Python numpy 模块,nans() 实例源码
我们从Python开源项目中,提取了以下3个代码示例,用于说明如何使用numpy.nans()。
def _compute_extra_terms(Y, W, items_u, trustees_u):
# Implicit information
norm_Iu = math.sqrt(len(items_u))
# TODO: Clean this. Hint: np.nans
y_term = 0
if norm_Iu > 0:
y_sum = np.sum(Y[items_u, :], axis=0)
y_term = y_sum / norm_Iu
# Trust information
w_term = 0
norm_Tu = math.sqrt(len(trustees_u))
if norm_Tu > 0:
w_sum = np.sum(W[trustees_u, :], axis=0)
w_term = w_sum / norm_Tu
return y_term, w_term, norm_Iu, norm_Tu
def write_metadata(hdf5_out, dim, metadata_df, convert_back_to_neg_666):
"""
Writes either column or row metadata to proper node of gctx out (hdf5) file.
Input:
- hdf5_out (h5py): open hdf5 file to write to
- dim (str; must be "row" or "col"): dimension of metadata to write to
- metadata_df (pandas DataFrame): metadata DataFrame to write to file
- convert_back_to_neg_666 (bool): Whether to convert numpy.nans back to "-666",
as per CMap metadata null convention
"""
if dim == "col":
hdf5_out.create_group(col_meta_group_node)
metadata_node_name = col_meta_group_node
elif dim == "row":
hdf5_out.create_group(row_meta_group_node)
metadata_node_name = row_meta_group_node
else:
logger.error("'dim' argument must be either 'row' or 'col'!")
# write id field to expected node
hdf5_out.create_dataset(metadata_node_name + "/id", data=[str(x) for x in metadata_df.index])
metadata_fields = list(metadata_df.columns.copy())
# if specified, convert numpy.nans in metadata back to -666
if convert_back_to_neg_666:
for c in metadata_fields:
metadata_df[[c]] = metadata_df[[c]].replace([numpy.nan], ["-666"])
# write metadata columns to their own arrays
for field in [entry for entry in metadata_fields if entry != "ind"]:
hdf5_out.create_dataset(metadata_node_name + "/" + field,
data=numpy.array(list(metadata_df.loc[:, field])))
def test_NanGuardMode():
# Tests if NanGuardMode is working by feeding in numpy.inf and numpy.nans
# intentionally. A working implementation should be able to capture all
# the abnormalties.
x = T.matrix()
w = theano.shared(numpy.random.randn(5, 7).astype(theano.config.floatX))
y = T.dot(x, w)
fun = theano.function(
[x], y,
mode=NanGuardMode(nan_is_error=True, inf_is_error=True)
)
a = numpy.random.randn(3, 5).astype(theano.config.floatX)
infa = numpy.tile(
(numpy.asarray(100.) ** 1000000).astype(theano.config.floatX), (3, 5))
nana = numpy.tile(
numpy.asarray(numpy.nan).astype(theano.config.floatX), (3, 5))
biga = numpy.tile(
numpy.asarray(1e20).astype(theano.config.floatX), (3, 5))
fun(a) # normal values
# Temporarily silence logger
_logger = logging.getLogger("theano.compile.nanguardmode")
try:
_logger.propagate = False
assert_raises(AssertionError, fun, infa) # INFs
assert_raises(AssertionError, fun, nana) # NANs
assert_raises(AssertionError, fun, biga) # big values
finally:
_logger.propagate = True
# slices
a = numpy.random.randn(3, 4, 5).astype(theano.config.floatX)
infa = numpy.tile(
(numpy.asarray(100.) ** 1000000).astype(theano.config.floatX),
(3, 4, 5))
nana = numpy.tile(
numpy.asarray(numpy.nan).astype(theano.config.floatX), (3, 4, 5))
biga = numpy.tile(
numpy.asarray(1e20).astype(theano.config.floatX), (3, 4, 5))
x = T.tensor3()
y = x[:, T.arange(2), T.arange(2)]
fun = theano.function(
[x], y,
mode=NanGuardMode(nan_is_error=True, inf_is_error=True)
)
fun(a) # normal values
try:
_logger.propagate = False
assert_raises(AssertionError, fun, infa) # INFs
assert_raises(AssertionError, fun, nana) # NANs
assert_raises(AssertionError, fun, biga) # big values
finally:
_logger.propagate = True