Python ops 模块,linear() 实例源码

我们从Python开源项目中,提取了以下42个代码示例,用于说明如何使用ops.linear()

项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits, variables
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_gen_labeler(image, output_dim, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label')
        D_labels = tf.nn.sigmoid(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels, D_labels_logits,variables
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def discriminator_on_z(image, config, reuse=None):
    batch_size=tf.shape(image)[0]
    with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs:
        dl_bn1 = batch_norm(name='dl_bn1')
        dl_bn2 = batch_norm(name='dl_bn2')
        dl_bn3 = batch_norm(name='dl_bn3')

        h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64
        h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128
        h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248
        h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv')))
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label')
        D_labels = tf.nn.tanh(D_labels_logits)
        variables = tf.contrib.framework.get_variables(vs)
    return D_labels,variables
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_, is_training,
                      prefix='DISCRIMINATOR', reuse=False):
        """Encoder function, suitable for simple toy experiments.

        """
        num_filters = opts['d_num_filters']

        with tf.variable_scope(prefix, reuse=reuse):
            h0 = ops.conv2d(opts, input_, num_filters / 8, scope='h0_conv')
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            h0 = tf.nn.relu(h0)
            h1 = ops.conv2d(opts, h0, num_filters / 4, scope='h1_conv')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            h1 = tf.nn.relu(h1)
            h2 = ops.conv2d(opts, h1, num_filters / 2, scope='h2_conv')
            h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = tf.nn.relu(h2)
            h3 = ops.conv2d(opts, h2, num_filters, scope='h3_conv')
            h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
            h3 = tf.nn.relu(h3)
            # Already has NaNs!!
            latent_mean = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin')
            log_latent_sigmas = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin_sigma')

        return latent_mean, log_latent_sigmas
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, reuse=False):
        """Generator function, suitable for simple toy experiments.

        Args:
            noise: [num_points, dim] array, where dim is dimensionality of the
                latent noise space.
        Returns:
            [num_points, dim1, dim2, dim3] array, where the first coordinate
            indexes the points, which all are of the shape (dim1, dim2, dim3).
        """
        output_shape = self._data.data_shape
        num_filters = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):
            h0 = ops.linear(opts, noise, num_filters, 'h0_lin')
            h0 = tf.nn.relu(h0)
            h1 = ops.linear(opts, h0, num_filters, 'h1_lin')
            h1 = tf.nn.relu(h1)
            h2 = ops.linear(opts, h1, np.prod(output_shape), 'h2_lin')
            h2 = tf.reshape(h2, [-1] + list(output_shape))

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h2)
        else:
            return h2
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_,
                      prefix='DISCRIMINATOR', reuse=False):
        """Discriminator function, suitable for simple toy experiments.

        """
        shape = input_.get_shape().as_list()
        num_filters = opts['d_num_filters']
        assert len(shape) > 0, 'No inputs to discriminate.'

        with tf.variable_scope(prefix, reuse=reuse):
            h0 = ops.linear(opts, input_, num_filters, 'h0_lin')
            h0 = tf.nn.relu(h0)
            h1 = ops.linear(opts, h0, num_filters, 'h1_lin')
            h1 = tf.nn.relu(h1)
            h2 = ops.linear(opts, h1, 1, 'h2_lin')

        return h2
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, reuse=False):
        """Generator function, suitable for simple toy experiments.

        Args:
            noise: [num_points, dim] array, where dim is dimensionality of the
                latent noise space.
        Returns:
            [num_points, dim1, dim2, dim3] array, where the first coordinate
            indexes the points, which all are of the shape (dim1, dim2, dim3).
        """
        output_shape = self._data.data_shape
        num_filters = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):
            h0 = ops.linear(opts, noise, num_filters, 'h0_lin')
            h0 = tf.nn.tanh(h0)
            h1 = ops.linear(opts, h0, num_filters, 'h1_lin')
            h1 = tf.nn.tanh(h1)
            h2 = ops.linear(opts, h1, np.prod(output_shape), 'h2_lin')
            h2 = tf.reshape(h2, [-1] + list(output_shape))

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h2)
        else:
            return h2
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_,
                      prefix='DISCRIMINATOR', reuse=False):
        """Discriminator function, suitable for simple toy experiments.

        """
        shape = input_.get_shape().as_list()
        num_filters = opts['d_num_filters']
        assert len(shape) > 0, 'No inputs to discriminate.'

        with tf.variable_scope(prefix, reuse=reuse):
            h0 = ops.linear(opts, input_, num_filters, 'h0_lin')
            h0 = tf.nn.tanh(h0)
            h1 = ops.linear(opts, h0, num_filters, 'h1_lin')
            h1 = tf.nn.tanh(h1)
            h2 = ops.linear(opts, h1, 1, 'h2_lin')

        return h2
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_, is_training,
                      prefix='DISCRIMINATOR', reuse=False):
        """Discriminator function, suitable for simple toy experiments.

        """
        num_filters = opts['d_num_filters']

        with tf.variable_scope(prefix, reuse=reuse):
            h0 = ops.conv2d(opts, input_, num_filters, scope='h0_conv')
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            h0 = ops.lrelu(h0)
            h1 = ops.conv2d(opts, h0, num_filters * 2, scope='h1_conv')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            h1 = ops.lrelu(h1)
            h2 = ops.conv2d(opts, h1, num_filters * 4, scope='h2_conv')
            h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = ops.lrelu(h2)
            h3 = ops.linear(opts, h2, 1, scope='h3_lin')

        return h3
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, is_training, reuse=False):

        with tf.variable_scope("GENERATOR", reuse=reuse):

            h0 = ops.linear(opts, noise, 100, scope='h0_lin')
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1', scale=False)
            h0 = tf.nn.softplus(h0)
            h1 = ops.linear(opts, h0, 100, scope='h1_lin')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2', scale=False)
            h1 = tf.nn.softplus(h1)
            h2 = ops.linear(opts, h1, 28 * 28, scope='h2_lin')
            # h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = tf.reshape(h2, [-1, 28, 28, 1])

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h2)
        else:
            return tf.nn.sigmoid(h2)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def discriminator(self, image, y=None, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
            h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
            h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')

            return tf.nn.sigmoid(h4), h4
        else:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
            if not self.config.use_kernel:
              return tf.nn.sigmoid(h2), h2
            else:
              return tf.nn.sigmoid(h2), h2, h1, h0
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def discriminator_k(self, image, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        #1024, 512, 128
        h0 = tf.nn.sigmoid(linear(image, 512, 'dk_h0_lin', stddev=self.config.init))
        h1 = tf.nn.sigmoid(linear(h0, 256, 'dk_h1_lin', stddev=self.config.init))
        h2 = tf.nn.sigmoid(linear(h1, 256, 'dk_h2_lin', stddev=self.config.init))
        h3 = tf.nn.sigmoid(linear(h2, 128, 'dk_h3_lin', stddev=self.config.init))
        h4 = tf.nn.relu(linear(h3, 64, 'dk_h4_lin', stddev=self.config.init))
        if self.config.use_gan:
          h5 = linear(h4, 1, 'dk_h5_lin', stddev=self.config.init)
          return image, h0, h1, h2, h3, h4, h5
        elif self.config.use_layer_kernel:
          return image, h0, h1, h2, h3, h4
        elif self.config.use_scale_kernel:
          return tf.concat(1, [image, (28.0 * 28.0/512.0) * h0, (28 * 28.0/256.0) * h1, (28.0 * 28.0/256.0) * h2, (28.0 * 28.0/128.0) * h3,
 (28.0 * 28.0/64.0) * h4])

        else:
          return tf.concat(1, [image, h0, h1, h2, h3, h4])
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def discriminator(self, image, y=None, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
            h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
            h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')

            return tf.nn.sigmoid(h4), h4
        else:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
            if not self.config.use_kernel:
              return tf.nn.sigmoid(h2), h2
            else:
              return tf.nn.sigmoid(h2), h2, h1, h0
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def discriminator(self, image, y=None, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
            h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
            h4 = linear(tf.reshape(h3, [self.batch_size, -1]), 1, 'd_h3_lin')

            return tf.nn.sigmoid(h4), h4
        else:
            h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
            h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
            h2 = linear(tf.reshape(h1, [self.batch_size, -1]), 1, 'd_h2_lin')
            if not self.config.use_kernel:
              return tf.nn.sigmoid(h2), h2
            else:
              return tf.nn.sigmoid(h2), h2, h1, h0
项目:DeepVideo    作者:AniketBajpai    | 项目源码 | 文件源码
def __call__(self, inputs, is_train=True, is_debug=False):
        self.is_train = is_train
        self.is_debug = is_debug

        outputs = tf.convert_to_tensor(inputs)   # Check if necessary
        # assert input shape
        with tf.variable_scope(self.name, reuse=self.reuse) as scope:
            print_message(scope.name)
            with tf.variable_scope('conv1') as vscope:
                outputs = conv3d(outputs, [self.batch_size] + self.configs.conv_info.l1,
                                 is_train=self.is_train, with_w=True)
                if is_debug and not self.reuse:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                self.net['conv1_outputs'] = outputs
            with tf.variable_scope('conv2') as vscope:
                outputs = conv3d(outputs, [self.batch_size] + self.configs.conv_info.l2,
                                 is_train=self.is_train, with_w=True)
                if is_debug and not self.reuse:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                self.net['conv2_outputs'] = outputs
            with tf.variable_scope('conv3') as vscope:
                outputs = conv3d(outputs, [self.batch_size] + self.configs.conv_info.l3,
                                 is_train=self.is_train, with_w=True)
                if is_debug and not self.reuse:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                self.net['conv3_outputs'] = outputs
            with tf.variable_scope('fc') as vscope:
                fc_dim = reduce(mul, self.configs.conv_info.l3, 1)
                outputs = tf.reshape(outputs, [self.batch_size] + [fc_dim], name='reshape')
                outputs = linear(outputs, 1)
                if is_debug and not self.reuse:
                    print(vscope.name, outputs)
                self.net['fc_outputs'] = outputs

        self.reuse = True
        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
        return tf.nn.sigmoid(outputs), outputs
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_, is_training,
                      prefix='DISCRIMINATOR', reuse=False):

        shape = tf.shape(input_)
        num = shape[0]

        with tf.variable_scope(prefix, reuse=reuse):
            h0 = input_
            h0 = tf.add(h0, tf.random_normal(shape, stddev=0.3))
            h0 = ops.linear(opts, h0, 1000, scope='h0_linear')
            # h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            h0 = tf.nn.relu(h0)
            h1 = tf.add(h0, tf.random_normal([num, 1000], stddev=0.5))
            h1 = ops.linear(opts, h1, 500, scope='h1_linear')
            # h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            h1 = tf.nn.relu(h1)
            h2 = tf.add(h1, tf.random_normal([num, 500], stddev=0.5))
            h2 = ops.linear(opts, h2, 250, scope='h2_linear')
            # h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = tf.nn.relu(h2)
            h3 = tf.add(h2, tf.random_normal([num, 250], stddev=0.5))
            h3 = ops.linear(opts, h3, 250, scope='h3_linear')
            # h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
            h3 = tf.nn.relu(h3)
            h4 = tf.add(h3, tf.random_normal([num, 250], stddev=0.5))
            h4 = ops.linear(opts, h4, 250, scope='h4_linear')
            # h4 = ops.batch_norm(opts, h4, is_training, reuse, scope='bn_layer5')
            h4 = tf.nn.relu(h4)
            h5 = ops.linear(opts, h4, 10, scope='h5_linear')

        return h5, h3
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, is_training=False, reuse=False, keep_prob=1.):
        """ Decoder actually.

        """

        output_shape = self._data.data_shape
        num_units = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):
            # if not opts['convolutions']:
            if opts['g_arch'] == 'mlp':
                layer_x = noise
                for i in range(opts['g_num_layers']):
                    layer_x = ops.linear(opts, layer_x, num_units, 'h%d_lin' % i)
                    layer_x = tf.nn.relu(layer_x)
                    if opts['batch_norm']:
                        layer_x = ops.batch_norm(
                            opts, layer_x, is_training, reuse, scope='bn%d' % i)
                out = ops.linear(opts, layer_x, np.prod(output_shape), 'h%d_lin' % (i + 1))
                out = tf.reshape(out, [-1] + list(output_shape))
                if opts['input_normalize_sym']:
                    return tf.nn.tanh(out)
                else:
                    return tf.nn.sigmoid(out)
            elif opts['g_arch'] in ['dcgan', 'dcgan_mod']:
                return self.dcgan_like_arch(opts, noise, is_training, reuse, keep_prob)
            elif opts['g_arch'] == 'conv_up_res':
                return self.conv_up_res(opts, noise, is_training, reuse, keep_prob)
            elif opts['g_arch'] == 'ali':
                return self.ali_deconv(opts, noise, is_training, reuse, keep_prob)
            elif opts['g_arch'] == 'began':
                return self.began_dec(opts, noise, is_training, reuse, keep_prob)
            else:
                raise ValueError('%s unknown' % opts['g_arch'])
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def discriminator(self, opts, input_, prefix='DISCRIMINATOR', reuse=False):
        """Discriminator for the GAN objective

        """
        num_units = opts['d_num_filters']
        num_layers = opts['d_num_layers']
        nowozin_trick = opts['gan_p_trick']
        # No convolutions as GAN happens in the latent space
        with tf.variable_scope(prefix, reuse=reuse):
            hi = input_
            for i in range(num_layers):
                hi = ops.linear(opts, hi, num_units, scope='h%d_lin' % (i+1))
                hi = tf.nn.relu(hi)
            hi = ops.linear(opts, hi, 1, scope='final_lin')
        if nowozin_trick:
            # We are doing GAN between our model Qz and the true Pz.
            # We know analytical form of the true Pz.
            # The optimal discriminator for D_JS(Pz, Qz) is given by:
            # Dopt(x) = log dPz(x) - log dQz(x)
            # And we know exactly dPz(x). So add log dPz(x) explicitly 
            # to the discriminator and let it learn only the remaining
            # dQz(x) term. This appeared in the AVB paper.
            assert opts['latent_space_distr'] == 'normal'
            sigma2_p = float(opts['pot_pz_std']) ** 2
            normsq = tf.reduce_sum(tf.square(input_), 1)
            hi = hi - normsq / 2. / sigma2_p \
                    - 0.5 * tf.log(2. * np.pi) \
                    - 0.5 * opts['latent_space_dim'] * np.log(sigma2_p)
        return hi
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def correlation_loss(self, opts, input_):
        """
        Independence test based on Pearson's correlation.
        Keep in mind that this captures only linear dependancies.
        However, for multivariate Gaussian independence is equivalent
        to zero correlation.
        """

        batch_size = self.get_batch_size(opts, input_)
        dim = int(input_.get_shape()[1])
        transposed = tf.transpose(input_, perm=[1, 0])
        mean = tf.reshape(tf.reduce_mean(transposed, axis=1), [-1, 1])
        centered_transposed = transposed - mean # Broadcasting mean
        cov = tf.matmul(centered_transposed, centered_transposed, transpose_b=True)
        cov = cov / (batch_size - 1)
        #cov = tf.Print(cov, [cov], "cov")
        sigmas = tf.sqrt(tf.diag_part(cov) + 1e-5)
        #sigmas = tf.Print(sigmas, [sigmas], "sigmas")
        sigmas = tf.reshape(sigmas, [1, -1])
        sigmas = tf.matmul(sigmas, sigmas, transpose_a=True)
        #sigmas = tf.Print(sigmas, [sigmas], "sigmas")
        # Pearson's correlation
        corr = cov / sigmas
        triangle = tf.matrix_set_diag(tf.matrix_band_part(corr, 0, -1), tf.zeros(dim))
        #triangle = tf.Print(triangle, [triangle], "triangle")
        loss = tf.reduce_sum(tf.square(triangle)) / ((dim * dim - dim) / 2.0)
        #loss = tf.Print(loss, [loss], "Correlation loss")
        return loss
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.):
        if opts['e_add_noise']:
            def add_noise(x):
                shape = tf.shape(x)
                return x + tf.truncated_normal(shape, 0.0, 0.01)
            def do_nothing(x):
                return x
            input_ = tf.cond(is_training, lambda: add_noise(input_), lambda: do_nothing(input_))
        num_units = opts['e_num_filters']
        num_layers = opts['e_num_layers']
        with tf.variable_scope("ENCODER", reuse=reuse):
            if not opts['convolutions']:
                hi = input_
                for i in range(num_layers):
                    hi = ops.linear(opts, hi, num_units, scope='h%d_lin' % i)
                    if opts['batch_norm']:
                        hi = ops.batch_norm(opts, hi, is_training, reuse, scope='bn%d' % i)
                    hi = tf.nn.relu(hi)
                if opts['e_is_random']:
                    latent_mean = ops.linear(
                        opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1))
                    log_latent_sigmas = ops.linear(
                        opts, hi, opts['latent_space_dim'], 'h%d_lin_sigma' % (i + 1))
                    return latent_mean, log_latent_sigmas
                else:
                    return ops.linear(opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1))
            elif opts['e_arch'] == 'dcgan':
                return self.dcgan_encoder(opts, input_, is_training, reuse, keep_prob)
            elif opts['e_arch'] == 'ali':
                return self.ali_encoder(opts, input_, is_training, reuse, keep_prob)
            elif opts['e_arch'] == 'began':
                return self.began_encoder(opts, input_, is_training, reuse, keep_prob)
            else:
                raise ValueError('%s Unknown' % opts['e_arch'])
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def began_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.):
        num_units = opts['e_num_filters']
        assert num_units == opts['g_num_filters'], 'BEGAN requires same number of filters in encoder and decoder'
        num_layers = opts['e_num_layers']
        layer_x = ops.conv2d(opts, input_, num_units, scope='h_first_conv')
        for i in xrange(num_layers):
            if i % 3 < 2:
                if i != num_layers - 2:
                    ii = i - (i / 3)
                    scale = (ii + 1 - ii / 2)
                else:
                    ii = i - (i / 3)
                    scale = (ii - (ii - 1) / 2)
                layer_x = ops.conv2d(opts, layer_x, num_units * scale, d_h=1, d_w=1, scope='h%d_conv' % i)
                layer_x = tf.nn.elu(layer_x)
            else:
                if i != num_layers - 1:
                    layer_x = ops.downsample(layer_x, scope='h%d_maxpool' % i, reuse=reuse)
        # Tensor should be [N, 8, 8, filters] right now

        if opts['e_is_random']:
            latent_mean = ops.linear(
                opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
            log_latent_sigmas = ops.linear(
                opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma')
            return latent_mean, log_latent_sigmas
        else:
            return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def _recon_loss_using_disc_encoder(
            self, opts, reconstructed_training, encoded_training,
            real_points, is_training_ph, keep_prob_ph):
        """Build an additional loss using the encoder as discriminator."""
        reconstructed_reencoded_sg = self.encoder(
            opts, tf.stop_gradient(reconstructed_training),
            is_training=is_training_ph, keep_prob=keep_prob_ph, reuse=True)
        if opts['e_is_random']:
            reconstructed_reencoded_sg = reconstructed_reencoded_sg[0]
        reconstructed_reencoded = self.encoder(
            opts, reconstructed_training, is_training=is_training_ph,
            keep_prob=keep_prob_ph, reuse=True)
        if opts['e_is_random']:
            reconstructed_reencoded = reconstructed_reencoded[0]
        # Below line enforces the forward to be reconstructed_reencoded and backwards to NOT change the encoder....
        crazy_hack = reconstructed_reencoded - reconstructed_reencoded_sg +\
            tf.stop_gradient(reconstructed_reencoded_sg)
        encoded_training_sg = self.encoder(
            opts, tf.stop_gradient(real_points),
            is_training=is_training_ph, keep_prob=keep_prob_ph, reuse=True)
        if opts['e_is_random']:
            encoded_training_sg = encoded_training_sg[0]

        adv_fake_layer = ops.linear(opts, reconstructed_reencoded_sg, 1, scope='adv_layer')
        adv_true_layer = ops.linear(opts, encoded_training_sg, 1, scope='adv_layer', reuse=True)
        adv_fake = tf.nn.sigmoid_cross_entropy_with_logits(
                    logits=adv_fake_layer, labels=tf.zeros_like(adv_fake_layer))
        adv_true = tf.nn.sigmoid_cross_entropy_with_logits(
                    logits=adv_true_layer, labels=tf.ones_like(adv_true_layer))
        adv_fake = tf.reduce_mean(adv_fake)
        adv_true = tf.reduce_mean(adv_true)
        adv_c_loss = adv_fake + adv_true
        emb_c = tf.reduce_sum(tf.square(crazy_hack - tf.stop_gradient(encoded_training)), 1)
        emb_c_loss = tf.reduce_mean(tf.sqrt(emb_c + 1e-5))
        # Normalize the loss, so that it does not depend on how good the
        # discriminator is.
        emb_c_loss = emb_c_loss / tf.stop_gradient(emb_c_loss)
        return adv_c_loss, emb_c_loss
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator_mnist(self, z, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        h0 = linear(z, 64, 'g_h0_lin', stddev=self.config.init)
        h1 = linear(tf.nn.relu(h0), 256, 'g_h1_lin', stddev=self.config.init)
        h2 = linear(tf.nn.relu(h1), 256, 'g_h2_lin', stddev=self.config.init)
        h3 = linear(tf.nn.relu(h2), 1024, 'g_h3_lin', stddev=self.config.init)
        h4 = linear(tf.nn.relu(h3), 28 * 28 * 1, 'g_h4_lin', stddev=self.config.init)

        return tf.reshape(tf.nn.sigmoid(h4), [self.batch_size, 28, 28, 1])
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator_mnist(self, z, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()
        h0 = linear(z, 64, 'g_h0_lin', stddev=self.config.init)
        h1 = linear(tf.nn.relu(h0), 256, 'g_h1_lin', stddev=self.config.init)
        h2 = linear(tf.nn.relu(h1), 256, 'g_h2_lin', stddev=self.config.init)
        h3 = linear(tf.nn.relu(h2), 1024, 'g_h3_lin', stddev=self.config.init)
        h4 = linear(tf.nn.relu(h3), 28 * 28 * 1, 'g_h4_lin', stddev=self.config.init)

        return tf.reshape(tf.nn.sigmoid(h4), [self.batch_size, 28, 28, 1])
项目:vgg16.tf    作者:bgshih    | 项目源码 | 文件源码
def _vgg_fully_connected(self, x, n_in, n_out, scope):
    with tf.variable_scope(scope):
      fc = ops.linear(x, n_in, n_out)
    return fc
项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def generator(hparams, z, scope_name, train, reuse):

    with tf.variable_scope(scope_name) as scope:
        if reuse:
            scope.reuse_variables()

        output_size = 64
        s = output_size
        s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

        g_bn0 = ops.batch_norm(name='g_bn0')
        g_bn1 = ops.batch_norm(name='g_bn1')
        g_bn2 = ops.batch_norm(name='g_bn2')
        g_bn3 = ops.batch_norm(name='g_bn3')

        # project `z` and reshape
        h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8])
        h0 = tf.nn.relu(g_bn0(h0, train=train))

        h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1')
        h1 = tf.nn.relu(g_bn1(h1, train=train))

        h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2')
        h2 = tf.nn.relu(g_bn2(h2, train=train))

        h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3')
        h3 = tf.nn.relu(g_bn3(h3, train=train))

        h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4')
        x_gen = tf.nn.tanh(h4)

    return x_gen
项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def discriminator(hparams, x, scope_name, train, reuse):

    with tf.variable_scope(scope_name) as scope:
        if reuse:
            scope.reuse_variables()

        d_bn1 = ops.batch_norm(name='d_bn1')
        d_bn2 = ops.batch_norm(name='d_bn2')
        d_bn3 = ops.batch_norm(name='d_bn3')

        h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv'))

        h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv')
        h1 = ops.lrelu(d_bn1(h1, train=train))

        h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv')
        h2 = ops.lrelu(d_bn2(h2, train=train))

        h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv')
        h3 = ops.lrelu(d_bn3(h3, train=train))

        h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin')

        d_logit = h4
        d = tf.nn.sigmoid(d_logit)

    return d, d_logit
项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def generator(hparams, z, train, reuse):

    if reuse:
        tf.get_variable_scope().reuse_variables()

    output_size = 64
    s = output_size
    s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

    g_bn0 = ops.batch_norm(name='g_bn0')
    g_bn1 = ops.batch_norm(name='g_bn1')
    g_bn2 = ops.batch_norm(name='g_bn2')
    g_bn3 = ops.batch_norm(name='g_bn3')

    # project `z` and reshape
    h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8])
    h0 = tf.nn.relu(g_bn0(h0, train=train))

    h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1')
    h1 = tf.nn.relu(g_bn1(h1, train=train))

    h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2')
    h2 = tf.nn.relu(g_bn2(h2, train=train))

    h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3')
    h3 = tf.nn.relu(g_bn3(h3, train=train))

    h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4')
    x_gen = tf.nn.tanh(h4)

    return x_gen
项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def discriminator(hparams, x, train, reuse):

    if reuse:
        tf.get_variable_scope().reuse_variables()

    d_bn1 = ops.batch_norm(name='d_bn1')
    d_bn2 = ops.batch_norm(name='d_bn2')
    d_bn3 = ops.batch_norm(name='d_bn3')

    h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv'))

    h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv')
    h1 = ops.lrelu(d_bn1(h1, train=train))

    h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv')
    h2 = ops.lrelu(d_bn2(h2, train=train))

    h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv')
    h3 = ops.lrelu(d_bn3(h3, train=train))

    h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin')

    d_logit = h4
    d = tf.nn.sigmoid(d_logit)

    return d, d_logit
项目:RobocupSSLSim    作者:cheng-xie    | 项目源码 | 文件源码
def _build_train(self):
        activation_fn = tf.nn.relu
        with tf.variable_scope('train'):
            # batched s_t to batched q and q_action
            self.s_t = tf.placeholder('float32', [None, self.state_size], name='s_t')

            # MLP Feature Extraction (s_t -> l3)
            l1, self.w['train']['l1_w'], self.w['train']['l1_b'] = linear(self.s_t, 96, activation_fn=activation_fn, name='l1')
            #l2, self.w['train']['l2_w'], self.w['train']['l2_b'] = linear(l1, 16, activation_fn=activation_fn, name='l2')
            #l3, self.w['train']['l3_w'], self.w['train']['l3_b'] = linear(l2, 16, activation_fn=activation_fn, name='l3')
            l3 = l1
            if self.dueling:
                # Value Net : V(s) is scalar (l3 -> value)
                value_hid, self.w['train']['l4_val_w'], self.w['train']['l4_val_b'] = linear(l3, 32, activation_fn=activation_fn, name='value_hid')
                value, self.w['train']['val_w_out'], self.w['train']['val_w_b'] = linear(value_hid, 1, name='value_out')

                # Advantage Net : A(s) is vector with advantage given each action (l3 -> advantage)
                adv_hid, self.w['train']['l4_adv_w'], self.w['train']['l4_adv_b'] = linear(l3, 32, activation_fn=activation_fn, name='adv_hid')
                advantage, self.w['train']['adv_w_out'], self.w['train']['adv_w_b'] = linear(adv_hid, self.action_size, name='adv_out')

                # Average Dueling (Subtract mean advantage) Q=V+A-mean(A)
                q_train = value + (advantage - tf.reduce_mean(advantage, reduction_indices=1, keep_dims=True))

            else:
                l4, self.w['train']['l4_w'], self.w['train']['l4_b'] = linear(l3, 16, activation_fn=activation_fn, name='l4')
                q_train, self.w['train']['q_w'], self.w['train']['q_b'] = linear(l4, self.action_size, name='q')

            # Greedy policy
            q_action = tf.argmax(q_train, dimension=1)
            return q_train, q_action
项目:RobocupSSLSim    作者:cheng-xie    | 项目源码 | 文件源码
def _build_target(self):
        activation_fn = tf.nn.relu
        with tf.variable_scope('target'):
            self.t_s_t = tf.placeholder('float32', [None, self.state_size], name='t_s_t')

            # MLP Feature Extraction
            l1, self.w['target']['l1_w'], self.w['target']['l1_b'] = linear(self.t_s_t, 96, activation_fn=activation_fn, name='l1')
            #l2, self.w['target']['l2_w'], self.w['target']['l2_b'] = linear(l1, 16, activation_fn=activation_fn, name='l2')
            #l3, self.w['target']['l3_w'], self.w['target']['l3_b'] = linear(l2, 16, activation_fn=activation_fn, name='l3')
            l3 = l1
            if self.dueling:
                # Value Net : V(s) is scalar
                value_hid, self.w['target']['l4_val_w'], self.w['target']['l4_val_b'] = linear(l3, 32, activation_fn=activation_fn, name='value_hid')
                value, self.w['target']['val_w_out'], self.w['target']['val_w_b'] = linear(value_hid, 1, name='value_out')

                # Advantage Net : A(s) is vector with advantage given each action
                adv_hid, self.w['target']['l4_adv_w'], self.w['target']['l4_adv_b'] = linear(l3, 32, activation_fn=activation_fn, name='adv_hid')
                advantage, self.w['target']['adv_w_out'], self.w['target']['adv_w_b'] = linear(adv_hid, self.action_size, name='adv_out')

                # Average Dueling (Subtract mean advantage)
                q_target = value + (advantage - tf.reduce_mean(advantage, reduction_indices=1, keep_dims=True))

            else:
                l4, self.w['target']['l4_w'], self.w['target']['l4_b'] = linear(l3, 16, activation_fn=activation_fn, name='l4')
                q_target, self.w['target']['q_w'], self.w['target']['q_b'] = linear(l4, self.action_size, name='q')

            # The action we use will depend if we use double q learning
            target_q_idx = tf.placeholder('int32', [None, None], name='q_id')
            # Get the q values of the specified state/action indices
            target_q_with_idx = tf.gather_nd(q_target, target_q_idx)
            return q_target, target_q_idx, target_q_with_idx
项目:nn_q_learning_tensorflow    作者:EndingCredits    | 项目源码 | 文件源码
def cnn(self, state, input_dims, num_actions):
        w = {}
        initializer = tf.truncated_normal_initializer(0, 0.02)
        activation_fn = tf.nn.relu

        state = tf.transpose(state, perm=[0, 2, 3, 1])

        l1, w['l1_w'], w['l1_b'] = conv2d(state,
          32, [8, 8], [4, 4], initializer, activation_fn, 'NHWC', name='l1')
        l2, w['l2_w'], w['l2_b'] = conv2d(l1,
          64, [4, 4], [2, 2], initializer, activation_fn, 'NHWC', name='l2')

        shape = l2.get_shape().as_list()
        l2_flat = tf.reshape(l2, [-1, reduce(lambda x, y: x * y, shape[1:])])

        l3, w['l3_w'], w['l3_b'] = linear(l2_flat, 256, activation_fn=activation_fn, name='value_hid')


        value, w['val_w_out'], w['val_w_b'] = linear(l3, 1, name='value_out')
        V = tf.reshape(value, [-1])

        pi_, w['pi_w_out'], w['pi_w_b'] = \
            linear(l3, num_actions, activation_fn=tf.nn.softmax, name='pi_out')

        sums = tf.tile(tf.expand_dims(tf.reduce_sum(pi_, 1), 1), [1, num_actions])
        pi = pi_ / sums

        #A3C is l1 = (16, [8,8], [4,4], ReLu), l2 = (32, [4,4], [2,2], ReLu), l3 = (256, Conn, ReLu), V = (1, Conn, Lin), pi = (#act, Conn, Softmax)
        return pi, V, [ v for v in w.values() ]




# Adapted from github.com/devsisters/DQN-tensorflow/
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def GeneratorCNN( z, config, reuse=None):
    '''
    maps z to a 64x64 images with values in [-1,1]
    uses batch normalization internally
    '''

    #trying to get around batch_size like this:
    batch_size=tf.shape(z)[0]
    #batch_size=tf.placeholder_with_default(64,[],'bs')

    with tf.variable_scope("generator",reuse=reuse) as vs:
        g_bn0 = batch_norm(name='g_bn0')
        g_bn1 = batch_norm(name='g_bn1')
        g_bn2 = batch_norm(name='g_bn2')
        g_bn3 = batch_norm(name='g_bn3')

        s_h, s_w = config.gf_dim, config.gf_dim#64,64
        s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
        s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
        s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
        s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)



        # project `z` and reshape
        z_, self_h0_w, self_h0_b = linear(
            z, config.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)

        self_h0 = tf.reshape(
            z_, [-1, s_h16, s_w16, config.gf_dim * 8])
        h0 = tf.nn.relu(g_bn0(self_h0))

        h1, h1_w, h1_b = deconv2d(
            h0, [batch_size, s_h8, s_w8, config.gf_dim*4], name='g_h1', with_w=True)
        h1 = tf.nn.relu(g_bn1(h1))

        h2, h2_w, h2_b = deconv2d(
            h1, [batch_size, s_h4, s_w4, config.gf_dim*2], name='g_h2', with_w=True)
        h2 = tf.nn.relu(g_bn2(h2))

        h3, h3_w, h3_b = deconv2d(
            h2, [batch_size, s_h2, s_w2, config.gf_dim*1], name='g_h3', with_w=True)
        h3 = tf.nn.relu(g_bn3(h3))

        h4, h4_w, h4_b = deconv2d(
            h3, [batch_size, s_h, s_w, config.c_dim], name='g_h4', with_w=True)
        out=tf.nn.tanh(h4)

    variables = tf.contrib.framework.get_variables(vs)
    return out, variables
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def DiscriminatorCNN(image, config, reuse=None):
    '''
    Discriminator for GAN model.

    image      : batch_size x 64x64x3 image
    config     : see causal_dcgan/config.py
    reuse      : pass True if not calling for first time

    returns: probabilities(real)
           : logits(real)
           : first layer activation used to estimate z from
           : variables list
    '''
    with tf.variable_scope("discriminator",reuse=reuse) as vs:
        d_bn1 = batch_norm(name='d_bn1')
        d_bn2 = batch_norm(name='d_bn2')
        d_bn3 = batch_norm(name='d_bn3')

        if not config.stab_proj:
            h0 = lrelu(conv2d(image, config.df_dim, name='d_h0_conv'))#16,32,32,64

        else:#method to restrict disc from winning
            #I think this is equivalent to just not letting disc optimize first layer
            #and also removing nonlinearity

            #k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02,
            #paper used 8x8 kernel, but I'm using 5x5 because it is more similar to my achitecture
            #n_projs=config.df_dim#64 instead of 32 in paper
            n_projs=config.n_stab_proj#64 instead of 32 in paper

            print("WARNING:STAB_PROJ active, using ",n_projs," projections")

            w_proj = tf.get_variable('w_proj', [5, 5, image.get_shape()[-1],n_projs],
                initializer=tf.truncated_normal_initializer(stddev=0.02),trainable=False)
            conv = tf.nn.conv2d(image, w_proj, strides=[1, 2, 2, 1], padding='SAME')

            b_proj = tf.get_variable('b_proj', [n_projs],#does nothing
                 initializer=tf.constant_initializer(0.0),trainable=False)
            h0=tf.nn.bias_add(conv,b_proj)


        h1_ = lrelu(d_bn1(conv2d(h0, config.df_dim*2, name='d_h1_conv')))#16,16,16,128

        h1 = add_minibatch_features(h1_, config.df_dim)
        h2 = lrelu(d_bn2(conv2d(h1, config.df_dim*4, name='d_h2_conv')))#16,16,16,248
        h3 = lrelu(d_bn3(conv2d(h2, config.df_dim*8, name='d_h3_conv')))
        #print('h3shape: ',h3.get_shape().as_list())
        #print('8df_dim:',config.df_dim*8)
        #dim3=tf.reduce_prod(tf.shape(h3)[1:])
        dim3=np.prod(h3.get_shape().as_list()[1:])
        h3_flat=tf.reshape(h3, [-1,dim3])
        h4 = linear(h3_flat, 1, 'd_h3_lin')

        prob=tf.nn.sigmoid(h4)

        variables = tf.contrib.framework.get_variables(vs,collection=tf.GraphKeys.TRAINABLE_VARIABLES)

    return prob, h4, h1_, variables
项目:DeepVideo    作者:AniketBajpai    | 项目源码 | 文件源码
def __call__(self, inputs, is_train=True, is_debug=False):
        self.is_train = is_train
        self.is_debug = is_debug

        inputs = tf.convert_to_tensor(inputs)   # Check if necessary

        # Assert that input is in [-1, 1]
        encoder_max_assert_op = tf.Assert(tf.less_equal(tf.reduce_max(inputs), 1.), [
                                          inputs], summarize=0, name='assert/encoder_max')
        encoder_min_assert_op = tf.Assert(tf.greater_equal(tf.reduce_max(inputs), -1.),
                                          [inputs], summarize=0, name='assert/encoder_min')
        tf.add_to_collection('Assert', encoder_max_assert_op)
        tf.add_to_collection('Assert', encoder_min_assert_op)

        assert(inputs.get_shape().as_list() == [self.batch_size] + self.configs.conv_info.input)
        with tf.variable_scope(self.name) as scope:
            print_message(scope.name)
            with tf.variable_scope('conv1') as vscope:
                outputs, self.net['w1'], self.net['b1'] = conv3d(
                    inputs, [self.batch_size] + self.configs.conv_info.l1, is_train=self.is_train,
                    k=self.configs.conv_info.k1, s=self.configs.conv_info.s1, with_w=True)
                if is_debug:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                assert(outputs.get_shape().as_list() == [self.batch_size] + self.configs.conv_info.l1)
                self.net['conv1_outputs'] = outputs
            with tf.variable_scope('conv2') as vscope:
                outputs, self.net['w2'], self.net['b2'] = conv3d(
                    outputs, [self.batch_size] + self.configs.conv_info.l2, is_train=self.is_train,
                    k=self.configs.conv_info.k2, s=self.configs.conv_info.s2, with_w=True)
                if is_debug:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                assert(outputs.get_shape().as_list() == [self.batch_size] + self.configs.conv_info.l2)
                self.net['conv2_outputs'] = outputs
            with tf.variable_scope('conv3') as vscope:
                outputs, self.net['w3'], self.net['b3'] = conv3d(
                    outputs, [self.batch_size] + self.configs.conv_info.l3, is_train=self.is_train,
                    k=self.configs.conv_info.k3, s=self.configs.conv_info.s3, with_w=True)
                if is_debug:
                    print(vscope.name, outputs)
                outputs = tf.layers.dropout(outputs, rate=self.configs.dropout, training=self.is_train, name='outputs')
                assert(outputs.get_shape().as_list() == [self.batch_size] + self.configs.conv_info.l3)
                self.net['conv3_outputs'] = outputs
            with tf.variable_scope('fc') as vscope:
                fc_dim = reduce(mul, self.configs.conv_info.l3, 1)
                outputs = tf.reshape(outputs, [self.batch_size] + [fc_dim], name='reshape')
                outputs = linear(outputs, self.latent_dimension)
                outputs = tf.nn.relu(outputs)
                if is_debug:
                    print(vscope.name, outputs)
                self.net['fc_outputs'] = outputs

        self.variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=self.name)
        return outputs
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, is_training, reuse=False):
        """Generator function, suitable for bigger simple pictures.

        Args:
            noise: [num_points, dim] array, where dim is dimensionality of the
                latent noise space.
            is_training: bool, defines whether to use batch_norm in the train
                or test mode.
        Returns:
            [num_points, dim1, dim2, dim3] array, where the first coordinate
            indexes the points, which all are of the shape (dim1, dim2, dim3).
        """

        output_shape = self._data.data_shape # (dim1, dim2, dim3)
        # Computing the number of noise vectors on-the-go
        dim1 = tf.shape(noise)[0]
        num_filters = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):

            height = output_shape[0] / 16
            width = output_shape[1] / 16
            h0 = ops.linear(opts, noise, num_filters * height * width,
                            scope='h0_lin')
            h0 = tf.reshape(h0, [-1, height, width, num_filters])
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            h0 = tf.nn.relu(h0)
            _out_shape = [dim1, height * 2, width * 2, num_filters / 2]
            # for 128 x 128 does 8 x 8 --> 16 x 16
            h1 = ops.deconv2d(opts, h0, _out_shape, scope='h1_deconv')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            h1 = tf.nn.relu(h1)
            _out_shape = [dim1, height * 4, width * 4, num_filters / 4]
            # for 128 x 128 does 16 x 16 --> 32 x 32 
            h2 = ops.deconv2d(opts, h1, _out_shape, scope='h2_deconv')
            h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = tf.nn.relu(h2)
            _out_shape = [dim1, height * 8, width * 8, num_filters / 8]
            # for 128 x 128 does 32 x 32 --> 64 x 64 
            h3 = ops.deconv2d(opts, h2, _out_shape, scope='h3_deconv')
            h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
            h3 = tf.nn.relu(h3)
            _out_shape = [dim1, height * 16, width * 16, num_filters / 16]
            # for 128 x 128 does 64 x 64 --> 128 x 128 
            h4 = ops.deconv2d(opts, h3, _out_shape, scope='h4_deconv')
            h4 = ops.batch_norm(opts, h4, is_training, reuse, scope='bn_layer5')
            h4 = tf.nn.relu(h4)
            _out_shape = [dim1] + list(output_shape)
            # data_shape[0] x data_shape[1] x ? -> data_shape
            h5 = ops.deconv2d(opts, h4, _out_shape,
                              d_h=1, d_w=1, scope='h5_deconv')
            h5 = ops.batch_norm(opts, h5, is_training, reuse, scope='bn_layer6')

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h5)
        else:
            return tf.nn.sigmoid(h5)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def dcgan_like_arch(self, opts, noise, is_training, reuse, keep_prob):
        output_shape = self._data.data_shape
        num_units = opts['g_num_filters']

        batch_size = tf.shape(noise)[0]
        num_layers = opts['g_num_layers']
        if opts['g_arch'] == 'dcgan':
            height = output_shape[0] / 2**num_layers
            width = output_shape[1] / 2**num_layers
        elif opts['g_arch'] == 'dcgan_mod':
            height = output_shape[0] / 2**(num_layers-1)
            width = output_shape[1] / 2**(num_layers-1)
        else:
            assert False

        h0 = ops.linear(
            opts, noise, num_units * height * width, scope='h0_lin')
        h0 = tf.reshape(h0, [-1, height, width, num_units])
        h0 = tf.nn.relu(h0)
        layer_x = h0
        for i in xrange(num_layers-1):
            scale = 2**(i+1)
            if opts['g_stride1_deconv']:
                # Sylvain, I'm worried about this part!
                _out_shape = [batch_size, height * scale / 2,
                              width * scale / 2, num_units / scale * 2]
                layer_x = ops.deconv2d(
                    opts, layer_x, _out_shape, d_h=1, d_w=1,
                    scope='h%d_deconv_1x1' % i)
                layer_x = tf.nn.relu(layer_x)
            _out_shape = [batch_size, height * scale, width * scale, num_units / scale]
            layer_x = ops.deconv2d(opts, layer_x, _out_shape, scope='h%d_deconv' % i)
            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = tf.nn.relu(layer_x)
            if opts['dropout']:
                _keep_prob = tf.minimum(
                    1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1))
                layer_x = tf.nn.dropout(layer_x, _keep_prob)

        _out_shape = [batch_size] + list(output_shape)
        if opts['g_arch'] == 'dcgan':
            last_h = ops.deconv2d(
                opts, layer_x, _out_shape, scope='hlast_deconv')
        elif opts['g_arch'] == 'dcgan_mod':
            last_h = ops.deconv2d(
                opts, layer_x, _out_shape, d_h=1, d_w=1, scope='hlast_deconv')
        else:
            assert False

        if opts['input_normalize_sym']:
            return tf.nn.tanh(last_h)
        else:
            return tf.nn.sigmoid(last_h)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def conv_up_res(self, opts, noise, is_training, reuse, keep_prob):
        output_shape = self._data.data_shape
        num_units = opts['g_num_filters']

        batch_size = tf.shape(noise)[0]
        num_layers = opts['g_num_layers']
        data_height = output_shape[0]
        data_width = output_shape[1]
        data_channels = output_shape[2]
        height = data_height / 2**num_layers
        width = data_width / 2**num_layers

        h0 = ops.linear(
            opts, noise, num_units * height * width, scope='h0_lin')
        h0 = tf.reshape(h0, [-1, height, width, num_units])
        h0 = tf.nn.relu(h0)
        layer_x = h0
        for i in xrange(num_layers-1):
            layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width))
            layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_%d' % i)
            height *= 2
            width *= 2
            num_units /= 2

            if opts['g_3x3_conv'] > 0:
                before = layer_x
                for j in range(opts['g_3x3_conv']):
                    layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1,
                                         scope='conv2d_3x3_%d_%d' % (i, j),
                                         conv_filters_dim=3)
                    layer_x = tf.nn.relu(layer_x)
                layer_x += before  # Residual connection.

            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = tf.nn.relu(layer_x)
            if opts['dropout']:
                _keep_prob = tf.minimum(
                    1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1))
                layer_x = tf.nn.dropout(layer_x, _keep_prob)

        layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width))
        layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='last_conv2d_%d' % i)

        if opts['input_normalize_sym']:
            return tf.nn.tanh(layer_x)
        else:
            return tf.nn.sigmoid(layer_x)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def ali_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.):
        num_units = opts['e_num_filters']
        layer_params = []
        layer_params.append([5, 1, num_units / 8])
        layer_params.append([4, 2, num_units / 4])
        layer_params.append([4, 1, num_units / 2])
        layer_params.append([4, 2, num_units])
        layer_params.append([4, 1, num_units * 2])
        # For convolution: (n - k) / stride + 1 = s
        # For transposed: (s - 1) * stride + k = n
        layer_x = input_
        height = int(layer_x.get_shape()[1])
        width = int(layer_x.get_shape()[2])
        assert height == width
        for i, (kernel, stride, channels) in enumerate(layer_params):
            height = (height - kernel) / stride + 1
            width = height
            # print((height, width))
            layer_x = ops.conv2d(
                opts, layer_x, channels, d_h=stride, d_w=stride,
                scope='h%d_conv' % i, conv_filters_dim=kernel, padding='VALID')
            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = ops.lrelu(layer_x, 0.1)
        assert height == 1
        assert width == 1

        # Then two 1x1 convolutions.
        layer_x = ops.conv2d(opts, layer_x, num_units * 2, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1)
        if opts['batch_norm']:
            layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast')
        layer_x = ops.lrelu(layer_x, 0.1)
        layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1)

        if opts['e_is_random']:
            latent_mean = ops.linear(
                opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
            log_latent_sigmas = ops.linear(
                opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma')
            return latent_mean, log_latent_sigmas
        else:
            return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)