我们从Python开源项目中,提取了以下31个代码示例,用于说明如何使用ops.batch_norm()。
def discriminator_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits, variables
def discriminator_gen_labeler(image, output_dim, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_gen_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dgl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dgl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dgl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dgl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, output_dim, 'dgl_h3_Label') D_labels = tf.nn.sigmoid(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels, D_labels_logits,variables
def discriminator_on_z(image, config, reuse=None): batch_size=tf.shape(image)[0] with tf.variable_scope("disc_z_labeler",reuse=reuse) as vs: dl_bn1 = batch_norm(name='dl_bn1') dl_bn2 = batch_norm(name='dl_bn2') dl_bn3 = batch_norm(name='dl_bn3') h0 = lrelu(conv2d(image, config.df_dim, name='dzl_h0_conv'))#16,32,32,64 h1 = lrelu(dl_bn1(conv2d(h0, config.df_dim*2, name='dzl_h1_conv')))#16,16,16,128 h2 = lrelu(dl_bn2(conv2d(h1, config.df_dim*4, name='dzl_h2_conv')))#16,16,16,248 h3 = lrelu(dl_bn3(conv2d(h2, config.df_dim*8, name='dzl_h3_conv'))) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) D_labels_logits = linear(h3_flat, config.z_dim, 'dzl_h3_Label') D_labels = tf.nn.tanh(D_labels_logits) variables = tf.contrib.framework.get_variables(vs) return D_labels,variables
def discriminator(self, opts, input_, is_training, prefix='DISCRIMINATOR', reuse=False): """Encoder function, suitable for simple toy experiments. """ num_filters = opts['d_num_filters'] with tf.variable_scope(prefix, reuse=reuse): h0 = ops.conv2d(opts, input_, num_filters / 8, scope='h0_conv') h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') h0 = tf.nn.relu(h0) h1 = ops.conv2d(opts, h0, num_filters / 4, scope='h1_conv') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') h1 = tf.nn.relu(h1) h2 = ops.conv2d(opts, h1, num_filters / 2, scope='h2_conv') h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = tf.nn.relu(h2) h3 = ops.conv2d(opts, h2, num_filters, scope='h3_conv') h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4') h3 = tf.nn.relu(h3) # Already has NaNs!! latent_mean = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin') log_latent_sigmas = ops.linear(opts, h3, opts['latent_space_dim'], scope='h3_lin_sigma') return latent_mean, log_latent_sigmas
def discriminator(self, opts, input_, is_training, prefix='DISCRIMINATOR', reuse=False): """Discriminator function, suitable for simple toy experiments. """ num_filters = opts['d_num_filters'] with tf.variable_scope(prefix, reuse=reuse): h0 = ops.conv2d(opts, input_, num_filters, scope='h0_conv') h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') h0 = ops.lrelu(h0) h1 = ops.conv2d(opts, h0, num_filters * 2, scope='h1_conv') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') h1 = ops.lrelu(h1) h2 = ops.conv2d(opts, h1, num_filters * 4, scope='h2_conv') h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = ops.lrelu(h2) h3 = ops.linear(opts, h2, 1, scope='h3_lin') return h3
def generator(self, opts, noise, is_training, reuse=False): with tf.variable_scope("GENERATOR", reuse=reuse): h0 = ops.linear(opts, noise, 100, scope='h0_lin') h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1', scale=False) h0 = tf.nn.softplus(h0) h1 = ops.linear(opts, h0, 100, scope='h1_lin') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2', scale=False) h1 = tf.nn.softplus(h1) h2 = ops.linear(opts, h1, 28 * 28, scope='h2_lin') # h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = tf.reshape(h2, [-1, 28, 28, 1]) if opts['input_normalize_sym']: return tf.nn.tanh(h2) else: return tf.nn.sigmoid(h2)
def inception_v3_parameters(weight_decay=0.00004, stddev=0.1, batch_norm_decay=0.9997, batch_norm_epsilon=0.001): """Yields the scope with the default parameters for inception_v3. Args: weight_decay: the weight decay for weights variables. stddev: standard deviation of the truncated guassian weight distribution. batch_norm_decay: decay for the moving average of batch_norm momentums. batch_norm_epsilon: small float added to variance to avoid dividing by zero. Yields: a arg_scope with the parameters needed for inception_v3. """ # Set weight_decay for weights in Conv and FC layers. with scopes.arg_scope([ops.conv2d, ops.fc], weight_decay=weight_decay): # Set stddev, activation and parameters for batch_norm. with scopes.arg_scope([ops.conv2d], stddev=stddev, activation=tf.nn.relu, batch_norm_params={ 'decay': batch_norm_decay, 'epsilon': batch_norm_epsilon}) as arg_scope: yield arg_scope
def discriminator(self, opts, input_, is_training, prefix='DISCRIMINATOR', reuse=False): shape = tf.shape(input_) num = shape[0] with tf.variable_scope(prefix, reuse=reuse): h0 = input_ h0 = tf.add(h0, tf.random_normal(shape, stddev=0.3)) h0 = ops.linear(opts, h0, 1000, scope='h0_linear') # h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') h0 = tf.nn.relu(h0) h1 = tf.add(h0, tf.random_normal([num, 1000], stddev=0.5)) h1 = ops.linear(opts, h1, 500, scope='h1_linear') # h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') h1 = tf.nn.relu(h1) h2 = tf.add(h1, tf.random_normal([num, 500], stddev=0.5)) h2 = ops.linear(opts, h2, 250, scope='h2_linear') # h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') h2 = tf.nn.relu(h2) h3 = tf.add(h2, tf.random_normal([num, 250], stddev=0.5)) h3 = ops.linear(opts, h3, 250, scope='h3_linear') # h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4') h3 = tf.nn.relu(h3) h4 = tf.add(h3, tf.random_normal([num, 250], stddev=0.5)) h4 = ops.linear(opts, h4, 250, scope='h4_linear') # h4 = ops.batch_norm(opts, h4, is_training, reuse, scope='bn_layer5') h4 = tf.nn.relu(h4) h5 = ops.linear(opts, h4, 10, scope='h5_linear') return h5, h3
def generator(self, opts, noise, is_training=False, reuse=False, keep_prob=1.): """ Decoder actually. """ output_shape = self._data.data_shape num_units = opts['g_num_filters'] with tf.variable_scope("GENERATOR", reuse=reuse): # if not opts['convolutions']: if opts['g_arch'] == 'mlp': layer_x = noise for i in range(opts['g_num_layers']): layer_x = ops.linear(opts, layer_x, num_units, 'h%d_lin' % i) layer_x = tf.nn.relu(layer_x) if opts['batch_norm']: layer_x = ops.batch_norm( opts, layer_x, is_training, reuse, scope='bn%d' % i) out = ops.linear(opts, layer_x, np.prod(output_shape), 'h%d_lin' % (i + 1)) out = tf.reshape(out, [-1] + list(output_shape)) if opts['input_normalize_sym']: return tf.nn.tanh(out) else: return tf.nn.sigmoid(out) elif opts['g_arch'] in ['dcgan', 'dcgan_mod']: return self.dcgan_like_arch(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'conv_up_res': return self.conv_up_res(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'ali': return self.ali_deconv(opts, noise, is_training, reuse, keep_prob) elif opts['g_arch'] == 'began': return self.began_dec(opts, noise, is_training, reuse, keep_prob) else: raise ValueError('%s unknown' % opts['g_arch'])
def encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): if opts['e_add_noise']: def add_noise(x): shape = tf.shape(x) return x + tf.truncated_normal(shape, 0.0, 0.01) def do_nothing(x): return x input_ = tf.cond(is_training, lambda: add_noise(input_), lambda: do_nothing(input_)) num_units = opts['e_num_filters'] num_layers = opts['e_num_layers'] with tf.variable_scope("ENCODER", reuse=reuse): if not opts['convolutions']: hi = input_ for i in range(num_layers): hi = ops.linear(opts, hi, num_units, scope='h%d_lin' % i) if opts['batch_norm']: hi = ops.batch_norm(opts, hi, is_training, reuse, scope='bn%d' % i) hi = tf.nn.relu(hi) if opts['e_is_random']: latent_mean = ops.linear( opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1)) log_latent_sigmas = ops.linear( opts, hi, opts['latent_space_dim'], 'h%d_lin_sigma' % (i + 1)) return latent_mean, log_latent_sigmas else: return ops.linear(opts, hi, opts['latent_space_dim'], 'h%d_lin' % (i + 1)) elif opts['e_arch'] == 'dcgan': return self.dcgan_encoder(opts, input_, is_training, reuse, keep_prob) elif opts['e_arch'] == 'ali': return self.ali_encoder(opts, input_, is_training, reuse, keep_prob) elif opts['e_arch'] == 'began': return self.began_encoder(opts, input_, is_training, reuse, keep_prob) else: raise ValueError('%s Unknown' % opts['e_arch'])
def generator(hparams, z, scope_name, train, reuse): with tf.variable_scope(scope_name) as scope: if reuse: scope.reuse_variables() output_size = 64 s = output_size s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16) g_bn0 = ops.batch_norm(name='g_bn0') g_bn1 = ops.batch_norm(name='g_bn1') g_bn2 = ops.batch_norm(name='g_bn2') g_bn3 = ops.batch_norm(name='g_bn3') # project `z` and reshape h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8]) h0 = tf.nn.relu(g_bn0(h0, train=train)) h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1') h1 = tf.nn.relu(g_bn1(h1, train=train)) h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2') h2 = tf.nn.relu(g_bn2(h2, train=train)) h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3') h3 = tf.nn.relu(g_bn3(h3, train=train)) h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4') x_gen = tf.nn.tanh(h4) return x_gen
def discriminator(hparams, x, scope_name, train, reuse): with tf.variable_scope(scope_name) as scope: if reuse: scope.reuse_variables() d_bn1 = ops.batch_norm(name='d_bn1') d_bn2 = ops.batch_norm(name='d_bn2') d_bn3 = ops.batch_norm(name='d_bn3') h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv')) h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv') h1 = ops.lrelu(d_bn1(h1, train=train)) h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv') h2 = ops.lrelu(d_bn2(h2, train=train)) h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv') h3 = ops.lrelu(d_bn3(h3, train=train)) h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin') d_logit = h4 d = tf.nn.sigmoid(d_logit) return d, d_logit
def generator(hparams, z, train, reuse): if reuse: tf.get_variable_scope().reuse_variables() output_size = 64 s = output_size s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16) g_bn0 = ops.batch_norm(name='g_bn0') g_bn1 = ops.batch_norm(name='g_bn1') g_bn2 = ops.batch_norm(name='g_bn2') g_bn3 = ops.batch_norm(name='g_bn3') # project `z` and reshape h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8]) h0 = tf.nn.relu(g_bn0(h0, train=train)) h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1') h1 = tf.nn.relu(g_bn1(h1, train=train)) h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2') h2 = tf.nn.relu(g_bn2(h2, train=train)) h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3') h3 = tf.nn.relu(g_bn3(h3, train=train)) h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4') x_gen = tf.nn.tanh(h4) return x_gen
def discriminator(hparams, x, train, reuse): if reuse: tf.get_variable_scope().reuse_variables() d_bn1 = ops.batch_norm(name='d_bn1') d_bn2 = ops.batch_norm(name='d_bn2') d_bn3 = ops.batch_norm(name='d_bn3') h0 = ops.lrelu(ops.conv2d(x, hparams.df_dim, name='d_h0_conv')) h1 = ops.conv2d(h0, hparams.df_dim*2, name='d_h1_conv') h1 = ops.lrelu(d_bn1(h1, train=train)) h2 = ops.conv2d(h1, hparams.df_dim*4, name='d_h2_conv') h2 = ops.lrelu(d_bn2(h2, train=train)) h3 = ops.conv2d(h2, hparams.df_dim*8, name='d_h3_conv') h3 = ops.lrelu(d_bn3(h3, train=train)) h4 = ops.linear(tf.reshape(h3, [hparams.batch_size, -1]), 1, 'd_h3_lin') d_logit = h4 d = tf.nn.sigmoid(d_logit) return d, d_logit
def GeneratorCNN( z, config, reuse=None): ''' maps z to a 64x64 images with values in [-1,1] uses batch normalization internally ''' #trying to get around batch_size like this: batch_size=tf.shape(z)[0] #batch_size=tf.placeholder_with_default(64,[],'bs') with tf.variable_scope("generator",reuse=reuse) as vs: g_bn0 = batch_norm(name='g_bn0') g_bn1 = batch_norm(name='g_bn1') g_bn2 = batch_norm(name='g_bn2') g_bn3 = batch_norm(name='g_bn3') s_h, s_w = config.gf_dim, config.gf_dim#64,64 s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2) s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2) s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2) s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2) # project `z` and reshape z_, self_h0_w, self_h0_b = linear( z, config.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True) self_h0 = tf.reshape( z_, [-1, s_h16, s_w16, config.gf_dim * 8]) h0 = tf.nn.relu(g_bn0(self_h0)) h1, h1_w, h1_b = deconv2d( h0, [batch_size, s_h8, s_w8, config.gf_dim*4], name='g_h1', with_w=True) h1 = tf.nn.relu(g_bn1(h1)) h2, h2_w, h2_b = deconv2d( h1, [batch_size, s_h4, s_w4, config.gf_dim*2], name='g_h2', with_w=True) h2 = tf.nn.relu(g_bn2(h2)) h3, h3_w, h3_b = deconv2d( h2, [batch_size, s_h2, s_w2, config.gf_dim*1], name='g_h3', with_w=True) h3 = tf.nn.relu(g_bn3(h3)) h4, h4_w, h4_b = deconv2d( h3, [batch_size, s_h, s_w, config.c_dim], name='g_h4', with_w=True) out=tf.nn.tanh(h4) variables = tf.contrib.framework.get_variables(vs) return out, variables
def DiscriminatorCNN(image, config, reuse=None): ''' Discriminator for GAN model. image : batch_size x 64x64x3 image config : see causal_dcgan/config.py reuse : pass True if not calling for first time returns: probabilities(real) : logits(real) : first layer activation used to estimate z from : variables list ''' with tf.variable_scope("discriminator",reuse=reuse) as vs: d_bn1 = batch_norm(name='d_bn1') d_bn2 = batch_norm(name='d_bn2') d_bn3 = batch_norm(name='d_bn3') if not config.stab_proj: h0 = lrelu(conv2d(image, config.df_dim, name='d_h0_conv'))#16,32,32,64 else:#method to restrict disc from winning #I think this is equivalent to just not letting disc optimize first layer #and also removing nonlinearity #k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, #paper used 8x8 kernel, but I'm using 5x5 because it is more similar to my achitecture #n_projs=config.df_dim#64 instead of 32 in paper n_projs=config.n_stab_proj#64 instead of 32 in paper print("WARNING:STAB_PROJ active, using ",n_projs," projections") w_proj = tf.get_variable('w_proj', [5, 5, image.get_shape()[-1],n_projs], initializer=tf.truncated_normal_initializer(stddev=0.02),trainable=False) conv = tf.nn.conv2d(image, w_proj, strides=[1, 2, 2, 1], padding='SAME') b_proj = tf.get_variable('b_proj', [n_projs],#does nothing initializer=tf.constant_initializer(0.0),trainable=False) h0=tf.nn.bias_add(conv,b_proj) h1_ = lrelu(d_bn1(conv2d(h0, config.df_dim*2, name='d_h1_conv')))#16,16,16,128 h1 = add_minibatch_features(h1_, config.df_dim) h2 = lrelu(d_bn2(conv2d(h1, config.df_dim*4, name='d_h2_conv')))#16,16,16,248 h3 = lrelu(d_bn3(conv2d(h2, config.df_dim*8, name='d_h3_conv'))) #print('h3shape: ',h3.get_shape().as_list()) #print('8df_dim:',config.df_dim*8) #dim3=tf.reduce_prod(tf.shape(h3)[1:]) dim3=np.prod(h3.get_shape().as_list()[1:]) h3_flat=tf.reshape(h3, [-1,dim3]) h4 = linear(h3_flat, 1, 'd_h3_lin') prob=tf.nn.sigmoid(h4) variables = tf.contrib.framework.get_variables(vs,collection=tf.GraphKeys.TRAINABLE_VARIABLES) return prob, h4, h1_, variables
def __call__(self, z, y): """ :param z: 2D [batch_size, z_dim] :param y: 2D [batch_size, y_dim] :return: """ batch_size, y_dim = y.get_shape().as_list() batch_size_, z_dim = z.get_shape().as_list() assert batch_size == batch_size_ h1_size = int(self._output_size / 4) h2_size = int(self._output_size / 2) with tf.variable_scope(self._name): yb = tf.reshape(y, shape=[-1, 1, 1, y_dim]) # (100, 1, 1, 10) z = tf.concat([z, y], axis=1) # (batch_size=100, y_dim+z_dim=110) h0 = tf.nn.relu( ops.batch_norm( ops.fc(z, self._fc_dim, reuse=self._reuse, name='g_fc0'), is_training=self._is_training, reuse=self._reuse, name_scope='g_bn0' ) ) h0 = tf.concat([h0, y], axis=1) # (batch_size=100, fc_dim+y_dim=794) h1 = tf.nn.relu( ops.batch_norm( ops.fc(h0, self._ngf*h1_size*h1_size, reuse=self._reuse, name='g_fc1'), is_training=self._is_training, reuse=self._reuse, name_scope='g_bn1' ) ) h1 = tf.reshape(h1, shape=[-1, h1_size, h1_size, self._ngf]) h1 = tf.concat([h1, yb*tf.ones([batch_size, h1_size, h1_size, y_dim])], axis=3) # (100, 7, 7, 522) h2 = tf.nn.relu( ops.batch_norm( ops.deconv2d(h1, self._ngf, reuse=self._reuse, name='g_conv2'), is_training=self._is_training, reuse=self._reuse, name_scope='g_bn2' ) ) h2 = tf.concat([h2, yb*tf.ones([batch_size, h2_size, h2_size, y_dim])], axis=3) # (100, 14, 14, 522) h3 = tf.nn.sigmoid( ops.deconv2d(h2, self._channel_dim, reuse=self._reuse, name='g_conv3') ) # TODO DIMENSION??? SHRINK self._reuse = True return h3 # (100, 28, 28, 1)
def __call__(self, input_, y): batch_size, y_dim = y.get_shape().as_list() batch_size_, height, width, c_dim = input_.get_shape().as_list() assert batch_size == batch_size_ assert (self._input_size == width) and (self._input_size == height) h0_size = int(self._input_size / 2) h1_size = int(self._input_size / 4) with tf.variable_scope(self._name): yb = tf.reshape(y, shape=[-1, 1, 1, y_dim]) # dim(x) = (100, 28, 28, 11) x = tf.concat([input_, yb*tf.ones([batch_size, self._input_size, self._input_size, y_dim])], axis=3) h0 = ops.leaky_relu( ops.conv2d(x, c_dim + y_dim, reuse=self._reuse, name='d_conv0'), slope=0.2 ) h0 = tf.concat([h0, yb*tf.ones([batch_size, h0_size, h0_size, y_dim])], axis=3) # (100, 14, 14, 21) h1 = ops.leaky_relu( ops.batch_norm( ops.conv2d(h0, c_dim + self._ndf, reuse=self._reuse, name='d_conv1'), is_training=self._is_training, reuse=self._reuse, name_scope='d_bn1' ), slope=0.2 ) h1 = tf.reshape(h1, [batch_size, h1_size*h1_size*(c_dim+self._ndf)]) h1 = tf.concat([h1, y], axis=1) # (100, 28*28*(1+64)+10) h2 = ops.leaky_relu( ops.batch_norm( ops.fc(h1, self._fc_dim, reuse=self._reuse, name='d_fc2'), is_training=self._is_training, reuse=self._reuse, name_scope='d_bn2' ), slope=0.2 ) h2 = tf.concat([h2, y], axis=1) # (100, 794) # h3 = tf.nn.sigmoid( h3 = ops.fc(h2, 1, reuse=self._reuse, name='d_fc3') # ) self._reuse = True return h3 # (100, 1)
def generator(self, opts, noise, is_training, reuse=False): """Generator function, suitable for simple picture experiments. Args: noise: [num_points, dim] array, where dim is dimensionality of the latent noise space. is_training: bool, defines whether to use batch_norm in the train or test mode. Returns: [num_points, dim1, dim2, dim3] array, where the first coordinate indexes the points, which all are of the shape (dim1, dim2, dim3). """ output_shape = self._data.data_shape # (dim1, dim2, dim3) # Computing the number of noise vectors on-the-go dim1 = tf.shape(noise)[0] num_filters = opts['g_num_filters'] with tf.variable_scope("GENERATOR", reuse=reuse): height = output_shape[0] / 4 width = output_shape[1] / 4 h0 = ops.linear(opts, noise, num_filters * height * width, scope='h0_lin') h0 = tf.reshape(h0, [-1, height, width, num_filters]) h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1') # h0 = tf.nn.relu(h0) h0 = ops.lrelu(h0) _out_shape = [dim1, height * 2, width * 2, num_filters / 2] # for 28 x 28 does 7 x 7 --> 14 x 14 h1 = ops.deconv2d(opts, h0, _out_shape, scope='h1_deconv') h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2') # h1 = tf.nn.relu(h1) h1 = ops.lrelu(h1) _out_shape = [dim1, height * 4, width * 4, num_filters / 4] # for 28 x 28 does 14 x 14 --> 28 x 28 h2 = ops.deconv2d(opts, h1, _out_shape, scope='h2_deconv') h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3') # h2 = tf.nn.relu(h2) h2 = ops.lrelu(h2) _out_shape = [dim1] + list(output_shape) # data_shape[0] x data_shape[1] x ? -> data_shape h3 = ops.deconv2d(opts, h2, _out_shape, d_h=1, d_w=1, scope='h3_deconv') h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4') if opts['input_normalize_sym']: return tf.nn.tanh(h3) else: return tf.nn.sigmoid(h3)
def dcgan_like_arch(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape num_units = opts['g_num_filters'] batch_size = tf.shape(noise)[0] num_layers = opts['g_num_layers'] if opts['g_arch'] == 'dcgan': height = output_shape[0] / 2**num_layers width = output_shape[1] / 2**num_layers elif opts['g_arch'] == 'dcgan_mod': height = output_shape[0] / 2**(num_layers-1) width = output_shape[1] / 2**(num_layers-1) else: assert False h0 = ops.linear( opts, noise, num_units * height * width, scope='h0_lin') h0 = tf.reshape(h0, [-1, height, width, num_units]) h0 = tf.nn.relu(h0) layer_x = h0 for i in xrange(num_layers-1): scale = 2**(i+1) if opts['g_stride1_deconv']: # Sylvain, I'm worried about this part! _out_shape = [batch_size, height * scale / 2, width * scale / 2, num_units / scale * 2] layer_x = ops.deconv2d( opts, layer_x, _out_shape, d_h=1, d_w=1, scope='h%d_deconv_1x1' % i) layer_x = tf.nn.relu(layer_x) _out_shape = [batch_size, height * scale, width * scale, num_units / scale] layer_x = ops.deconv2d(opts, layer_x, _out_shape, scope='h%d_deconv' % i) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1)) layer_x = tf.nn.dropout(layer_x, _keep_prob) _out_shape = [batch_size] + list(output_shape) if opts['g_arch'] == 'dcgan': last_h = ops.deconv2d( opts, layer_x, _out_shape, scope='hlast_deconv') elif opts['g_arch'] == 'dcgan_mod': last_h = ops.deconv2d( opts, layer_x, _out_shape, d_h=1, d_w=1, scope='hlast_deconv') else: assert False if opts['input_normalize_sym']: return tf.nn.tanh(last_h) else: return tf.nn.sigmoid(last_h)
def conv_up_res(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape num_units = opts['g_num_filters'] batch_size = tf.shape(noise)[0] num_layers = opts['g_num_layers'] data_height = output_shape[0] data_width = output_shape[1] data_channels = output_shape[2] height = data_height / 2**num_layers width = data_width / 2**num_layers h0 = ops.linear( opts, noise, num_units * height * width, scope='h0_lin') h0 = tf.reshape(h0, [-1, height, width, num_units]) h0 = tf.nn.relu(h0) layer_x = h0 for i in xrange(num_layers-1): layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width)) layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_%d' % i) height *= 2 width *= 2 num_units /= 2 if opts['g_3x3_conv'] > 0: before = layer_x for j in range(opts['g_3x3_conv']): layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='conv2d_3x3_%d_%d' % (i, j), conv_filters_dim=3) layer_x = tf.nn.relu(layer_x) layer_x += before # Residual connection. if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = tf.nn.relu(layer_x) if opts['dropout']: _keep_prob = tf.minimum( 1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1)) layer_x = tf.nn.dropout(layer_x, _keep_prob) layer_x = tf.image.resize_nearest_neighbor(layer_x, (2 * height, 2 * width)) layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='last_conv2d_%d' % i) if opts['input_normalize_sym']: return tf.nn.tanh(layer_x) else: return tf.nn.sigmoid(layer_x)
def ali_deconv(self, opts, noise, is_training, reuse, keep_prob): output_shape = self._data.data_shape batch_size = tf.shape(noise)[0] noise_size = int(noise.get_shape()[1]) data_height = output_shape[0] data_width = output_shape[1] data_channels = output_shape[2] noise = tf.reshape(noise, [-1, 1, 1, noise_size]) num_units = opts['g_num_filters'] layer_params = [] layer_params.append([4, 1, num_units]) layer_params.append([4, 2, num_units / 2]) layer_params.append([4, 1, num_units / 4]) layer_params.append([4, 2, num_units / 8]) layer_params.append([5, 1, num_units / 8]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = noise height = 1 width = 1 for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - 1) * stride + kernel width = height layer_x = ops.deconv2d( opts, layer_x, [batch_size, height, width, channels], d_h=stride, d_w=stride, scope='h%d_deconv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == data_height assert width == data_width # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units / 8, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['input_normalize_sym']: return tf.nn.tanh(layer_x) else: return tf.nn.sigmoid(layer_x)
def ali_encoder(self, opts, input_, is_training=False, reuse=False, keep_prob=1.): num_units = opts['e_num_filters'] layer_params = [] layer_params.append([5, 1, num_units / 8]) layer_params.append([4, 2, num_units / 4]) layer_params.append([4, 1, num_units / 2]) layer_params.append([4, 2, num_units]) layer_params.append([4, 1, num_units * 2]) # For convolution: (n - k) / stride + 1 = s # For transposed: (s - 1) * stride + k = n layer_x = input_ height = int(layer_x.get_shape()[1]) width = int(layer_x.get_shape()[2]) assert height == width for i, (kernel, stride, channels) in enumerate(layer_params): height = (height - kernel) / stride + 1 width = height # print((height, width)) layer_x = ops.conv2d( opts, layer_x, channels, d_h=stride, d_w=stride, scope='h%d_conv' % i, conv_filters_dim=kernel, padding='VALID') if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) assert height == 1 assert width == 1 # Then two 1x1 convolutions. layer_x = ops.conv2d(opts, layer_x, num_units * 2, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1) if opts['batch_norm']: layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast') layer_x = ops.lrelu(layer_x, 0.1) layer_x = ops.conv2d(opts, layer_x, num_units / 2, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1) if opts['e_is_random']: latent_mean = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin') log_latent_sigmas = ops.linear( opts, layer_x, opts['latent_space_dim'], scope='hlast_lin_sigma') return latent_mean, log_latent_sigmas else: return ops.linear(opts, layer_x, opts['latent_space_dim'], scope='hlast_lin')
def _recon_loss_using_disc_conv_eb(self, opts, reconstructed_training, real_points, is_training, keep_prob): """Build an additional loss using a discriminator in X space, using Energy Based approach.""" def copy3D(height, width, channels): m = np.zeros([height, width, channels, height, width, channels]) for i in xrange(height): for j in xrange(width): for c in xrange(channels): m[i, j, c, i, j, c] = 1.0 return tf.constant(np.reshape(m, [height, width, channels, -1]), dtype=tf.float32) def _architecture(inputs, reuse=None): dim = opts['adv_c_patches_size'] height = int(inputs.get_shape()[1]) width = int(inputs.get_shape()[2]) channels = int(inputs.get_shape()[3]) with tf.variable_scope('DISC_X_LOSS', reuse=reuse): num_units = opts['adv_c_num_units'] num_layers = 1 layer_x = inputs for i in xrange(num_layers): # scale = 2**(num_layers-i-1) layer_x = ops.conv2d(opts, layer_x, num_units, d_h=1, d_w=1, scope='h%d_conv' % i, conv_filters_dim=dim, padding='SAME') # if opts['batch_norm']: # layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i) layer_x = ops.lrelu(layer_x, 0.1) #tf.nn.relu(layer_x) copy_w = copy3D(dim, dim, channels) duplicated = tf.nn.conv2d(inputs, copy_w, strides=[1, 1, 1, 1], padding='SAME') decoded = ops.conv2d( opts, layer_x, channels * dim * dim, d_h=1, d_w=1, scope="decoder", conv_filters_dim=1, padding='SAME') reconstruction = tf.reduce_mean(tf.square(tf.stop_gradient(duplicated) - decoded), [1, 2, 3]) assert len(reconstruction.get_shape()) == 1 return flatten(layer_x), reconstruction reconstructed_embed_sg, adv_fake_layer = _architecture(tf.stop_gradient(reconstructed_training), reuse=None) reconstructed_embed, _ = _architecture(reconstructed_training, reuse=True) # Below line enforces the forward to be reconstructed_embed and backwards to NOT change the discriminator.... crazy_hack = reconstructed_embed-reconstructed_embed_sg+tf.stop_gradient(reconstructed_embed_sg) real_p_embed_sg, adv_true_layer = _architecture(tf.stop_gradient(real_points), reuse=True) real_p_embed, _ = _architecture(real_points, reuse=True) adv_fake = tf.reduce_mean(adv_fake_layer) adv_true = tf.reduce_mean(adv_true_layer) adv_c_loss = tf.log(adv_true) - tf.log(adv_fake) emb_c = tf.reduce_sum(tf.square(crazy_hack - tf.stop_gradient(real_p_embed)), 1) emb_c_loss = tf.reduce_mean(emb_c) return adv_c_loss, emb_c_loss
def __init__(self, sess, config, is_crop=True, batch_size=64, output_size=64, z_dim=100, gf_dim=64, df_dim=64, gfc_dim=1024, dfc_dim=1024, c_dim=3, dataset_name='default', checkpoint_dir=None, sample_dir=None, log_dir=None): """ Args: sess: TensorFlow session batch_size: The size of batch. Should be specified before training. output_size: (optional) The resolution in pixels of the images. [64] z_dim: (optional) Dimension of dim for Z. [100] gf_dim: (optional) Dimension of gen filters in first conv layer. [64] df_dim: (optional) Dimension of discrim filters in first conv layer. [64] gfc_dim: (optional) Dimension of gen units for for fully connected layer. [1024] dfc_dim: (optional) Dimension of discrim units for fully connected layer. [1024] c_dim: (optional) Dimension of image color. For grayscale input, set to 1. [3] """ self.sess = sess self.config = config self.is_crop = is_crop self.is_grayscale = (c_dim == 1) self.batch_size = batch_size self.sample_size = batch_size self.output_size = output_size self.sample_dir = sample_dir self.log_dir=log_dir self.checkpoint_dir = checkpoint_dir self.z_dim = z_dim self.gf_dim = gf_dim self.df_dim = df_dim self.gfc_dim = gfc_dim self.dfc_dim = dfc_dim self.c_dim = c_dim # batch normalization : deals with poor initialization helps gradient flow self.d_bn1 = batch_norm(name='d_bn1') self.d_bn2 = batch_norm(name='d_bn2') self.d_bn3 = batch_norm(name='d_bn3') self.g_bn0 = batch_norm(name='g_bn0') self.g_bn1 = batch_norm(name='g_bn1') self.g_bn2 = batch_norm(name='g_bn2') self.g_bn3 = batch_norm(name='g_bn3') self.dataset_name = dataset_name self.build_model()
def discriminator(images, labels, reuse=False): with tf.variable_scope("discriminator") as scope: if reuse: scope.reuse_variables() # conv1 conv1 = ops.conv_2d(images, 64, scope="conv1") # leakly ReLu h1 = ops.leaky_relu(conv1) # conv2 conv2 = ops.conv_2d(h1, 128, scope="conv2") # batch norm norm2 = ops.batch_norm(conv2, scope="batch_norm2", is_training=True) # leaky ReLU h2 = ops.leaky_relu(norm2) # conv3 conv3 = ops.conv_2d(h2, 256, scope="conv3") # batch norm norm3 = ops.batch_norm(conv3, scope="batch_norm3", is_training=True) # leaky ReLU h3 = ops.leaky_relu(norm3) # conv4 conv4 = ops.conv_2d(h3, 512, scope="conv4") # batch norm norm4 = ops.batch_norm(conv4, scope="batch_norm4", is_training=True) # leaky ReLU h4 = ops.leaky_relu(norm4) # reshape h4_reshape = tf.reshape(h4, [FLAGS.batch_size, -1]) # source logits source_logits = ops.fc(h4_reshape, 1, scope="source_logits") # class logits class_logits = ops.fc( h4_reshape, FLAGS.n_classes, scope="class_logits") return source_logits, class_logits
def _initialize_params(self): all_weights = {} batch_norms = {} gen_vars = [] disc_vars = [] # init generator weights prev_layer_dim = self.z_dim for layer_i in xrange(len(self.generator_params['dim'])): name = 'gen_w' + str(layer_i) all_weights[name] = ops.variable(name, [self.generator_params['ksize'][layer_i], self.generator_params['ksize'][layer_i], self.generator_params['dim'][layer_i], prev_layer_dim], self.initializer) gen_vars.append(all_weights[name]) if layer_i+1==len(self.generator_params['dim']): name = 'gen_b' + str(layer_i) all_weights[name] = ops.variable(name, [self.generator_params['dim'][layer_i]], ) gen_vars.append(all_weights[name]) else: name = 'gen_bn' + str(layer_i) batch_norms[name] = ops.batch_norm(self.generator_params['dim'][layer_i], name=name) prev_layer_dim = self.generator_params['dim'][layer_i] # init discriminator weights prev_layer_dim = self.image_dim for layer_i in xrange(len(self.discriminator_params['dim'])): name = 'disc_w' + str(layer_i) all_weights[name] = ops.variable(name, [self.discriminator_params['ksize'][layer_i], self.discriminator_params['ksize'][layer_i], prev_layer_dim, self.discriminator_params['dim'][layer_i]], self.initializer) disc_vars.append(all_weights[name]) if layer_i+1==len(self.discriminator_params['dim']): name = 'disc_b' + str(layer_i) all_weights[name] = ops.variable(name, [self.discriminator_params['dim'][layer_i]], tf.constant_initializer(0.0)) disc_vars.append(all_weights[name]) else: name = 'disc_bn' + str(layer_i) batch_norms[name] = ops.batch_norm(self.discriminator_params['dim'][layer_i], name=name) prev_layer_dim = self.discriminator_params['dim'][layer_i] return all_weights, batch_norms, gen_vars, disc_vars
def _initialize_params(self): all_weights = {} batch_norms = {} gen_vars = [] disc_vars = [] # init generator weights prev_layer_dim = self.z_dim for layer_i in xrange(len(self.generator_params['dim'])): name = 'gen_w' + str(layer_i) all_weights[name] = ops.variable(name, [self.generator_params['ksize'][layer_i], self.generator_params['ksize'][layer_i], self.generator_params['dim'][layer_i], prev_layer_dim], self.initializer) gen_vars.append(all_weights[name]) if layer_i+1==len(self.generator_params['dim']): name = 'gen_b' + str(layer_i) all_weights[name] = ops.variable(name, [self.generator_params['dim'][layer_i]], ) gen_vars.append(all_weights[name]) else: name = 'gen_bn' + str(layer_i) batch_norms[name] = ops.batch_norm(self.generator_params['dim'][layer_i], name=name) prev_layer_dim = self.generator_params['dim'][layer_i] # init discriminator weights for disc_i in xrange(len(self.discriminators_params)): prev_layer_dim = self.image_dim cur_params = self.discriminators_params[disc_i] for layer_i in xrange(len(cur_params['dim'])): name = 'disc' + str(disc_i) + '_w' + str(layer_i) all_weights[name] = ops.variable(name, [cur_params['ksize'][layer_i], cur_params['ksize'][layer_i], prev_layer_dim, cur_params['dim'][layer_i]], self.initializer) disc_vars.append(all_weights[name]) if layer_i+1==len(cur_params['dim']): name = 'disc' + str(disc_i) + '_b' + str(layer_i) all_weights[name] = ops.variable(name, [cur_params['dim'][layer_i]], tf.constant_initializer(0.0)) disc_vars.append(all_weights[name]) else: name = 'disc_' + str(disc_i) + '_bn' + str(layer_i) batch_norms[name] = ops.batch_norm(cur_params['dim'][layer_i], name=name) prev_layer_dim = cur_params['dim'][layer_i] return all_weights, batch_norms, gen_vars, disc_vars