Python ops 模块,deconv2d() 实例源码

我们从Python开源项目中,提取了以下11个代码示例,用于说明如何使用ops.deconv2d()

项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def generator(hparams, z, scope_name, train, reuse):

    with tf.variable_scope(scope_name) as scope:
        if reuse:
            scope.reuse_variables()

        output_size = 64
        s = output_size
        s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

        g_bn0 = ops.batch_norm(name='g_bn0')
        g_bn1 = ops.batch_norm(name='g_bn1')
        g_bn2 = ops.batch_norm(name='g_bn2')
        g_bn3 = ops.batch_norm(name='g_bn3')

        # project `z` and reshape
        h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8])
        h0 = tf.nn.relu(g_bn0(h0, train=train))

        h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1')
        h1 = tf.nn.relu(g_bn1(h1, train=train))

        h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2')
        h2 = tf.nn.relu(g_bn2(h2, train=train))

        h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3')
        h3 = tf.nn.relu(g_bn3(h3, train=train))

        h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4')
        x_gen = tf.nn.tanh(h4)

    return x_gen
项目:csgm    作者:AshishBora    | 项目源码 | 文件源码
def generator(hparams, z, train, reuse):

    if reuse:
        tf.get_variable_scope().reuse_variables()

    output_size = 64
    s = output_size
    s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

    g_bn0 = ops.batch_norm(name='g_bn0')
    g_bn1 = ops.batch_norm(name='g_bn1')
    g_bn2 = ops.batch_norm(name='g_bn2')
    g_bn3 = ops.batch_norm(name='g_bn3')

    # project `z` and reshape
    h0 = tf.reshape(ops.linear(z, hparams.gf_dim*8*s16*s16, 'g_h0_lin'), [-1, s16, s16, hparams.gf_dim * 8])
    h0 = tf.nn.relu(g_bn0(h0, train=train))

    h1 = ops.deconv2d(h0, [hparams.batch_size, s8, s8, hparams.gf_dim*4], name='g_h1')
    h1 = tf.nn.relu(g_bn1(h1, train=train))

    h2 = ops.deconv2d(h1, [hparams.batch_size, s4, s4, hparams.gf_dim*2], name='g_h2')
    h2 = tf.nn.relu(g_bn2(h2, train=train))

    h3 = ops.deconv2d(h2, [hparams.batch_size, s2, s2, hparams.gf_dim*1], name='g_h3')
    h3 = tf.nn.relu(g_bn3(h3, train=train))

    h4 = ops.deconv2d(h3, [hparams.batch_size, s, s, hparams.c_dim], name='g_h4')
    x_gen = tf.nn.tanh(h4)

    return x_gen
项目:CausalGAN    作者:mkocaoglu    | 项目源码 | 文件源码
def GeneratorCNN( z, config, reuse=None):
    '''
    maps z to a 64x64 images with values in [-1,1]
    uses batch normalization internally
    '''

    #trying to get around batch_size like this:
    batch_size=tf.shape(z)[0]
    #batch_size=tf.placeholder_with_default(64,[],'bs')

    with tf.variable_scope("generator",reuse=reuse) as vs:
        g_bn0 = batch_norm(name='g_bn0')
        g_bn1 = batch_norm(name='g_bn1')
        g_bn2 = batch_norm(name='g_bn2')
        g_bn3 = batch_norm(name='g_bn3')

        s_h, s_w = config.gf_dim, config.gf_dim#64,64
        s_h2, s_w2 = conv_out_size_same(s_h, 2), conv_out_size_same(s_w, 2)
        s_h4, s_w4 = conv_out_size_same(s_h2, 2), conv_out_size_same(s_w2, 2)
        s_h8, s_w8 = conv_out_size_same(s_h4, 2), conv_out_size_same(s_w4, 2)
        s_h16, s_w16 = conv_out_size_same(s_h8, 2), conv_out_size_same(s_w8, 2)



        # project `z` and reshape
        z_, self_h0_w, self_h0_b = linear(
            z, config.gf_dim*8*s_h16*s_w16, 'g_h0_lin', with_w=True)

        self_h0 = tf.reshape(
            z_, [-1, s_h16, s_w16, config.gf_dim * 8])
        h0 = tf.nn.relu(g_bn0(self_h0))

        h1, h1_w, h1_b = deconv2d(
            h0, [batch_size, s_h8, s_w8, config.gf_dim*4], name='g_h1', with_w=True)
        h1 = tf.nn.relu(g_bn1(h1))

        h2, h2_w, h2_b = deconv2d(
            h1, [batch_size, s_h4, s_w4, config.gf_dim*2], name='g_h2', with_w=True)
        h2 = tf.nn.relu(g_bn2(h2))

        h3, h3_w, h3_b = deconv2d(
            h2, [batch_size, s_h2, s_w2, config.gf_dim*1], name='g_h3', with_w=True)
        h3 = tf.nn.relu(g_bn3(h3))

        h4, h4_w, h4_b = deconv2d(
            h3, [batch_size, s_h, s_w, config.c_dim], name='g_h4', with_w=True)
        out=tf.nn.tanh(h4)

    variables = tf.contrib.framework.get_variables(vs)
    return out, variables
项目:CGAN    作者:theflashsean1    | 项目源码 | 文件源码
def __call__(self, z, y):
        """
        :param z: 2D [batch_size, z_dim]
        :param y: 2D [batch_size, y_dim]
        :return:
        """
        batch_size, y_dim = y.get_shape().as_list()
        batch_size_, z_dim = z.get_shape().as_list()
        assert batch_size == batch_size_
        h1_size = int(self._output_size / 4)
        h2_size = int(self._output_size / 2)

        with tf.variable_scope(self._name):
            yb = tf.reshape(y, shape=[-1, 1, 1, y_dim])  # (100, 1, 1, 10)

            z = tf.concat([z, y], axis=1)  # (batch_size=100, y_dim+z_dim=110)
            h0 = tf.nn.relu(
                ops.batch_norm(
                    ops.fc(z, self._fc_dim, reuse=self._reuse, name='g_fc0'),
                    is_training=self._is_training,
                    reuse=self._reuse,
                    name_scope='g_bn0'
                )
            )
            h0 = tf.concat([h0, y], axis=1)  # (batch_size=100, fc_dim+y_dim=794)

            h1 = tf.nn.relu(
                ops.batch_norm(
                    ops.fc(h0, self._ngf*h1_size*h1_size, reuse=self._reuse, name='g_fc1'),
                    is_training=self._is_training,
                    reuse=self._reuse,
                    name_scope='g_bn1'
                )
            )
            h1 = tf.reshape(h1, shape=[-1, h1_size, h1_size, self._ngf])
            h1 = tf.concat([h1, yb*tf.ones([batch_size, h1_size, h1_size, y_dim])], axis=3)  # (100, 7, 7, 522)

            h2 = tf.nn.relu(
                ops.batch_norm(
                    ops.deconv2d(h1, self._ngf, reuse=self._reuse, name='g_conv2'),
                    is_training=self._is_training,
                    reuse=self._reuse,
                    name_scope='g_bn2'
                )
            )
            h2 = tf.concat([h2, yb*tf.ones([batch_size, h2_size, h2_size, y_dim])], axis=3)  # (100, 14, 14, 522)
            h3 = tf.nn.sigmoid(
                ops.deconv2d(h2, self._channel_dim, reuse=self._reuse, name='g_conv3')
            )  # TODO DIMENSION??? SHRINK
        self._reuse = True
        return h3  # (100, 28, 28, 1)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, is_training, reuse=False):
        """Generator function, suitable for simple picture experiments.

        Args:
            noise: [num_points, dim] array, where dim is dimensionality of the
                latent noise space.
            is_training: bool, defines whether to use batch_norm in the train
                or test mode.
        Returns:
            [num_points, dim1, dim2, dim3] array, where the first coordinate
            indexes the points, which all are of the shape (dim1, dim2, dim3).
        """

        output_shape = self._data.data_shape # (dim1, dim2, dim3)
        # Computing the number of noise vectors on-the-go
        dim1 = tf.shape(noise)[0]
        num_filters = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):

            height = output_shape[0] / 4
            width = output_shape[1] / 4
            h0 = ops.linear(opts, noise, num_filters * height * width,
                            scope='h0_lin')
            h0 = tf.reshape(h0, [-1, height, width, num_filters])
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            # h0 = tf.nn.relu(h0)
            h0 = ops.lrelu(h0)
            _out_shape = [dim1, height * 2, width * 2, num_filters / 2]
            # for 28 x 28 does 7 x 7 --> 14 x 14
            h1 = ops.deconv2d(opts, h0, _out_shape, scope='h1_deconv')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            # h1 = tf.nn.relu(h1)
            h1 = ops.lrelu(h1)
            _out_shape = [dim1, height * 4, width * 4, num_filters / 4]
            # for 28 x 28 does 14 x 14 --> 28 x 28
            h2 = ops.deconv2d(opts, h1, _out_shape, scope='h2_deconv')
            h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            # h2 = tf.nn.relu(h2)
            h2 = ops.lrelu(h2)
            _out_shape = [dim1] + list(output_shape)
            # data_shape[0] x data_shape[1] x ? -> data_shape
            h3 = ops.deconv2d(opts, h2, _out_shape,
                              d_h=1, d_w=1, scope='h3_deconv')
            h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h3)
        else:
            return tf.nn.sigmoid(h3)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def generator(self, opts, noise, is_training, reuse=False):
        """Generator function, suitable for bigger simple pictures.

        Args:
            noise: [num_points, dim] array, where dim is dimensionality of the
                latent noise space.
            is_training: bool, defines whether to use batch_norm in the train
                or test mode.
        Returns:
            [num_points, dim1, dim2, dim3] array, where the first coordinate
            indexes the points, which all are of the shape (dim1, dim2, dim3).
        """

        output_shape = self._data.data_shape # (dim1, dim2, dim3)
        # Computing the number of noise vectors on-the-go
        dim1 = tf.shape(noise)[0]
        num_filters = opts['g_num_filters']

        with tf.variable_scope("GENERATOR", reuse=reuse):

            height = output_shape[0] / 16
            width = output_shape[1] / 16
            h0 = ops.linear(opts, noise, num_filters * height * width,
                            scope='h0_lin')
            h0 = tf.reshape(h0, [-1, height, width, num_filters])
            h0 = ops.batch_norm(opts, h0, is_training, reuse, scope='bn_layer1')
            h0 = tf.nn.relu(h0)
            _out_shape = [dim1, height * 2, width * 2, num_filters / 2]
            # for 128 x 128 does 8 x 8 --> 16 x 16
            h1 = ops.deconv2d(opts, h0, _out_shape, scope='h1_deconv')
            h1 = ops.batch_norm(opts, h1, is_training, reuse, scope='bn_layer2')
            h1 = tf.nn.relu(h1)
            _out_shape = [dim1, height * 4, width * 4, num_filters / 4]
            # for 128 x 128 does 16 x 16 --> 32 x 32 
            h2 = ops.deconv2d(opts, h1, _out_shape, scope='h2_deconv')
            h2 = ops.batch_norm(opts, h2, is_training, reuse, scope='bn_layer3')
            h2 = tf.nn.relu(h2)
            _out_shape = [dim1, height * 8, width * 8, num_filters / 8]
            # for 128 x 128 does 32 x 32 --> 64 x 64 
            h3 = ops.deconv2d(opts, h2, _out_shape, scope='h3_deconv')
            h3 = ops.batch_norm(opts, h3, is_training, reuse, scope='bn_layer4')
            h3 = tf.nn.relu(h3)
            _out_shape = [dim1, height * 16, width * 16, num_filters / 16]
            # for 128 x 128 does 64 x 64 --> 128 x 128 
            h4 = ops.deconv2d(opts, h3, _out_shape, scope='h4_deconv')
            h4 = ops.batch_norm(opts, h4, is_training, reuse, scope='bn_layer5')
            h4 = tf.nn.relu(h4)
            _out_shape = [dim1] + list(output_shape)
            # data_shape[0] x data_shape[1] x ? -> data_shape
            h5 = ops.deconv2d(opts, h4, _out_shape,
                              d_h=1, d_w=1, scope='h5_deconv')
            h5 = ops.batch_norm(opts, h5, is_training, reuse, scope='bn_layer6')

        if opts['input_normalize_sym']:
            return tf.nn.tanh(h5)
        else:
            return tf.nn.sigmoid(h5)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def dcgan_like_arch(self, opts, noise, is_training, reuse, keep_prob):
        output_shape = self._data.data_shape
        num_units = opts['g_num_filters']

        batch_size = tf.shape(noise)[0]
        num_layers = opts['g_num_layers']
        if opts['g_arch'] == 'dcgan':
            height = output_shape[0] / 2**num_layers
            width = output_shape[1] / 2**num_layers
        elif opts['g_arch'] == 'dcgan_mod':
            height = output_shape[0] / 2**(num_layers-1)
            width = output_shape[1] / 2**(num_layers-1)
        else:
            assert False

        h0 = ops.linear(
            opts, noise, num_units * height * width, scope='h0_lin')
        h0 = tf.reshape(h0, [-1, height, width, num_units])
        h0 = tf.nn.relu(h0)
        layer_x = h0
        for i in xrange(num_layers-1):
            scale = 2**(i+1)
            if opts['g_stride1_deconv']:
                # Sylvain, I'm worried about this part!
                _out_shape = [batch_size, height * scale / 2,
                              width * scale / 2, num_units / scale * 2]
                layer_x = ops.deconv2d(
                    opts, layer_x, _out_shape, d_h=1, d_w=1,
                    scope='h%d_deconv_1x1' % i)
                layer_x = tf.nn.relu(layer_x)
            _out_shape = [batch_size, height * scale, width * scale, num_units / scale]
            layer_x = ops.deconv2d(opts, layer_x, _out_shape, scope='h%d_deconv' % i)
            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = tf.nn.relu(layer_x)
            if opts['dropout']:
                _keep_prob = tf.minimum(
                    1., 0.9 - (0.9 - keep_prob) * float(i + 1) / (num_layers - 1))
                layer_x = tf.nn.dropout(layer_x, _keep_prob)

        _out_shape = [batch_size] + list(output_shape)
        if opts['g_arch'] == 'dcgan':
            last_h = ops.deconv2d(
                opts, layer_x, _out_shape, scope='hlast_deconv')
        elif opts['g_arch'] == 'dcgan_mod':
            last_h = ops.deconv2d(
                opts, layer_x, _out_shape, d_h=1, d_w=1, scope='hlast_deconv')
        else:
            assert False

        if opts['input_normalize_sym']:
            return tf.nn.tanh(last_h)
        else:
            return tf.nn.sigmoid(last_h)
项目:adagan    作者:tolstikhin    | 项目源码 | 文件源码
def ali_deconv(self, opts, noise, is_training, reuse, keep_prob):
        output_shape = self._data.data_shape

        batch_size = tf.shape(noise)[0]
        noise_size = int(noise.get_shape()[1])
        data_height = output_shape[0]
        data_width = output_shape[1]
        data_channels = output_shape[2]

        noise = tf.reshape(noise, [-1, 1, 1, noise_size])

        num_units = opts['g_num_filters']
        layer_params = []
        layer_params.append([4, 1, num_units])
        layer_params.append([4, 2, num_units / 2])
        layer_params.append([4, 1, num_units / 4])
        layer_params.append([4, 2, num_units / 8])
        layer_params.append([5, 1, num_units / 8])
        # For convolution: (n - k) / stride + 1 = s
        # For transposed: (s - 1) * stride + k = n
        layer_x = noise
        height = 1
        width = 1
        for i, (kernel, stride, channels) in enumerate(layer_params):
            height = (height - 1) * stride + kernel
            width = height
            layer_x = ops.deconv2d(
                opts, layer_x, [batch_size, height, width, channels], d_h=stride, d_w=stride,
                scope='h%d_deconv' % i, conv_filters_dim=kernel, padding='VALID')
            if opts['batch_norm']:
                layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bn%d' % i)
            layer_x = ops.lrelu(layer_x, 0.1)
        assert height == data_height
        assert width == data_width

        # Then two 1x1 convolutions.
        layer_x = ops.conv2d(opts, layer_x, num_units / 8, d_h=1, d_w=1, scope='conv2d_1x1', conv_filters_dim=1)
        if opts['batch_norm']:
            layer_x = ops.batch_norm(opts, layer_x, is_training, reuse, scope='bnlast')
        layer_x = ops.lrelu(layer_x, 0.1)
        layer_x = ops.conv2d(opts, layer_x, data_channels, d_h=1, d_w=1, scope='conv2d_1x1_2', conv_filters_dim=1)

        if opts['input_normalize_sym']:
            return tf.nn.tanh(layer_x)
        else:
            return tf.nn.sigmoid(layer_x)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)
项目:opt-mmd    作者:dougalsutherland    | 项目源码 | 文件源码
def generator(self, z, y=None, is_train=True, reuse=False):
        if reuse:
            tf.get_variable_scope().reuse_variables()

        s = self.output_size
        if np.mod(s, 16) == 0:
            s2, s4, s8, s16 = int(s/2), int(s/4), int(s/8), int(s/16)

            # project `z` and reshape
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*s16*s16, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s16, s16, self.gf_dim * 8])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s8, s8, self.gf_dim*4], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s4, s4, self.gf_dim*2], name='g_h2', with_w=True)
            h2 = tf.nn.relu(self.g_bn2(h2, train=is_train))

            h3, self.h3_w, self.h3_b = deconv2d(h2,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h3', with_w=True)
            h3 = tf.nn.relu(self.g_bn3(h3, train=is_train))

            h4, self.h4_w, self.h4_b = deconv2d(h3,
                [self.batch_size, s, s, self.c_dim], name='g_h4', with_w=True)
            return tf.nn.tanh(h4)
        else:
            s = self.output_size
            s2, s4 = int(s/2), int(s/4)
            self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*2*s4*s4, 'g_h0_lin', with_w=True)

            self.h0 = tf.reshape(self.z_, [-1, s4, s4, self.gf_dim * 2])
            h0 = tf.nn.relu(self.g_bn0(self.h0, train=is_train))

            self.h1, self.h1_w, self.h1_b = deconv2d(h0,
                [self.batch_size, s2, s2, self.gf_dim*1], name='g_h1', with_w=True)
            h1 = tf.nn.relu(self.g_bn1(self.h1, train=is_train))

            h2, self.h2_w, self.h2_b = deconv2d(h1,
                [self.batch_size, s, s, self.c_dim], name='g_h2', with_w=True)

            return tf.nn.tanh(h2)