Python numpy 模块,complexfloating() 实例源码
我们从Python开源项目中,提取了以下28个代码示例,用于说明如何使用numpy.complexfloating()。
def _get_inplace_dtype(obj1, obj2):
"""
Returns the dtype of obj1,
Raise error if
1) obj1 is real and obj2 is complex
2) obj1 is integer and obj2 is floating
Parameters
----------
obj1 : numpy.ndarray like array
obj2 : numpy.ndarray like array
Returns
-------
out : np.dtype
"""
if isrealobj(obj1):
if iscomplexobj(obj2):
raise TypeError("Cannot cast complex dtype to real dtype")
if issubclass(obj1.dtype.type, np.integer):
if issubclass(obj2.dtype.type, (np.floating, np.complexfloating)):
raise TypeError("Cannot cast floating to integer")
return obj1.dtype
def _get_common_dtype_with_scalar(scalar, obj1):
"""
return the common dtype between a native scalar (int, float, complex)
and the dtype of an ndarray like array.
Parameters
----------
scalar : { int, float, complex }
obj1 : numpy.ndarray like array.
"""
if issubclass(type(scalar), (int, float, np.integer, np.floating)):
return obj1.dtype
elif issubclass(type(scalar), (complex, np.complexfloating)):
if isrealobj(obj1):
return floattocomplex(obj1.dtype)
else:
return obj1.dtype
else:
raise TypeError("scalar type is not supported")
def _can_hold_element(self, element):
if is_list_like(element):
element = np.array(element)
return issubclass(element.dtype.type,
(np.floating, np.integer, np.complexfloating))
return (isinstance(element,
(float, int, complex, np.float_, np.int_)) and
not isinstance(bool, np.bool_))
def should_store(self, value):
return issubclass(value.dtype.type, np.complexfloating)
def should_store(self, value):
return not (issubclass(value.dtype.type,
(np.integer, np.floating, np.complexfloating,
np.datetime64, np.bool_)) or
is_internal_type(value))
def make_block(values, placement, klass=None, ndim=None, dtype=None,
fastpath=False):
if klass is None:
dtype = dtype or values.dtype
vtype = dtype.type
if isinstance(values, SparseArray):
klass = SparseBlock
elif issubclass(vtype, np.floating):
klass = FloatBlock
elif (issubclass(vtype, np.integer) and
issubclass(vtype, np.timedelta64)):
klass = TimeDeltaBlock
elif (issubclass(vtype, np.integer) and
not issubclass(vtype, np.datetime64)):
klass = IntBlock
elif dtype == np.bool_:
klass = BoolBlock
elif issubclass(vtype, np.datetime64):
if hasattr(values, 'tz'):
klass = DatetimeTZBlock
else:
klass = DatetimeBlock
elif is_datetimetz(values):
klass = DatetimeTZBlock
elif issubclass(vtype, np.complexfloating):
klass = ComplexBlock
elif is_categorical(values):
klass = CategoricalBlock
else:
klass = ObjectBlock
elif klass is DatetimeTZBlock and not is_datetimetz(values):
return klass(values, ndim=ndim, fastpath=fastpath,
placement=placement, dtype=dtype)
return klass(values, ndim=ndim, fastpath=fastpath, placement=placement)
# TODO: flexible with index=None and/or items=None
def is_complex_dtype(arr_or_dtype):
tipo = _get_dtype_type(arr_or_dtype)
return issubclass(tipo, np.complexfloating)
def test_convert_objects_complex_number():
for dtype in np.sctypes['complex']:
arr = np.array(list(1j * np.arange(20, dtype=dtype)), dtype='O')
assert (arr[0].dtype == np.dtype(dtype))
result = lib.maybe_convert_objects(arr)
assert (issubclass(result.dtype.type, np.complexfloating))
def fft_convolve_1d(x: np.ndarray, h: np.ndarray):
n = len(x) + len(h) - 1
n_opt = 1 << (n - 1).bit_length() # Get next power of 2
if np.issubdtype(x.dtype, np.complexfloating) or np.issubdtype(h.dtype, np.complexfloating):
fft, ifft = np.fft.fft, np.fft.ifft # use complex fft
else:
fft, ifft = np.fft.rfft, np.fft.irfft # use real fft
result = ifft(fft(x, n_opt) * fft(h, n_opt), n_opt)[0:n]
too_much = (len(result) - len(x)) // 2 # Center result
return result[too_much: -too_much]
def _get_inplace_dtype_with_scalar(scalar, obj1):
"""
Returns the dtype of obj1,
Raise error if
1) obj1 is real and obj2 is complex
2) obj1 is integer and obj2 is floating
Parameters
----------
obj1 : numpy.ndarray like array
obj2 : numpy.ndarray like array
Returns
-------
out : np.dtype
"""
if isrealobj(obj1):
if issubclass(type(scalar), (complex, np.complexfloating)):
raise TypeError("Cannot cast complex dtype to real dtype")
if issubclass(obj1.dtype.type, np.integer):
if issubclass(
type(scalar),
(float, complex, np.floating, np.complexfloating)):
raise TypeError("Cannot cast floating to integer")
return obj1.dtype
def iscomplexobj(pary):
""" Check if the array dtype is complex """
return issubclass(pary.dtype.type, np.complexfloating)
def complextofloat(dtype):
""" convert dtype from complex to corresponding real dtype """
dtype = dtype.type if isinstance(dtype, np.dtype) else dtype
if not issubclass(dtype, np.complexfloating):
outdtype = dtype
elif dtype == np.complex64:
outdtype = np.float32
elif dtype == np.complex128:
outdtype = np.float64
else:
raise TypeError("input dtype " + str(dtype) +
" cannot be translated to floating")
return np.dtype(outdtype)
def __init__(self, M):
self.M_lu = splu(M)
self.shape = M.shape
self.dtype = M.dtype
self.isreal = not np.issubdtype(self.dtype, np.complexfloating)
def _matvec(self, x):
# careful here: splu.solve will throw away imaginary
# part of x if M is real
x = np.asarray(x)
if self.isreal and np.issubdtype(x.dtype, np.complexfloating):
return (self.M_lu.solve(np.real(x).astype(self.dtype)) +
1j * self.M_lu.solve(np.imag(x).astype(self.dtype)))
else:
return self.M_lu.solve(x.astype(self.dtype))
def get_OPinv_matvec(A, M, sigma, symmetric=False, tol=0):
if sigma == 0:
return get_inv_matvec(A, symmetric=symmetric, tol=tol)
if M is None:
# M is the identity matrix
if isdense(A):
if (np.issubdtype(A.dtype, np.complexfloating) or
np.imag(sigma) == 0):
A = np.copy(A)
else:
A = A + 0j
A.flat[::A.shape[1] + 1] -= sigma
return LuInv(A).matvec
elif isspmatrix(A):
A = A - sigma * identity(A.shape[0])
if symmetric and isspmatrix_csr(A):
A = A.T
return SpLuInv(A.tocsc()).matvec
else:
return IterOpInv(_aslinearoperator_with_dtype(A),
M, sigma, tol=tol).matvec
else:
if ((not isdense(A) and not isspmatrix(A)) or
(not isdense(M) and not isspmatrix(M))):
return IterOpInv(_aslinearoperator_with_dtype(A),
_aslinearoperator_with_dtype(M),
sigma, tol=tol).matvec
elif isdense(A) or isdense(M):
return LuInv(A - sigma * M).matvec
else:
OP = A - sigma * M
if symmetric and isspmatrix_csr(OP):
OP = OP.T
return SpLuInv(OP.tocsc()).matvec
def nan_to_num(array, fill_value = 0.0, copy = True):
"""
Replace NaNs with another fill value.
Parameters
----------
array : array_like
Input data.
fill_value : float, optional
NaNs will be replaced by ``fill_value``. Default is 0.0, in keeping
with ``numpy.nan_to_num``.
copy : bool, optional
Whether to create a copy of `array` (True) or to replace values
in-place (False). The in-place operation only occurs if
casting to an array does not require a copy.
Returns
-------
out : ndarray
Array without NaNs. If ``array`` was not of floating or complearray type,
``array`` is returned unchanged.
Notes
-----
Contrary to ``numpy.nan_to_num``, this functions does not handle
infinite values.
See Also
--------
numpy.nan_to_num : replace NaNs and Infs with zeroes.
"""
array = np.array(array, subok = True, copy = copy)
dtype = array.dtype.type
# Non-inexact types do not have NaNs
if not np.issubdtype(dtype, np.inexact):
return array
iscomplex = np.issubdtype(dtype, np.complexfloating)
dest = (array.real, array.imag) if iscomplex else (array,)
for d in dest:
np.copyto(d, fill_value, where = np.isnan(d))
return array
def get_numeric_types(with_int=True, with_float=True, with_complex=False,
only_theano_types=True):
"""
Return numpy numeric data types.
:param with_int: Whether to include integer types.
:param with_float: Whether to include floating point types.
:param with_complex: Whether to include complex types.
:param only_theano_types: If True, then numpy numeric data types that are
not supported by Theano are ignored (i.e. those that are not declared in
scalar/basic.py).
:returns: A list of unique data type objects. Note that multiple data types
may share the same string representation, but can be differentiated through
their `num` attribute.
Note that when `only_theano_types` is True we could simply return the list
of types defined in the `scalar` module. However with this function we can
test more unique dtype objects, and in the future we may use it to
automatically detect new data types introduced in numpy.
"""
if only_theano_types:
theano_types = [d.dtype for d in theano.scalar.all_types]
rval = []
def is_within(cls1, cls2):
# Return True if scalars defined from `cls1` are within the hierarchy
# starting from `cls2`.
# The third test below is to catch for instance the fact that
# one can use ``dtype=numpy.number`` and obtain a float64 scalar, even
# though `numpy.number` is not under `numpy.floating` in the class
# hierarchy.
return (cls1 is cls2 or
issubclass(cls1, cls2) or
isinstance(numpy.array([0], dtype=cls1)[0], cls2))
for cls in get_numeric_subclasses():
dtype = numpy.dtype(cls)
if ((not with_complex and is_within(cls, numpy.complexfloating)) or
(not with_int and is_within(cls, numpy.integer)) or
(not with_float and is_within(cls, numpy.floating)) or
(only_theano_types and dtype not in theano_types)):
# Ignore this class.
continue
rval.append([str(dtype), dtype, dtype.num])
# We sort it to be deterministic, then remove the string and num elements.
return [x[1] for x in sorted(rval, key=str)]
def __add__(self, other):
"""
Addition
Parameters
----------
other: scalar or Pitcharray
Returns
-------
out : PitchArray
A new PitchArray
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_addarray_function(
self.dtype, other.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_addarray_function(
self.dtype, other.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other.gpudata, other.ld)
return result
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
if other == 0:
return self.astype(dtype)
else:
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_addscalar_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_addscalar_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be added is not supported")
def __sub__(self, other):
"""
Substraction
self - other
Parameters
----------
other : scalar or Pitcharray
Returns
-------
out : PitchArray
A new PitchArray
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_subarray_function(
self.dtype, other.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_subarray_function(
self.dtype, other.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other.gpudata, other.ld)
return result
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
if other == 0:
return self.astype(dtype)
else:
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_subscalar_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_subscalar_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be substracted "
"is not supported")
def __mul__(self, other):
"""
Multiply
Parameters
----------
other: scalar or Pitcharray
Returns
-------
out : PitchArray
A new PitchArray
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_mularray_function(
self.dtype, other.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_mularray_function(
self.dtype, other.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other.gpudata, other.ld)
return result
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
if other == 1.0:
return self.astype(dtype)
else:
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_mulscalar_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_mulscalar_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be multiplied "
"is not supported")
def __div__(self, other):
"""
Division
self / other
Parameters
----------
other: scalar or Pitcharray
Returns
-------
out : PitchArray
A new PitchArray
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_divarray_function(
self.dtype, other.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_divarray_function(
self.dtype, other.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other.gpudata, other.ld)
return result
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
if other == 1.0:
return self.astype(dtype)
else:
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_divscalar_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_divscalar_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be divided "
"is not supported")
def __rdiv__(self, other):
"""
Being divided
other / self
Parameters
----------
other: scalar or Pitcharray
Returns
-------
out : PitchArray
A new PitchArray
"""
"""
# this part it not necessary
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_divarray_function(
other.dtype, self.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
other.gpudata, self.gpudata, self.size)
else:
func = pu.get_divarray_function(
other.dtype, self.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, other.gpudata,
other.ld, self.gpudata, self.ld)
return result
"""
if issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_scalardiv_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_scalardiv_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be divided from"
"is not supported")
def __pow__(self, other):
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
result = self._new_like_me(_get_common_dtype(self, other))
if self.size:
if self.M == 1:
func = pu.get_powarray_function(
self.dtype, other.dtype, result.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_powarray_function(
self.dtype, other.dtype, result.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other.gpudata, other.ld)
return result
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_common_dtype_with_scalar(other, self)
if other == 0:
return self.astype(dtype)
else:
result = self._new_like_me(dtype)
if self.size:
if self.M == 1:
func = pu.get_powscalar_function(
self.dtype, dtype, pitch = False)
func.prepared_call(
self._grid, self._block, result.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_powscalar_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
result.gpudata, result.ld, self.gpudata,
self.ld, other)
return result
else:
raise TypeError("type of object to be powered is not supported")
def add(self, other):
"""
add other to self
inplace
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
dtype = _get_inplace_dtype(self, other)
if self.size:
if self.M == 1:
func = pu.get_addarray_function(
self.dtype, other.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_addarray_function(
self.dtype, other.dtype, self.dtype, pitch = True)
func.prepared_call(self._grid, self._block,
self.M, self.N, self.gpudata, self.ld,
self.gpudata, self.ld, other.gpudata, other.ld)
return self
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_inplace_dtype_with_scalar(other, self)
if other != 0:
if self.size:
if self.M == 1:
func = pu.get_addscalar_function(
self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_addscalar_function(
self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, self.gpudata,
self.ld, other)
return self
else:
raise TypeError("type of object to be added"
"is not supported")
def rsub(self, other):
"""
substract other by self
inplace
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
dtype = _get_inplace_dtype(self, other)
if self.size:
if self.M == 1:
func = pu.get_subarray_function(
other.dtype, self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
other.gpudata, self.gpudata, self.size)
else:
func = pu.get_subarray_function(
other.dtype, self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, other.gpudata,
other.ld, self.gpudata, self.ld)
return self
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_inplace_dtype_with_scalar(other, self)
if self.size:
if self.M == 1:
func = pu.get_scalarsub_function(
self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_scalarsub_function(
self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, self.gpudata,
self.ld, other)
return self
else:
raise TypeError("type of object to substract from"
"is not supported")
def mul(self, other):
"""
multiply other with self
inplace
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
dtype = _get_inplace_dtype(self, other)
if self.size:
if self.M == 1:
func = pu.get_mularray_function(
self.dtype, other.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_mularray_function(
self.dtype, other.dtype, self.dtype, pitch = True)
func.prepared_call(self._grid, self._block,
self.M, self.N, self.gpudata, self.ld,
self.gpudata, self.ld, other.gpudata, other.ld)
return self
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_inplace_dtype_with_scalar(other, self)
if other != 1:
if self.size:
if self.M == 1:
func = pu.get_mulscalar_function(
self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_mulscalar_function(
self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, self.gpudata,
self.ld, other)
return self
else:
raise TypeError("type of object to be multiplied"
"is not supported")
def div(self, other):
"""
divide other from self
inplace
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
dtype = _get_inplace_dtype(self, other)
if self.size:
if self.M == 1:
func = pu.get_divarray_function(
self.dtype, other.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other.gpudata, self.size)
else:
func = pu.get_divarray_function(
self.dtype, other.dtype, self.dtype, pitch = True)
func.prepared_call(self._grid, self._block,
self.M, self.N, self.gpudata, self.ld,
self.gpudata, self.ld, other.gpudata, other.ld)
return self
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_inplace_dtype_with_scalar(other, self)
if other != 1:
if self.size:
if self.M == 1:
func = pu.get_divscalar_function(
self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_divscalar_function(
self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, self.gpudata,
self.ld, other)
return self
else:
raise TypeError("type of object to be divided"
"is not supported")
def rdiv(self, other):
"""
divide other by self
inplace
"""
if isinstance(other, PitchArray):
if self.shape != other.shape:
raise ValueError("array dimension misaligned")
dtype = _get_inplace_dtype(self, other)
if self.size:
if self.M == 1:
func = pu.get_divarray_function(
other.dtype, self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
other.gpudata, self.gpudata, self.size)
else:
func = pu.get_divarray_function(
other.dtype, self.dtype, self.dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, other.gpudata,
other.ld, self.gpudata, self.ld)
return self
elif issubclass(type(other), (float, int, complex, np.integer,
np.floating, np.complexfloating)):
dtype = _get_inplace_dtype_with_scalar(other, self)
if self.size:
if self.M == 1:
func = pu.get_scalardiv_function(
self.dtype, self.dtype, pitch = False)
func.prepared_call(
self._grid, self._block, self.gpudata,
self.gpudata, other, self.size)
else:
func = pu.get_scalardiv_function(
self.dtype, dtype, pitch = True)
func.prepared_call(
self._grid, self._block, self.M, self.N,
self.gpudata, self.ld, self.gpudata,
self.ld, other)
return self
else:
raise TypeError("type of object to divide from"
"is not supported")