我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用operator.iadd()。
def csum(arrays, dtype = None, ignore_nan = False): """ CUDA-enabled sum of stream of arrays. Arrays are summed along the streaming axis for performance reasons. Parameters ---------- arrays : iterable Arrays to be summed. ignore_nan : bool, optional If True, NaNs are ignored. Default is propagation of NaNs. Returns ------- cuda_sum : ndarray See Also -------- isum : streaming sum of array elements, possibly along different axes """ return cuda_inplace_reduce(arrays, operator = iadd, dtype = dtype, ignore_nan = ignore_nan, identity = 0)
def _test_quantity_iadd_isub(self, unit, func): x = self.Q_(unit, 'centimeter') y = self.Q_(unit, 'inch') z = self.Q_(unit, 'second') a = self.Q_(unit, None) func(op.iadd, x, x, self.Q_(unit + unit, 'centimeter')) func(op.iadd, x, y, self.Q_(unit + 2.54 * unit, 'centimeter')) func(op.iadd, y, x, self.Q_(unit + unit / 2.54, 'inch')) func(op.iadd, a, unit, self.Q_(unit + unit, None)) self.assertRaises(DimensionalityError, op.iadd, 10, x) self.assertRaises(DimensionalityError, op.iadd, x, 10) self.assertRaises(DimensionalityError, op.iadd, x, z) func(op.isub, x, x, self.Q_(unit - unit, 'centimeter')) func(op.isub, x, y, self.Q_(unit - 2.54, 'centimeter')) func(op.isub, y, x, self.Q_(unit - unit / 2.54, 'inch')) func(op.isub, a, unit, self.Q_(unit - unit, None)) self.assertRaises(DimensionalityError, op.sub, 10, x) self.assertRaises(DimensionalityError, op.sub, x, 10) self.assertRaises(DimensionalityError, op.sub, x, z)
def test_inplace_addition(self, input_tuple, expected): self.ureg.autoconvert_offset_to_baseunit = False (q1v, q1u), (q2v, q2u) = input_tuple # update input tuple with new values to have correct values on failure input_tuple = ((np.array([q1v]*2, dtype=np.float), q1u), (np.array([q2v]*2, dtype=np.float), q2u)) Q_ = self.Q_ qin1, qin2 = input_tuple q1, q2 = Q_(*qin1), Q_(*qin2) q1_cp = copy.copy(q1) if expected == 'error': self.assertRaises(OffsetUnitCalculusError, op.iadd, q1_cp, q2) else: expected = np.array([expected[0]]*2, dtype=np.float), expected[1] self.assertEqual(op.iadd(q1_cp, q2).units, Q_(*expected).units) q1_cp = copy.copy(q1) self.assertQuantityAlmostEqual(op.iadd(q1_cp, q2), Q_(*expected), atol=0.01)
def __iadd__(self, other): ''' In-place add features from two FeatureCollections. >>> fc1 = FeatureCollection({'foo': Counter('abbb')}) >>> fc2 = FeatureCollection({'foo': Counter('bcc')}) >>> fc1 += fc2 FeatureCollection({'foo': Counter({'b': 4, 'c': 2, 'a': 1})}) Note that if a feature in either of the collections is not an instance of :class:`collections.Counter`, then it is ignored. ''' if self.read_only: raise ReadOnlyException() fc = self.merge_with(other, operator.iadd) self._features = fc._features return self
def __iadd__(self, other): if isinstance(other, datetime.datetime): return self.to_timedelta() + other elif not isinstance(self._magnitude, ndarray): return self._add_sub(other, operator.add) else: return self._iadd_sub(other, operator.iadd)
def test_issue52(self): u1 = UnitRegistry() u2 = UnitRegistry() q1 = 1*u1.meter q2 = 1*u2.meter import operator as op for fun in (op.add, op.iadd, op.sub, op.isub, op.mul, op.imul, op.floordiv, op.ifloordiv, op.truediv, op.itruediv): self.assertRaises(ValueError, fun, q1, q2)
def operate(self, items, op=operator.iadd, cleanup=True): d = udict(self._d) for key, value in items: d[key] = op(d[key], value) if cleanup: keys = [key for key, value in d.items() if value == 0] for key in keys: del d[key] return self.__class__(self.scale, d)
def hl_join(segments): return reduce(operator.iadd, segments, [])
def test_iadd_scalar(self): self.check_array_scalar_op(operator.iadd)
def test_iadd_array(self): self.check_array_array_op(operator.iadd)
def test_broadcasted_iadd(self): self.check_array_broadcasted_op(operator.iadd)
def as_list(self): """Very efficiently convert the SortedList to a list.""" return reduce(iadd, self._lists, [])
def __add__(self, that): """ Return a new sorted list containing all the elements in *self* and *that*. Elements in *that* do not need to be properly ordered with respect to *self*. """ values = reduce(iadd, self._lists, []) values.extend(that) return self.__class__(values, load=self._load)
def __mul__(self, that): """ Return a new sorted list containing *that* shallow copies of each item in SortedList. """ values = reduce(iadd, self._lists, []) * that return self.__class__(values, load=self._load)
def __imul__(self, that): """ Increase the length of the list by appending *that* shallow copies of each item. """ values = reduce(iadd, self._lists, []) * that self._clear() self._update(values) return self
def __add__(self, that): """ Return a new sorted list containing all the elements in *self* and *that*. Elements in *that* do not need to be properly ordered with respect to *self*. """ values = reduce(iadd, self._lists, []) values.extend(that) return self.__class__(values, key=self._key, load=self._load)
def __mul__(self, that): """ Return a new sorted list containing *that* shallow copies of each item in SortedListWithKey. """ values = reduce(iadd, self._lists, []) * that return self.__class__(values, key=self._key, load=self._load)