our c code support more.
if (len(node.inputs) < 32 and
(self.nfunc is None or
self.scalar_op.nin != len(node.inputs)) and
self.ufunc is None and
impl == 'py'):
ufunc = numpy.frompyfunc(self.scalar_op.impl,
len(node.inputs),
self.scalar_op.nout)
if self.scalar_op.nin > 0:
# We can reuse it for many nodes
self.ufunc = ufunc
else:
node.tag.ufunc = ufunc
# Numpy ufuncs will sometimes perform operations in
# float16, in particular when the input is int8.
# This is not something that we want, and we do not
# do it in the C code, so we specify that the computation
# should be carried out in the returned dtype.
# This is done via the "sig" kwarg of the ufunc, its value
# should be something like "ff->f", where the characters
# represent the dtype of the inputs and outputs.
# NumPy 1.10.1 raise an error when giving the signature
# when the input is complex. So add it only when inputs is int.
out_dtype = node.outputs[0].dtype
if (out_dtype in float_dtypes and
isinstance(self.nfunc, numpy.ufunc) and
node.inputs[0].dtype in discrete_dtypes):
char = numpy.sctype2char(out_dtype)
sig = char * node.nin + '->' + char * node.nout
node.tag.sig = sig
node.tag.fake_node = Apply(
self.scalar_op,
[get_scalar_type(dtype=input.type.dtype).make_variable()
for input in node.inputs],
[get_scalar_type(dtype=output.type.dtype).make_variable()
for output in node.outputs])
self.scalar_op.prepare_node(node.tag.fake_node, None, None, impl)
def perform(self, node, inp, out):
input, = inp
output, = out
axis = self.axis
if axis is None:
axis = list(range(input.ndim))
variable = input
to_reduce = reversed(sorted(axis))
if hasattr(self, 'acc_dtype') and self.acc_dtype is not None:
acc_dtype = self.acc_dtype
else:
acc_dtype = node.outputs[0].type.dtype
if to_reduce:
for dimension in to_reduce:
# If it's a zero-size array, use scalar_op.identity
# if available
if variable.shape[dimension] == 0:
if hasattr(self.scalar_op, 'identity'):
# Compute the shape of the output
v_shape = list(variable.shape)
del v_shape[dimension]
variable = numpy.empty(tuple(v_shape),
dtype=acc_dtype)
variable.fill(self.scalar_op.identity)
else:
raise ValueError((
"Input (%s) has zero-size on axis %s, but "
"self.scalar_op (%s) has no attribute 'identity'"
% (variable, dimension, self.scalar_op)))
else:
# Numpy 1.6 has a bug where you sometimes have to specify
# "dtype='object'" in reduce for it to work, if the ufunc
# was built with "frompyfunc". We need to find out if we
# are in one of these cases (only "object" is supported in
# the output).
if ((self.ufunc.ntypes == 1) and
(self.ufunc.types[0][-1] == 'O')):
variable = self.ufunc.reduce(variable, dimension,
dtype='object')
else:
variable = self.ufunc.reduce(variable, dimension,
dtype=acc_dtype)
variable = numpy.asarray(variable)
if numpy.may_share_memory(variable, input):
# perhaps numpy is clever for reductions of size 1?
# We don't want this.
variable = variable.copy()
output[0] = theano._asarray(variable,
dtype=node.outputs[0].type.dtype)
else:
# Force a copy
output[0] = numpy.array(variable, copy=True,
dtype=node.outputs[0].type.dtype)