Python numpy 模块,Array() 实例源码
我们从Python开源项目中,提取了以下5个代码示例,用于说明如何使用numpy.Array()。
def reconstruct_batch(self, output, batch_id, chosen_labels=None):
""" Create the song associated with the network output
Args:
output (list[np.Array]): The ouput of the network (size batch_size*output_dim)
batch_id (int): The batch that we must reconstruct
chosen_labels (list[np.Array[batch_size, int]]): the sampled class at each timestep (useful to reconstruct the generated song)
Return:
Song: The reconstructed song
"""
raise NotImplementedError('Abstract class')
def reconstruct_batch(self, output, batch_id, chosen_labels=None):
""" Create the song associated with the network output
Args:
output (list[np.Array]): The ouput of the network (size batch_size*output_dim)
batch_id (int): The batch id
chosen_labels (list[np.Array[batch_size, int]]): the sampled class at each timestep (useful to reconstruct the generated song)
Return:
Song: The reconstructed song
"""
assert Relative.HAS_EMPTY == True
processed_song = Relative.RelativeSong()
processed_song.first_note = music.Note()
processed_song.first_note.note = 56 # TODO: Define what should be the first note
print('Reconstruct')
for i, note in enumerate(output):
relative = Relative.RelativeNote()
# Here if we did sample the output, we should get which has heen the selected output
if not chosen_labels or i == len(chosen_labels): # If chosen_labels, the last generated note has not been sampled
chosen_label = int(np.argmax(note[batch_id,:])) # Cast np.int64 to int to avoid compatibility with mido
else:
chosen_label = int(chosen_labels[i][batch_id])
print(chosen_label, end=' ') # TODO: Add a text output connector
if chosen_label == 0: # <next> token
relative.pitch_class = None
#relative.scale = # Note used
#relative.prev_tick =
else:
relative.pitch_class = chosen_label-1
#relative.scale =
#relative.prev_tick =
processed_song.notes.append(relative)
print()
return self.reconstruct_song(processed_song)
def score(self,xnew):
"""
Generate scores for new x values
xNew should be an array-like object where each row represents a test point
Return the predicted mean and standard deviation [mu,s]
@param{np.Array} xnew. An numpy array where each row corrosponds to an observation
@output{Array} mu. A list containing predicted mean values
@output{Array} s. A list containing predicted standard deviations
"""
self._validate_xnew(xnew)
#mu,sd = self.gp.predict(xnew,return_std=True)
#return {'mu':mu.T.tolist()[0], 'sd':sd.tolist()}
#K_trans = self.kernel(X, self.xTrain)
#y_mean = K_trans.dot(self.alpha_) # Line 4 (y_mean = f_star)
#y_mean = self.y_train_mean + y_mean # undo normal.
# Compute variance of predictive distribution
#y_var = self.kernel_.diag(X)
#y_var -= np.einsum("ki,kj,ij->k", K_trans, K_trans, K_inv)
# Check if any of the variances is negative because of
# numerical issues. If yes: set the variance to 0.
#y_var_negative = y_var < 0
#if np.any(y_var_negative):
# warnings.warn("Predicted variances smaller than 0. "
# "Setting those variances to 0.")
# y_var[y_var_negative] = 0.0
#return y_mean, np.sqrt(y_var)
def reconstruct_batch(self, output, batch_id, chosen_labels=None):
""" Create the song associated with the network output
Args:
output (list[np.Array]): The ouput of the network (size batch_size*output_dim)
batch_id (int): The batch that we must reconstruct
chosen_labels (list[np.Array[batch_size, int]]): the sampled class at each timestep (useful to reconstruct the generated song)
Return:
Song: The reconstructed song
"""
raise NotImplementedError('Abstract class')
def reconstruct_batch(self, output, batch_id, chosen_labels=None):
""" Create the song associated with the network output
Args:
output (list[np.Array]): The ouput of the network (size batch_size*output_dim)
batch_id (int): The batch id
chosen_labels (list[np.Array[batch_size, int]]): the sampled class at each timestep (useful to reconstruct the generated song)
Return:
Song: The reconstructed song
"""
assert Relative.HAS_EMPTY == True
processed_song = Relative.RelativeSong()
processed_song.first_note = music.Note()
processed_song.first_note.note = 56 # TODO: Define what should be the first note
print('Reconstruct')
for i, note in enumerate(output):
relative = Relative.RelativeNote()
# Here if we did sample the output, we should get which has heen the selected output
if not chosen_labels or i == len(chosen_labels): # If chosen_labels, the last generated note has not been sampled
chosen_label = int(np.argmax(note[batch_id,:])) # Cast np.int64 to int to avoid compatibility with mido
else:
chosen_label = int(chosen_labels[i][batch_id])
print(chosen_label, end=' ') # TODO: Add a text output connector
if chosen_label == 0: # <next> token
relative.pitch_class = None
#relative.scale = # Note used
#relative.prev_tick =
else:
relative.pitch_class = chosen_label-1
#relative.scale =
#relative.prev_tick =
processed_song.notes.append(relative)
print()
return self.reconstruct_song(processed_song)