我们从Python开源项目中,提取了以下34个代码示例,用于说明如何使用ops.conv2d()。
def discriminate(self, x_var, y, weights, biases, reuse=False): y1 = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim]) x_var = conv_cond_concat(x_var, y1) conv1= lrelu(conv2d(x_var, weights['wc1'], biases['bc1'])) conv1 = conv_cond_concat(conv1, y1) conv2= lrelu(batch_normal(conv2d(conv1, weights['wc2'], biases['bc2']), scope='dis_bn1', reuse=reuse)) conv2 = tf.reshape(conv2, [self.batch_size, -1]) conv2 = tf.concat([conv2, y], 1) fc1 = lrelu(batch_normal(fully_connect(conv2, weights['wc3'], biases['bc3']), scope='dis_bn2', reuse=reuse)) fc1 = tf.concat([fc1, y], 1) #for D output= fully_connect(fc1, weights['wd'], biases['bd']) return tf.nn.sigmoid(output)
def encode_z(self, x, weights, biases): c1 = tf.nn.relu(batch_normal(conv2d(x, weights['e1'], biases['eb1']), scope='enz_bn1')) c2 = tf.nn.relu(batch_normal(conv2d(c1, weights['e2'], biases['eb2']), scope='enz_bn2')) c2 = tf.reshape(c2, [self.batch_size, 128*7*7]) #using tanh instead of tf.nn.relu. result_z = batch_normal(fully_connect(c2, weights['e3'], biases['eb3']), scope='enz_bn3') #result_c = tf.nn.sigmoid(fully_connect(c2, weights['e4'], biases['eb4'])) #Transforming one-hot form #sparse_label = tf.arg_max(result_c, 1) #y_vec = tf.one_hot(sparse_label, 10) return result_z
def discriminator_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits, variables
def discriminator_gen_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits,variables
def discriminator_on_z(image, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label') D_labels = tf.nn.tanh(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels,variables
def create_discriminator(hr_images_fake, hr_images, cfg): n_layers = 3 layers = [] input = tf.concat([hr_images_fake, hr_images ], axis = 3) conv = slim.conv2d(input, cfg.ndf, [3,3], stride = 2, activation_fn = lrelu, scope = 'layers%d'%(0)) layers.append(conv) for i in range(n_layers): out_channels = cfg.ndf*min(2**(i+1), 8) stride = 1 if i == n_layers -1 else 2 conv = slim.conv2d(layers[-1], out_channels, [3,3], stride = stride, activation_fn = lrelu, scope = 'layers_%d'%(i+2)) layers.append(conv) conv = slim.conv2d(layers[-1], 1, [3,3], stride = 1) output = tf.sigmoid(conv) return output
def _detection_classifier(self, maps, ksize, cross_links=False, scope=None): """ Create a SegLink detection classifier on a feature layer """ with tf.variable_scope(scope): seg_depth = N_SEG_CLASSES if cross_links: lnk_depth = N_LNK_CLASSES * (N_LOCAL_LINKS + N_CROSS_LINKS) else: lnk_depth = N_LNK_CLASSES * N_LOCAL_LINKS reg_depth = OFFSET_DIM map_depth = maps.get_shape()[3].value seg_maps = ops.conv2d(maps, map_depth, seg_depth, ksize, 1, 'SAME', scope='conv_cls') lnk_maps = ops.conv2d(maps, map_depth, lnk_depth, ksize, 1, 'SAME', scope='conv_lnk') reg_maps = ops.conv2d(maps, map_depth, reg_depth, ksize, 1, 'SAME', scope='conv_reg') return seg_maps, lnk_maps, reg_maps
def discriminator(self, opts, input_, is_training, prefix='DISCRIMINATOR', reuse=False): """Encoder function, suitable for simple toy experiments. """ num_filters = opts['d_num_filters'] with tf.variable_scope(prefix, reuse=reuse): h0 = ops.conv2d(opts, input_, num_filters / 8, scope='h0_conv') h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') h0 = tf.nn.relu(h0) h1 = ops.conv2d(opts, h0, num_filters / 4, scope='h1_conv') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') h1 = tf.nn.relu(h1) h2 = ops.conv2d(opts, h1, num_filters / 2, scope='h2_conv') h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = tf.nn.relu(h2) h3 = ops.conv2d(opts, h2, num_filters, scope='h3_conv') h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4') h3 = tf.nn.relu(h3) # Already has NaNs!! latent_mean = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin') log_latent_sigmas = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin_sigma') return latent_mean, log_latent_sigmas
def discriminator(self, opts, input_, is_training, prefix='DISCRIMINATOR', reuse=False): """Discriminator function, suitable for simple toy experiments. """ num_filters = opts['d_num_filters'] with tf.variable_scope(prefix, reuse=reuse): h0 = ops.conv2d(opts, input_, num_filters, scope='h0_conv') h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') h0 = ops.lrelu(h0) h1 = ops.conv2d(opts, h0, num_filters * 2, scope='h1_conv') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') h1 = ops.lrelu(h1) h2 = ops.conv2d(opts, h1, num_filters * 4, scope='h2_conv') h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = ops.lrelu(h2) h3 = ops.linear(opts, h2, 1, scope='h3_lin') return h3
def discriminator(self, image, y=None, reuse=False): if reuse: tf.get_variable_scope().reuse_variables() s = self.output_size if np.mod(s, 16) == 0: h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv')) h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv'))) h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv'))) h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv'))) h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin') return tf.nn.sigmoid(h4), h4 else: h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv')) h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv'))) h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin') if not self.config.use_kernel: return tf.nn.sigmoid(h2), h2 else: return tf.nn.sigmoid(h2), h2, h1, h0
def inception_v3_parameters(weight_decay=0.00004, stddev=0.1, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Yields the scope with the default parameters for inception_v3. Args: weight_decay: the weight decay for weights variables. stddev: standard deviation of the truncated guassian weight distribution. batch_norm_decay: decay for the moving average of batch_norm momentums. batch_norm_epsilon: small float added to variance to avoid dividing by zero. Yields: a arg_scope with the parameters needed for inception_v3. """ # Set weight_decay for weights in Conv and FC layers. with scopes.arg_scope([ops.conv2d, ops.fc], weight_decay=weight_decay): # Set stddev, activation and parameters for batch_norm. with scopes.arg_scope([ops.conv2d], stddev=stddev, activation=tf.nn.relu, batch_norm_params={ 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon}) as arg_scope: yield arg_scope
def discriminate(self, x_var, reuse=False): with tf.variable_scope("discriminator") as scope: if reuse: scope.reuse_variables() conv1 = tf.nn.relu(conv2d(x_var, output_dim=32, name='dis_conv1')) conv2= tf.nn.relu(batch_normal(conv2d(conv1, output_dim=128, name='dis_conv2'), scope='dis_bn1', reuse=reuse)) conv3= tf.nn.relu(batch_normal(conv2d(conv2, output_dim=256, name='dis_conv3'), scope='dis_bn2', reuse=reuse)) conv4 = conv2d(conv3, output_dim=256, name='dis_conv4') middle_conv = conv4 conv4= tf.nn.relu(batch_normal(conv4, scope='dis_bn3', reuse=reuse)) conv4= tf.reshape(conv4, [self.batch_size, -1]) fl = tf.nn.relu(batch_normal(fully_connect(conv4, output_size=256, scope='dis_fully1'), scope='dis_bn4', reuse=reuse)) output = fully_connect(fl , output_size=1, scope='dis_fully2') return middle_conv, output
def encode_y(self, x, weights, biases): c1 = tf.nn.relu(batch_normal(conv2d(x, weights['e1'], biases['eb1']), scope='eny_bn1')) c2 = tf.nn.relu(batch_normal(conv2d(c1, weights['e2'], biases['eb2']), scope='eny_bn2')) c2 = tf.reshape(c2, [self.batch_size, 128 * 7 * 7]) result_y = tf.nn.sigmoid(fully_connect(c2, weights['e3'], biases['eb3'])) #y_vec = tf.one_hot(tf.arg_max(result_y, 1), 10) return result_y
def _vgg_conv_relu(self, x, n_in, n_out, scope, fc7=False, trainable=True): with tf.variable_scope(scope): if fc7 == False: conv = ops.conv2d(x, n_in, n_out, 3, trainable=trainable, relu=True) else: conv = ops.conv2d(x, n_in, n_out, 1, trainable=trainable, relu=True) return conv
def compute_moments(_inputs, moments=[2, 3]): """From an image input, compute moments""" _inputs_sq = tf.square(_inputs) _inputs_cube = tf.pow(_inputs, 3) height = int(_inputs.get_shape()[1]) width = int(_inputs.get_shape()[2]) channels = int(_inputs.get_shape()[3]) def ConvFlatten(x, kernel_size): # w_sum = tf.ones([kernel_size, kernel_size, channels, 1]) / (kernel_size * kernel_size * channels) w_sum = tf.eye(num_rows=channels, num_columns=channels, batch_shape=[kernel_size * kernel_size]) w_sum = tf.reshape(w_sum, [kernel_size, kernel_size, channels, channels]) w_sum = w_sum / (kernel_size * kernel_size) sum_ = tf.nn.conv2d(x, w_sum, strides=[1, 1, 1, 1], padding='VALID') size = prod_dim(sum_) assert size == (height - kernel_size + 1) * (width - kernel_size + 1) * channels, size return tf.reshape(sum_, [-1, size]) outputs = [] for size in [3, 4, 5]: mean = ConvFlatten(_inputs, size) square = ConvFlatten(_inputs_sq, size) var = square - tf.square(mean) if 2 in moments: outputs.append(var) if 3 in moments: cube = ConvFlatten(_inputs_cube, size) skewness = cube - 3.0 * mean * var - tf.pow(mean, 3) # Unnormalized outputs.append(skewness) return tf.concat(outputs, 1)
def began_dec(self, opts, noise, is_training, reuse, keep_prob): """ Architecture reported here: https://arxiv.org/pdf/1703.10717.pdf """ output_shape = self._data.data_shape num_units = opts['g_num_filters'] num_layers = opts['g_num_layers'] batch_size = tf.shape(noise)[0] h0 = ops.linear( opts, noise, num_units * 8 * 8, scope='h0_lin') h0 = tf.reshape(h0, [-1, 8, 8, num_units]) layer_x = h0 for i in xrange(num_layers): if i % 3 < 2: # Don't change resolution layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i) layer_x = tf.nn.elu(layer_x) else: if i != num_layers - 1: # Upsampling by factor of 2 with NN scale = 2 ** (i / 3 + 1) layer_x = ops.upsample_nn(layer_x, [scale * 8, scale * 8], scope='h%d_upsample' % i, reuse=reuse) # Skip connection append = ops.upsample_nn(h0, [scale * 8, scale * 8], scope='h%d_skipup' % i, reuse=reuse) layer_x = tf.concat([layer_x, append], axis=3) last_h = ops.conv2d(opts, layer_x, output_shape[-1], d_h=1, d_w=1, scope='hlast_conv') if opts['input_normalize_sym']: return tf.nn.tanh(last_h) else: return tf.nn.sigmoid(last_h)
def dcgan_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] num_layers = opts['e_num_layers'] layer_x = input_ for i in xrange(num_layers): scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units / scale, scope='h%d_conv' % i) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / num_layers) layer_x = tf.nn.dropout(layer_x, _keep_prob) if opts['e_3x3_conv'] > 0: before = layer_x for j in range(opts['e_3x3_conv']): layer_x = ops.conv2d(opts, layer_x, num_units / scale, d_h=1, d_w=1, scope='conv2d_3x3_%d_%d' % (i, j), conv_filters_dim=3) layer_x = tf.nn.relu(layer_x) layer_x += before # Residual connection. if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def began_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] assert num_units == opts['g_num_filters'], 'BEGAN requires same number of filters in encoder and decoder' num_layers = opts['e_num_layers'] layer_x = ops.conv2d(opts, input_, num_units, scope='h_first_conv') for i in xrange(num_layers): if i % 3 < 2: if i != num_layers - 2: ii = i - (i / 3) scale = (ii + 1 - ii / 2) else: ii = i - (i / 3) scale = (ii - (ii - 1) / 2) layer_x = ops.conv2d(opts, layer_x, num_units * scale, d_h=1, d_w=1, scope='h%d_conv' % i) layer_x = tf.nn.elu(layer_x) else: if i != num_layers - 1: layer_x = ops.downsample(layer_x, scope='h%d_maxpool' % i, reuse=reuse) # Tensor should be [N, 8, 8, filters] right now if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def _vgg_conv_relu(self, x, n_in, n_out, scope): with tf.variable_scope(scope): conv = ops.conv2d(x, n_in, n_out, 3, 1, p='SAME') relu = tf.nn.relu(conv) return relu
def dis_net(self, images, y, reuse=False): with tf.variable_scope("discriminator") as scope: if reuse == True: scope.reuse_variables() # mnist data's shape is (28 , 28 , 1) yb = tf.reshape(y, shape=[self.batch_size, 1, 1, self.y_dim]) # concat concat_data = conv_cond_concat(images, yb) conv1, w1 = conv2d(concat_data, output_dim=10, name='dis_conv1') tf.add_to_collection('weight_1', w1) conv1 = lrelu(conv1) conv1 = conv_cond_concat(conv1, yb) tf.add_to_collection('ac_1', conv1) conv2, w2 = conv2d(conv1, output_dim=64, name='dis_conv2') tf.add_to_collection('weight_2', w2) conv2 = lrelu(batch_normal(conv2, scope='dis_bn1')) tf.add_to_collection('ac_2', conv2) conv2 = tf.reshape(conv2, [self.batch_size, -1]) conv2 = tf.concat([conv2, y], 1) f1 = lrelu(batch_normal(fully_connect(conv2, output_size=1024, scope='dis_fully1'), scope='dis_bn2', reuse=reuse)) f1 = tf.concat([f1, y], 1) out = fully_connect(f1, output_size=1, scope='dis_fully2') return tf.nn.sigmoid(out), out
def Encode(self, x): with tf.variable_scope('encode') as scope: conv1 = tf.nn.relu(batch_normal(conv2d(x, output_dim=64, name='e_c1'), scope='e_bn1')) conv2 = tf.nn.relu(batch_normal(conv2d(conv1, output_dim=128, name='e_c2'), scope='e_bn2')) conv3 = tf.nn.relu(batch_normal(conv2d(conv2 , output_dim=256, name='e_c3'), scope='e_bn3')) conv3 = tf.reshape(conv3, [self.batch_size, 256 * 8 * 8]) fc1 = tf.nn.relu(batch_normal(fully_connect(conv3, output_size=1024, scope='e_f1'), scope='e_bn4')) z_mean = fully_connect(fc1 , output_size=128, scope='e_f2') z_sigma = fully_connect(fc1, output_size=128, scope='e_f3') return z_mean, z_sigma
def discriminator(hparams, x, scope_name, train, reuse): with tf.variable_scope(scope_name) as scope: if reuse: scope.reuse_variables() d_bn1 = ops.batch_norm(name='d_bn1') d_bn2 = ops.batch_norm(name='d_bn2') d_bn3 = ops.batch_norm(name='d_bn3') h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv')) h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv') h1 = ops.lrelu(d_bn1(h1, train=train)) h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv') h2 = ops.lrelu(d_bn2(h2, train=train)) h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv') h3 = ops.lrelu(d_bn3(h3, train=train)) h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin') d_logit = h4 d = tf.nn.sigmoid(d_logit) return d, d_logit
def discriminator(hparams, x, train, reuse): if reuse: tf.get_variable_scope().reuse_variables() d_bn1 = ops.batch_norm(name='d_bn1') d_bn2 = ops.batch_norm(name='d_bn2') d_bn3 = ops.batch_norm(name='d_bn3') h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv')) h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv') h1 = ops.lrelu(d_bn1(h1, train=train)) h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv') h2 = ops.lrelu(d_bn2(h2, train=train)) h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv') h3 = ops.lrelu(d_bn3(h3, train=train)) h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin') d_logit = h4 d = tf.nn.sigmoid(d_logit) return d, d_logit
def cnn(self, state, input_dims, num_actions): w = {} initializer = tf.truncated_normal_initializer(0, 0.02) activation_fn = tf.nn.relu state = tf.transpose(state, perm=[0, 2, 3, 1]) l1, w['l1_w'], w['l1_b'] = conv2d(state, 32, [8, 8], [4, 4], initializer, activation_fn, 'NHWC', name='l1') l2, w['l2_w'], w['l2_b'] = conv2d(l1, 64, [4, 4], [2, 2], initializer, activation_fn, 'NHWC', name='l2') shape = l2.get_shape().as_list() l2_flat = tf.reshape(l2, [-1, reduce(lambda x, y: x * y, shape[1:])]) l3, w['l3_w'], w['l3_b'] = linear(l2_flat, 256, activation_fn=activation_fn, name='value_hid') value, w['val_w_out'], w['val_w_b'] = linear(l3, 1, name='value_out') V = tf.reshape(value, [-1]) pi_, w['pi_w_out'], w['pi_w_b'] = \ linear(l3, num_actions, activation_fn=tf.nn.softmax, name='pi_out') sums = tf.tile(tf.expand_dims(tf.reduce_sum(pi_, 1), 1), [1, num_actions]) pi = pi_ / sums #A3C is l1 = (16, [8,8], [4,4], ReLu), l2 = (32, [4,4], [2,2], ReLu), l3 = (256, Conn, ReLu), V = (1, Conn, Lin), pi = (#act, Conn, Softmax) return pi, V, [ v for v in w.values() ] # Adapted from github.com/devsisters/DQN-tensorflow/
def DiscriminatorCNN(image, config, reuse=None): ''' Discriminator for GAN model. image : batch_size x 64x64x3 image config : see causal_dcgan/config.py reuse : pass True if not calling for first time returns: probabilities(real) : logits(real) : first layer activation used to estimate z from : variables list ''' with tf.variable_scope("discriminator",reuse=reuse) as vs: d_bn1 = batch_norm(name='d_bn1') d_bn2 = batch_norm(name='d_bn2') d_bn3 = batch_norm(name='d_bn3') if not config.stab_proj: h0 = lrelu(conv2d(image, config.df_dim, name='d_h0_conv'))#16,32,32,64 else:#method to restrict disc from winning #I think this is equivalent to just not letting disc optimize first layer #and also removing nonlinearity #k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, #paper used 8x8 kernel, but I'm using 5x5 because it is more similar to my achitecture #n_projs=config.df_dim#64 instead of 32 in paper n_projs=config.n_stab_proj#64 instead of 32 in paper print("WARNING:STAB_PROJ active, using ",n_projs," projections") w_proj = tf.get_variable('w_proj', [5, 5, image.get_shape()[-1],n_projs], initializer=tf.truncated_normal_initializer(stddev=0.02),trainable=False) conv = tf.nn.conv2d(image, w_proj, strides=[1, 2, 2, 1], padding='SAME') b_proj = tf.get_variable('b_proj', [n_projs],#does nothing initializer=tf.constant_initializer(0.0),trainable=False) h0=tf.nn.bias_add(conv,b_proj) h1_ = lrelu(d_bn1(conv2d(h0, config.df_dim*2, name='d_h1_conv')))#16,16,16,128 h1 = add_minibatch_features(h1_, config.df_dim) h2 = lrelu(d_bn2(conv2d(h1, config.df_dim*4, name='d_h2_conv')))#16,16,16,248 h3 = lrelu(d_bn3(conv2d(h2, config.df_dim*8, name='d_h3_conv'))) #print('h3shape: ',h3.get_shape().as_list()) #print('8df_dim:',config.df_dim*8) #dim3=tf.reduce_prod(tf.shape(h3)[1:]) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) h4 = linear(h3_flat, 1, 'd_h3_lin') prob=tf.nn.sigmoid(h4) variables = tf.contrib.framework.get_variables(vs,collection=tf.GraphKeys.TRAINABLE_VARIABLES) return prob, h4, h1_, variables
def create_generator(hr_image_bilinear, num_channels, cfg): layers = [] print(hr_image_bilinear.get_shape()) conv = slim.conv2d(hr_image_bilinear, cfg.ngf, [3,3], stride = 2, scope = 'encoder0') layers.append(conv) layers_specs = [ cfg.ngf*2, cfg.ngf*4, cfg.ngf*8, cfg.ngf*8, cfg.ngf*8, cfg.ngf*8, ] for idx, out_channels in enumerate(layers_specs): with slim.arg_scope([slim.conv2d], activation_fn = lrelu, stride = 2, padding = 'VALID'): conv = conv2d(layers[-1], out_channels, scope = 'encoder%d'%(idx+1)) print(conv.get_shape()) layers.append(conv) ### decoder part layers_specs = [ (cfg.ngf*8, 0.5), (cfg.ngf*8, 0.5), (cfg.ngf*8, 0.0), (cfg.ngf*4, 0.0), (cfg.ngf*2, 0.0), (cfg.ngf, 0.0) ] num_encoder_layers = len(layers) for decoder_layer_idx, (out_channels, dropout) in enumerate(layers_specs): skip_layer = num_encoder_layers - decoder_layer_idx - 1 with slim.arg_scope([slim.conv2d], activation_fn = lrelu): if decoder_layer_idx == 0: input = layers[-1] else: input = tf.concat([layers[-1], layers[skip_layer]], axis = 3) output = upsample_layer(input, out_channels, mode = 'deconv') print(output.get_shape()) if dropout > 0.0: output = tf.nn.dropout(output, keep_prob = 1 - dropout) layers.append(output) input = tf.concat([layers[-1],layers[0]], axis = 3) output = slim.conv2d_transpose(input, num_channels, [4,4], stride = 2, activation_fn = tf.tanh) return output
def __call__(self, input_, y): batch_size, y_dim = y.get_shape().as_list() batch_size_, height, width, c_dim = input_.get_shape().as_list() assert batch_size == batch_size_ assert (self._input_size == width) and (self._input_size == height) h0_size = int(self._input_size / 2) h1_size = int(self._input_size / 4) with tf.variable_scope(self._name): yb = tf.reshape(y, shape=[-1, 1, 1, y_dim]) # dim(x) = (100, 28, 28, 11) x = tf.concat([input_, yb*tf.ones([batch_size, self._input_size, self._input_size, y_dim])], axis=3) h0 = ops.leaky_relu( ops.conv2d(x, c_dim + y_dim, reuse=self._reuse, name='d_conv0'), slope=0.2 ) h0 = tf.concat([h0, yb*tf.ones([batch_size, h0_size, h0_size, y_dim])], axis=3) # (100, 14, 14, 21) h1 = ops.leaky_relu( ops.batch_norm( ops.conv2d(h0, c_dim + self._ndf, reuse=self._reuse, name='d_conv1'), is_training=self._is_training, reuse=self._reuse, name_scope='d_bn1' ), slope=0.2 ) h1 = tf.reshape(h1, [batch_size, h1_size*h1_size*(c_dim+self._ndf)]) h1 = tf.concat([h1, y], axis=1) # (100, 28*28*(1+64)+10) h2 = ops.leaky_relu( ops.batch_norm( ops.fc(h1, self._fc_dim, reuse=self._reuse, name='d_fc2'), is_training=self._is_training, reuse=self._reuse, name_scope='d_bn2' ), slope=0.2 ) h2 = tf.concat([h2, y], axis=1) # (100, 794) # h3 = tf.nn.sigmoid( h3 = ops.fc(h2, 1, reuse=self._reuse, name='d_fc3') # ) self._reuse = True return h3 # (100, 1)
def vgg_16(inputs, is_training=False, dropout_keep_prob=0.5, scope='vgg_16', fc_conv_padding='VALID', reuse=None): inputs = inputs * 255.0 inputs -= tf.constant([123.68, 116.779, 103.939], dtype=tf.float32) with tf.variable_scope(scope, 'vgg_16', [inputs], reuse=reuse) as sc: end_points_collection = sc.name + '_end_points' end_points = {} # Collect outputs for conv2d, fully_connected and max_pool2d. with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.max_pool2d], outputs_collections=end_points_collection): end_points['pool0'] = inputs net = slim.repeat(inputs, 2, slim.conv2d, 64, [3, 3], scope='conv1') net = slim.max_pool2d(net, [2, 2], scope='pool1') end_points['pool1'] = net net = slim.repeat(net, 2, slim.conv2d, 128, [3, 3], scope='conv2') net = slim.max_pool2d(net, [2, 2], scope='pool2') end_points['pool2'] = net net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3') net = slim.max_pool2d(net, [2, 2], scope='pool3') end_points['pool3'] = net net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv4') net = slim.max_pool2d(net, [2, 2], scope='pool4') end_points['pool4'] = net net = slim.repeat(net, 3, slim.conv2d, 512, [3, 3], scope='conv5') net = slim.max_pool2d(net, [2, 2], scope='pool5') end_points['pool5'] = net # # Use conv2d instead of fully_connected layers. # net = slim.conv2d(net, 4096, [7, 7], padding=fc_conv_padding, scope='fc6') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout6') # net = slim.conv2d(net, 4096, [1, 1], scope='fc7') # net = slim.dropout(net, dropout_keep_prob, is_training=is_training, # scope='dropout7') # net = slim.conv2d(net, num_classes, [1, 1], # activation_fn=None, # normalizer_fn=None, # scope='fc8') # Convert end_points_collection into a end_point dict. # end_points = slim.utils.convert_collection_to_dict(end_points_collection) return net, end_points
def ali_deconv(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape batch_size = tf.shape(noise)[0] noise_size = int(noise.get_shape()[1]) data_height = output_shape[0] data_width = output_shape[1] data_channels = output_shape[2] noise = tf.reshape(noise, [-1, 1, 1, noise_size]) num_units = opts['g_num_filters'] layer_params = [] layer_params.append([4, 1, num_units]) layer_params.append([4, 2, num_units / 2]) layer_params.append([4, 1, num_units / 4]) layer_params.append([4, 2, num_units / 8]) layer_params.append([5, 1, num_units / 8]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = noise height = 1 width = 1 for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - 1) * stride + kernel width = height layer_x = ops.deconv2d( opts, layer_x, [batch_size, height, width, channels], d_h=stride, d_w=stride, scope='h%d_deconv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == data_height assert width == data_width # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units / 8, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['input_normalize_sym']: return tf.nn.tanh(layer_x) else: return tf.nn.sigmoid(layer_x)
def ali_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] layer_params = [] layer_params.append([5, 1, num_units / 8]) layer_params.append([4, 2, num_units / 4]) layer_params.append([4, 1, num_units / 2]) layer_params.append([4, 2, num_units]) layer_params.append([4, 1, num_units * 2]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = input_ height = int(layer_x.get_shape()[1]) width = int(layer_x.get_shape()[2]) assert height == width for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - kernel) / stride + 1 width = height # print((height, width)) layer_x = ops.conv2d( opts, layer_x, channels, d_h=stride, d_w=stride, scope='h%d_conv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == 1 assert width == 1 # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units * 2, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def _recon_loss_using_disc_conv_eb(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a discriminator in X space, using Energy Based approach.""" def copy3D(height, width, channels): m = np.zeros([height, width, channels, height, width, channels]) for i in xrange(height): for j in xrange(width): for c in xrange(channels): m[i, j, c, i, j, c] = 1.0 return tf.constant(np.reshape(m, [height, width, channels, -1]), dtype=tf.float32) def _architecture(inputs, reuse=None): dim = opts['adv_c_patches_size'] height = int(inputs.get_shape()[1]) width = int(inputs.get_shape()[2]) channels = int(inputs.get_shape()[3]) with tf.variable_scope('DISC_X_LOSS', reuse=reuse): num_units = opts['adv_c_num_units'] num_layers = 1 layer_x = inputs for i in xrange(num_layers): # scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i, conv_filters_dim=dim, padding='SAME') # if opts['batch_norm']: # layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) #tf.nn.relu(layer_x) copy_w = copy3D(dim, dim, channels) duplicated = tf.nn.conv2d(inputs, copy_w, strides=[1, 1, 1, 1], padding='SAME') decoded = ops.conv2d( opts, layer_x, channels * dim * dim, d_h=1, d_w=1, scope="decoder", conv_filters_dim=1, padding='SAME') reconstruction = tf.reduce_mean(tf.square(tf.stop_gradient(duplicated) - decoded), [1, 2, 3]) assert len(reconstruction.get_shape()) == 1 return flatten(layer_x), reconstruction reconstructed_embed_sg, adv_fake_layer = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed, _ = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed_sg, adv_true_layer = _architecture(tf.stop_gradient(real_points), reuse=True) real_p_embed, _ = _architecture(real_points, reuse=True) adv_fake = tf.reduce_mean(adv_fake_layer) adv_true = tf.reduce_mean(adv_true_layer) adv_c_loss = tf.log(adv_true) - tf.log(adv_fake) emb_c = tf.reduce_sum(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) emb_c_loss = tf.reduce_mean(emb_c) return adv_c_loss, emb_c_loss
def build(self, is_train=True): n = self.a_dim conv_info = self.conv_info # build loss and accuracy {{{ def build_loss(logits, labels): # Cross-entropy loss loss = tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=labels) # Classification accuracy correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(labels, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) return tf.reduce_mean(loss), accuracy # }}} # Classifier: takes images as input and outputs class label [B, m] def C(img, q, scope='Classifier'): with tf.variable_scope(scope) as scope: log.warn(scope.name) conv_1 = conv2d(img, conv_info[0], is_train, s_h=3, s_w=3, name='conv_1') conv_2 = conv2d(conv_1, conv_info[1], is_train, s_h=3, s_w=3, name='conv_2') conv_3 = conv2d(conv_2, conv_info[2], is_train, name='conv_3') conv_4 = conv2d(conv_3, conv_info[3], is_train, name='conv_4') conv_q = tf.concat([tf.reshape(conv_4, [self.batch_size, -1]), q], axis=1) fc_1 = fc(conv_q, 256, name='fc_1') fc_2 = fc(fc_1, 256, name='fc_2') fc_2 = slim.dropout(fc_2, keep_prob=0.5, is_training=is_train, scope='fc_3/') fc_3 = fc(fc_2, n, activation_fn=None, name='fc_3') return fc_3 logits = C(self.img, self.q, scope='Classifier') self.all_preds = tf.nn.softmax(logits) self.loss, self.accuracy = build_loss(logits, self.a) # Add summaries def draw_iqa(img, q, target_a, pred_a): fig, ax = tfplot.subplots(figsize=(6, 6)) ax.imshow(img) ax.set_title(question2str(q)) ax.set_xlabel(answer2str(target_a)+answer2str(pred_a, 'Predicted')) return fig try: tfplot.summary.plot_many('IQA/', draw_iqa, [self.img, self.q, self.a, self.all_preds], max_outputs=3, collections=["plot_summaries"]) except: pass tf.summary.scalar("loss/accuracy", self.accuracy) tf.summary.scalar("loss/cross_entropy", self.loss) log.warn('Successfully loaded the model.')