Python pandas 模块,isnull() 实例源码
我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pandas.isnull()。
def read_data(fname):
""" Read football-data.co.uk csv """
data = (
pd.read_csv(fname)
.rename(columns={
'HomeTeam': 'home_team',
'AwayTeam': 'away_team',
'FTHG': 'home_goals',
'FTAG': 'away_goals'
})
.loc[lambda df: ~pd.isnull(df['home_goals'])] # Remove future games
)
team_map = stan_map(pd.concat([data['home_team'], data['away_team']]))
data['home_team_id'] = data['home_team'].replace(team_map)
data['away_team_id'] = data['away_team'].replace(team_map)
for col in ('home_goals', 'away_goals'):
data[col] = [int(c) for c in data[col]]
return data, team_map
def get_resolution(pdb_id):
"""Quick way to get the resolution of a PDB ID using the table of results from the REST service
Returns infinity if the resolution is not available.
Returns:
float: resolution of a PDB ID in Angstroms
TODO:
- Unit test
"""
pdb_id = pdb_id.upper()
if pdb_id not in _property_table().index:
raise ValueError('PDB ID not in property table')
else:
resolution = _property_table().ix[pdb_id, 'resolution']
if pd.isnull(resolution):
log.debug('{}: no resolution available, probably not an X-ray crystal structure')
resolution = float('inf')
return resolution
def get_release_date(pdb_id):
"""Quick way to get the release date of a PDB ID using the table of results from the REST service
Returns None if the release date is not available.
Returns:
str: Organism of a PDB ID
"""
pdb_id = pdb_id.upper()
if pdb_id not in _property_table().index:
raise ValueError('PDB ID not in property table')
else:
release_date = _property_table().ix[pdb_id, 'releaseDate']
if pd.isnull(release_date):
log.debug('{}: no taxonomy available')
release_date = None
return release_date
def do_pharm_prod(drug_qid, brand_rxnorm, emea, url, brand_name):
# write info on the pharmaceutical product page
ref = create_ref_statement(emea, url)
# has active substance
s = [wdi_core.WDItemID(drug_qid, 'P3781', references=[ref])]
# instance of
s.append(wdi_core.WDItemID('Q28885102', 'P31', references=[ref])) # pharmaceutical product
s.append(wdi_core.WDItemID('Q169336', 'P31', references=[ref])) # chemical mixture
# emea
s.append(wdi_core.WDExternalID(emea, 'P3637', references=[ref]))
if not pd.isnull(brand_rxnorm):
s.append(wdi_core.WDExternalID(str(int(brand_rxnorm)), "P3345"))
item = wdi_core.WDItemEngine(item_name=brand_name, data=s, domain="drugs", append_value=['P3781'])
item.set_label(brand_name)
if item.get_description() == '':
item.set_description("pharmaceutical product")
wdi_helpers.try_write(item, emea, 'P3637', login, edit_summary="add 'active ingredient'")
return item.wd_item_id
def get_wikidata_do_mesh():
# get mesh xrefs, and including mapping relation type
# {'DOID:0050856': {'skos:broadMatch_D019958'}}
query = """
select ?item ?doid ?mesh ?mesh_rt where {
?item wdt:P699 ?doid .
?item p:P486 ?mesh_s .
?mesh_s ps:P486 ?mesh .
optional { ?mesh_s pq:P4390 ?mesh_rt }
}"""
results = WDItemEngine.execute_sparql_query(query)['results']['bindings']
results = [{k: v['value'].replace("http://www.wikidata.org/entity/", "") for k, v in item.items()} for item in
results]
df = pd.DataFrame(results)
df['mesh_rt'] = df.apply(lambda row: QID_MAP_REL_TYPE_CURIE[row.mesh_rt] + "_MESH:" + row.mesh, axis=1)
df['_item'] = df['item']
r = df.groupby("_item").aggregate(lambda x: set(y for y in x if not pd.isnull(y))).to_dict("records")
wd = {list(x['doid'])[0]: x for x in r}
wd = {k: v['mesh_rt'] for k, v in wd.items()}
wd = {k: v for k, v in wd.items() if v}
return wd
def correct_p1c1(rinex_dump, replace_p1_with_c1=True):
"""
"""
if rinex_dump.recv_p1c1 not in [1, 2, 3]:
raise ValueError('unknown receiver type {} (must be 1, 2, or 3)'.format(rinex_dump.recv_p1c1))
for sat in sorted(set(rinex_dump.sat)):
b = rinex_dump.p1c1_table[sat]
if rinex_dump.recv_p1c1 == 1:
rinex_dump.loc[rinex_dump.sat == sat, 'C1'] += b
rinex_dump.loc[rinex_dump.sat == sat, 'P2'] += b
elif rinex_dump.recv_p1c1 == 2:
rinex_dump.loc[rinex_dump.sat == sat, 'C1'] += b
if replace_p1_with_c1:
I = PD.isnull(rinex_dump['P1'])
rinex_dump.loc[I, 'P1'] = rinex_dump.loc[I, 'C1']
return rinex_dump
def to_ns(x):
"""Convert input timestamps to nanoseconds (integers)
:param x: value to be converted
:returns: converted value
:rtype: int
"""
if pd.isnull(x):
return 0
try:
return pd.to_datetime(x).value
except:
if hasattr(x, '__str__'):
return pd.to_datetime(str(x)).value
return 0
def check_nan(val):
"""Check input value for not a number
:param val: value to be checked for nan
:returns: true if nan
:rtype: bool
"""
if pd.isnull(val):
return True
if isinstance(val, str):
val = val.strip()
if not val or val.lower() == 'none' or val.lower() == 'nan':
return True
#from numpy import datetime64
# if isinstance(val, datetime64):
# return val == datetime64('NaT')
return False
def to_str(val, **kwargs):
"""Convert input to string
:param val: value to be converted
:returns: converted value
:rtype: str
"""
try:
if pd.isnull(val):
return kwargs['nan']
except BaseException:
pass
if isinstance(val, str):
return val
if kwargs.get('convert_inconsistent_dtypes', True):
if hasattr(val, '__str__'):
return str(val)
return kwargs['nan']
def to_int(val, **kwargs):
"""Convert input to int
:param val: value to be evaluated
:returns: evaluated value
:rtype: np.int64
"""
try:
if pd.isnull(val):
return kwargs['nan']
except BaseException:
pass
if isinstance(val, np.int64) or isinstance(val, int):
return np.int64(val)
if kwargs.get('convert_inconsistent_dtypes', True):
try:
return np.int64(val)
except BaseException:
pass
return kwargs['nan']
def bool_to_str(val, **kwargs):
"""Convert input boolean to str
:param val: value to be evaluated
:returns: evaluated value
:rtype: str
"""
try:
if pd.isnull(val):
return kwargs['nan']
except BaseException:
pass
if isinstance(val, np.bool_) or isinstance(val, bool):
return str(val)
if kwargs.get('convert_inconsistent_dtypes', True):
if hasattr(val, '__str__'):
return str(val)
return kwargs['nan']
def bool_to_int(val):
"""Convert input boolean to int
:param val: value to be evaluated
:returns: evaluated value
:rtype: np.int64
"""
try:
if pd.isnull(val):
return kwargs['nan']
except BaseException:
pass
if isinstance(val, np.bool_) or isinstance(val, bool):
return np.int64(val)
if kwargs.get('convert_inconsistent_dtypes', False):
try:
return np.int64(val)
except BaseException:
pass
return kwargs['nan']
def helper_impute_result_check(self, data, result):
"""
check if the imputed reuslt valid
now, check for:
1. contains no nan anymore
2. orignal non-nan value should remain the same
"""
# check 1
self.assertEqual(pd.isnull(result).sum().sum(), 0)
# check 2
# the original non-missing values must keep unchanged
# to check, cannot use pd equals, since the imputer may convert:
# 1 -> 1.0
# have to do loop checking
missing_value_mask = pd.isnull(data)
for col_name in data:
data_non_missing = data[~missing_value_mask[col_name]][col_name]
result_non_missing = result[~missing_value_mask[col_name]][col_name]
for i in data_non_missing.index:
self.assertEqual(data_non_missing[i]==result_non_missing[i], True,
msg="not equals in column: {}".format(col_name))
def helper_impute_result_check(self, data, result):
"""
check if the imputed reuslt valid
now, check for:
1. contains no nan anymore
2. orignal non-nan value should remain the same
"""
# check 1
self.assertEqual(pd.isnull(result).sum().sum(), 0)
# check 2
# the original non-missing values must keep unchanged
# to check, cannot use pd equals, since the imputer may convert:
# 1 -> 1.0
# have to do loop checking
missing_value_mask = pd.isnull(data)
for col_name in data:
data_non_missing = data[~missing_value_mask[col_name]][col_name]
result_non_missing = result[~missing_value_mask[col_name]][col_name]
for i in data_non_missing.index:
self.assertEqual(data_non_missing[i]==result_non_missing[i], True,
msg="not equals in column: {}".format(col_name))
def helper_impute_result_check(self, data, result):
"""
check if the imputed reuslt valid
now, check for:
1. contains no nan anymore
2. orignal non-nan value should remain the same
"""
# check 1
self.assertEqual(pd.isnull(result).sum().sum(), 0)
# check 2
# the original non-missing values must keep unchanged
# to check, cannot use pd equals, since the imputer may convert:
# 1 -> 1.0
# have to do loop checking
missing_value_mask = pd.isnull(data)
for col_name in data:
data_non_missing = data[~missing_value_mask[col_name]][col_name]
result_non_missing = result[~missing_value_mask[col_name]][col_name]
for i in data_non_missing.index:
self.assertEqual(data_non_missing[i]==result_non_missing[i], True,
msg="not equals in column: {}".format(col_name))
def helper_impute_result_check(self, data, result):
"""
check if the imputed reuslt valid
now, check for:
1. contains no nan anymore
2. orignal non-nan value should remain the same
"""
# check 1
self.assertEqual(pd.isnull(result).sum().sum(), 0)
# check 2
# the original non-missing values must keep unchanged
# to check, cannot use pd equals, since the imputer may convert:
# 1 -> 1.0
# have to do loop checking
missing_value_mask = pd.isnull(data)
for col_name in data:
data_non_missing = data[~missing_value_mask[col_name]][col_name]
result_non_missing = result[~missing_value_mask[col_name]][col_name]
for i in data_non_missing.index:
self.assertEqual(data_non_missing[i]==result_non_missing[i], True,
msg="not equals in column: {}".format(col_name))
def limits(self):
if self.is_empty():
return (0, 1)
# Fall back to the range if the limits
# are not set or if any is None or NaN
if self._limits is not None and self.range.range is not None:
limits = []
if len(self._limits) == len(self.range.range):
for l, r in zip(self._limits, self.range.range):
value = r if pd.isnull(l) else l
limits.append(value)
else:
limits = self._limits
return tuple(limits)
return self.range.range
def map(self, x, limits=None):
"""
Return an array-like of x mapped to values
from the scales palette
"""
if limits is None:
limits = self.limits
n = sum(~pd.isnull(list(limits)))
pal = self.palette(n)
if isinstance(pal, dict):
# manual palette with specific assignments
pal_match = [pal[val] for val in x]
else:
pal = np.asarray(pal)
pal_match = pal[match(x, limits)]
pal_match[pd.isnull(pal_match)] = self.na_value
return pal_match
def _mode(x, def_fill=ImputerMixin._def_fill):
"""Get the most common value in a 1d
H2OFrame. Ties will be handled in a non-specified
manner.
Parameters
----------
x : ``H2OFrame``, shape=(n_samples, 1)
The 1d frame from which to derive the mode
"""
idx = x.as_data_frame(use_pandas=True)[x.columns[0]].value_counts().index
# if the most common is null, then return the next most common.
# if there is no next common (i.e., 100% null) then we return the def_fill
return idx[0] if not pd.isnull(idx[0]) else idx[1] if idx.shape[0] > 1 else def_fill
def get_loctype(location, date_index):
"""Returns a pandas Series of the location type for each day.
Locations with a changetime have type *city* before that day, and *conflict*
after it.
"""
n_days = len(date_index)
changetime = location.time
if pd.isnull(changetime):
loctype = location.location_type
else:
#0:changetime, loctype = "city"
loctype = ['city'] * int(changetime)
#changetime:-1, loctype = "conflict"
loctype +=['conflict'] * int(n_days - changetime)
return pd.Series(loctype, index=date_index)
def compare_except(s1, s2, exceptions=[]):
conc = pd.concat([s1, s2], axis=1, ignore_index=True)
def except_apply(x):
try:
str1 = x[0]
str2 = x[1]
for ex in exceptions:
str1 = str1.replace(ex, "")
return jellyfish.jaro_distance(str1, str2)
except Exception as err:
if pd.isnull(x[0]) or pd.isnull(x[1]):
return np.nan
else:
raise err
return conc.apply(except_apply, axis=1)
def find_null_columns(df, features):
"""Locates columns in a pandas dataframe that have no values.
Args:
df: A pandas dataframe containing data.
wanted_feats: A list of string names of columns storing the actual data.
Returns: A list of string names of the null columns.
"""
df_len = len(df)
bad_feats = []
for feat in features:
null_len = len(df[df[feat].isnull()])
if df_len == null_len:
bad_feats.append(feat)
return bad_feats
def _merge_query_params(self, params, date=None):
ret = ''
for key, value in params.iteritems():
if key == 'tenor' and pd.isnull(value):
ret += 'tradeDate=' + date + ';'
elif not pd.isnull(value):
if key == Header.TENOR:
py_assert(date is not None, ValueError, 'date must be given if tenor is not None')
# unit = ''.join(re.findall('[0-9]+', params[Header.TENOR]))
# freq = FreqType(params[Header.TENOR][len(unit):])
ret += 'startDate=' + WIND_DATA_PROVIDER.forward_date(date, value,
self.date_format) + ';endDate=' + date + ';'
elif key == Header.FREQ and value[:3] == 'min':
ret += ('BarSize=' + value[3:] + ';')
else:
ret += (key + '=' + str(value) + ';')
ret = ret[:-1] + FactorLoader._check_industry_params(params.name)
return ret
def _complement_bases(self, genotype):
if pd.isnull(genotype):
return np.nan
complement = ''
for base in list(genotype):
if base == 'A':
complement += 'T'
elif base == 'G':
complement += 'C'
elif base == 'C':
complement += 'G'
elif base == 'T':
complement += 'A'
return complement
def cleanNullColumns(sheet):
"""
Helper function to discard columns in sheets where each value in column is null.
Accepts a DataFrame as the sheet argument.
Returns the cleaned dataframe or an error Tuple of (False, error)
"""
try:# check for and remove columns with all NaNs
for column in sheet.columns:
if pd.isnull(sheet[column]).all():
sheet.drop(column, axis=1, inplace=True)
return sheet
except Exception as e:
return False, e
def get_isd_data(self, station, year):
filename_format = '/pub/data/noaa/{year}/{station}-{year}.gz'
lines = self._retreive_file_lines(filename_format, station, year)
dates = pd.date_range("{}-01-01 00:00".format(year),
"{}-12-31 23:00".format(int(year) + 1),
freq='H', tz=pytz.UTC)
series = pd.Series(None, index=dates, dtype=float)
for line in lines:
if line[87:92].decode('utf-8') == "+9999":
temp_C = float("nan")
else:
temp_C = float(line[87:92]) / 10.
date_str = line[15:27].decode('utf-8')
# there can be multiple readings per hour, so set all to minute 0
dt = pytz.UTC.localize(datetime.strptime(date_str, "%Y%m%d%H%M")).replace(minute=0)
# only set the temp if it's the first encountered in the hour.
if pd.isnull(series.ix[dt]):
series[dt] = temp_C
return series
def get_input_data_mask(self, input_data):
''' Boolean list of missing/not missing values:
True => missing
False => not missing
'''
trace_data, temp_data = input_data
dts = []
mask = []
if trace_data.empty or temp_data.empty:
return pd.Series(mask)
for (start, energy), (p, group) in zip(
trace_data.iteritems(),
temp_data.groupby(level="period")):
temps = group.copy()
temps.index = temps.index.droplevel()
daily_temps = temps.resample('D').apply(np.mean)[0]
for i, tempF in daily_temps.iteritems():
dts.append(i)
mask.append(pd.isnull(energy) or pd.isnull(tempF))
return pd.Series(mask, index=dts)
def test_multiple_records_with_gap(serializer):
records = [
{
"start": datetime(2000, 1, 1, tzinfo=pytz.UTC),
"end": datetime(2000, 1, 2, tzinfo=pytz.UTC),
"value": 1,
},
{
"start": datetime(2000, 1, 3, tzinfo=pytz.UTC),
"end": datetime(2000, 1, 4, tzinfo=pytz.UTC),
"value": 2,
},
]
df = serializer.to_dataframe(records)
assert df.value[datetime(2000, 1, 1, tzinfo=pytz.UTC)] == 1
assert not df.estimated[datetime(2000, 1, 1, tzinfo=pytz.UTC)]
assert pd.isnull(df.value[datetime(2000, 1, 2, tzinfo=pytz.UTC)])
assert not df.estimated[datetime(2000, 1, 2, tzinfo=pytz.UTC)]
assert df.value[datetime(2000, 1, 3, tzinfo=pytz.UTC)] == 2
assert not df.estimated[datetime(2000, 1, 3, tzinfo=pytz.UTC)]
assert pd.isnull(df.value[datetime(2000, 1, 4, tzinfo=pytz.UTC)])
assert not df.estimated[datetime(2000, 1, 4, tzinfo=pytz.UTC)]
def test_multiple_records(serializer):
records = [
{
"start": datetime(2000, 1, 1, tzinfo=pytz.UTC),
"value": 1,
},
{
"start": datetime(2000, 1, 2, tzinfo=pytz.UTC),
"value": 2,
},
]
df = serializer.to_dataframe(records)
assert df.value[datetime(2000, 1, 1, tzinfo=pytz.UTC)] == 1
assert not df.estimated[datetime(2000, 1, 1, tzinfo=pytz.UTC)]
assert pd.isnull(df.value[datetime(2000, 1, 2, tzinfo=pytz.UTC)])
assert not df.estimated[datetime(2000, 1, 2, tzinfo=pytz.UTC)]
def test_multiple_records(serializer):
records = [
{
"end": datetime(2000, 1, 1, tzinfo=pytz.UTC),
"value": 1,
},
{
"end": datetime(2000, 1, 2, tzinfo=pytz.UTC),
"value": 2,
},
]
df = serializer.to_dataframe(records)
assert df.value[datetime(2000, 1, 1, tzinfo=pytz.UTC)] == 2
assert not df.estimated[datetime(2000, 1, 1, tzinfo=pytz.UTC)]
assert pd.isnull(df.value[datetime(2000, 1, 2, tzinfo=pytz.UTC)])
assert not df.estimated[datetime(2000, 1, 2, tzinfo=pytz.UTC)]
def test_to_records(serializer):
data = {"value": [1, np.nan], "estimated": [True, False]}
columns = ["value", "estimated"]
index = pd.date_range('2000-01-01', periods=2, freq='D')
df = pd.DataFrame(data, index=index, columns=columns)
records = serializer.to_records(df)
assert len(records) == 2
assert records[0]["end"] == datetime(2000, 1, 1, tzinfo=pytz.UTC)
assert pd.isnull(records[0]["value"])
assert not records[0]["estimated"]
assert records[1]["end"] == datetime(2000, 1, 2, tzinfo=pytz.UTC)
assert records[1]["value"] == 1
assert records[1]["estimated"]
def test_get_last_traded_equity_minute(self):
trading_calendar = self.trading_calendars[Equity]
# Case: Missing data at front of data set, and request dt is before
# first value.
dts = trading_calendar.minutes_for_session(self.trading_days[0])
asset = self.asset_finder.retrieve_asset(1)
self.assertTrue(pd.isnull(
self.data_portal.get_last_traded_dt(
asset, dts[0], 'minute')))
# Case: Data on requested dt.
dts = trading_calendar.minutes_for_session(self.trading_days[2])
self.assertEqual(dts[1],
self.data_portal.get_last_traded_dt(
asset, dts[1], 'minute'))
# Case: No data on dt, but data occuring before dt.
self.assertEqual(dts[4],
self.data_portal.get_last_traded_dt(
asset, dts[5], 'minute'))
def test_get_last_traded_future_minute(self):
asset = self.asset_finder.retrieve_asset(10000)
trading_calendar = self.trading_calendars[Future]
# Case: Missing data at front of data set, and request dt is before
# first value.
dts = trading_calendar.minutes_for_session(self.trading_days[0])
self.assertTrue(pd.isnull(
self.data_portal.get_last_traded_dt(
asset, dts[0], 'minute')))
# Case: Data on requested dt.
dts = trading_calendar.minutes_for_session(self.trading_days[3])
self.assertEqual(dts[1],
self.data_portal.get_last_traded_dt(
asset, dts[1], 'minute'))
# Case: No data on dt, but data occuring before dt.
self.assertEqual(dts[4],
self.data_portal.get_last_traded_dt(
asset, dts[5], 'minute'))
def sendData(con, df):
cursor = con.cursor()
cols = df.columns.tolist()
values = df.values
for vals in values:
for i,val in enumerate(vals):
if pd.isnull(val):
vals[i]=None
query = 'INSERT INTO {} ({}) VALUES ({})'.format(
SEND_TABLE,
','.join(['"{}"'.format(x) for x in cols]),
','.join(['%s']*len(cols)))
cursor.execute(query, tuple(vals))
con.commit()
cursor.close()
def __convert_survey_to_sequence(self):
s = self.__beamline
if 'LENGTH' not in s:
s['LENGTH'] = np.nan
offset = s['ORBIT_LENGTH'][0] / 2.0
if pd.isnull(offset):
offset = 0
self.__beamline['AT_CENTER'] = pd.DataFrame(
npl.norm(
[
s['X'].diff().fillna(0.0),
s['Y'].diff().fillna(0.0)
],
axis=0
) - (
s['LENGTH'].fillna(0.0) / 2.0 - s['ORBIT_LENGTH'].fillna(0.0) / 2.0
) + (
s['LENGTH'].shift(1).fillna(0.0) / 2.0 - s['ORBIT_LENGTH'].shift(1).fillna(0.0) / 2.0
)).cumsum() / 1000.0 + offset
self.__converted_from_survey = True
def split_rbends(line, n=20):
split_line = pd.DataFrame()
for index, row in line.iterrows():
if row['CLASS'] == 'RBEND' and pd.isnull(row.get('SPLIT')):
angle = row['ANGLE'] / n
length = row['L'] / n
for i in range(0,n):
row = row.copy()
row.name = index + "_{}".format(i)
row['SPLIT'] = True
row['ANGLE'] = angle
row['L'] = length
split_line = split_line.append(row)
else:
split_line = split_line.append(row)
split_line[['THICK']] = split_line[['THICK']].applymap(bool)
return split_line
def element_to_mad(e):
"""Convert a pandas.Series representation onto a MAD-X sequence element."""
if e.CLASS not in SUPPORTED_CLASSES:
return ""
mad = "{}: {}, ".format(e.name, e.CLASS)
if e.get('BENDING_ANGLE') is not None and not np.isnan(e['BENDING_ANGLE']):
mad += f"ANGLE={e['BENDING_ANGLE']},"
elif e.get('ANGLE') is not None and not np.isnan(e['ANGLE']):
mad += f"ANGLE={e.get('ANGLE', 0)},"
else:
# Angle property not supported by the element or absent
mad += ""
mad += ', '.join(["{}={}".format(p, e[p]) for p in SUPPORTED_PROPERTIES if pd.notnull(e.get(p, None))])
if pd.notnull(e['LENGTH']) and e['LENGTH'] != 0.0:
mad += ", L={}".format(e['LENGTH'])
if pd.notnull(e.get('APERTYPE', None)):
mad += ", APERTURE={}".format(str(e['APERTURE']).strip('[]'))
if pd.notnull(e.get('PLUG')) and pd.notnull(e.get('CIRCUIT')) and pd.isnull(e.get('VALUE')):
mad += ", {}:={}".format(e['PLUG'], e['CIRCUIT'])
if pd.notnull(e.get('PLUG')) and pd.notnull(e.get('VALUE')):
mad += ", {}={}".format(e['PLUG'], e['VALUE'])
mad += ", AT={}".format(e['AT_CENTER'])
mad += ";"
return mad
def _validate_pandas_index(index, label):
# `/` and `\0` aren't permitted because they are invalid filename
# characters on *nix filesystems. The remaining values aren't permitted
# because they *could* be misinterpreted by a shell (e.g. `*`, `|`).
illegal_chars = ['/', '\0', '\\', '*', '<', '>', '?', '|', '$']
chars_for_msg = ", ".join("%r" % i for i in illegal_chars)
illegal_chars = set(illegal_chars)
# First check the index dtype and ensure there are no null values
if index.dtype_str not in ['object', 'str'] or pd.isnull(index).any():
msg = "Non-string Metadata %s values detected" % label
raise ValueError(invalid_metadata_template % msg)
# Then check for invalid characters along index
for value in index:
if not value or illegal_chars & set(value):
msg = "Invalid characters (e.g. %s) or empty ID detected in " \
"metadata %s: %r" % (chars_for_msg, label, value)
raise ValueError(invalid_metadata_template % msg)
# Finally, ensure unique values along index
if len(index) != len(set(index)):
msg = "Duplicate Metadata %s values detected" % label
raise ValueError(invalid_metadata_template % msg)
def isnull(value):
"""
Return true if values is NaN or None.
>>> import numpy as np
>>> ReadPandas.isnull(np.NaN)
True
>>> ReadPandas.isnull(None)
True
>>> ReadPandas.isnull(0)
False
:param value: Value to test
:return: Return true for NaN or None values.
:rtype: bool
"""
return pd.isnull(value)
def clean_data(self):
# load qualif and race data
df_qual = self.load_qualif_data()
df_races = self.load_results_data()
# remove Japan as no data for 2015 race
df_qual = self.del_japan15(df_qual)
df_races = self.del_japan15(df_races)
# create unique id
df_qual = self.unique_id(df_qual)
df_races = self.unique_id(df_races)
# merge the results
df_out = df_races.merge(
df_qual, on='id_', how='inner', suffixes=('', '_qual'))
df_out = df_out[pd.isnull(df_out.q_min) == False]
print df_out.shape
return df_out.reset_index(drop=1), df_races.reset_index(drop=1), df_qual.reset_index(drop=1)
# load the data
def Xy_matrix(df_qual_and_race, columns, df_wet):
df_q_r_out = df_qual_and_race.loc[:, columns].reset_index(drop=1)
df_q_r_out = df_q_r_out[(pd.isnull(
df_q_r_out[y_label]) == False) & (pd.isnull(df_q_r_out.q_min) == False)].reset_index(drop=1)
X = df_q_r_out.loc[:, ['q_min', 'position_qual', 'raceId', 'circuitId',
'driverId', 'year', 'round', 'dob', y_label]]
# birth year / mo
X['birth_year'] = map(lambda x: int(x.year), df_q_r_out['dob'])
X['birth_mo'] = map(lambda x: int(x.month), df_q_r_out['dob'])
X.drop('dob', axis=1, inplace=1)
# adding wet as a feature
# weather data
df_races = d['races'].copy()
# df_races.head()
X = X.merge(df_wet.drop(['circuitId'], 1),
how='left', on=['year', 'round'])
# pit stop
df_pits = d['pitStops'].groupby(['raceId', 'driverId'], as_index=0)[
'milliseconds'].sum()
df_pits.reset_index(drop=1, inplace=1)
X_y = X.merge(df_pits, how='left', on=['raceId', 'driverId'])
X_y.fillna(0, inplace=1)
return X_y
def differences(self, name, values, ref_values, precision):
"""
Returns a short summary of where values differ, for two columns.
"""
for i, val in enumerate(values):
refval = ref_values[i]
if val != refval and not (pd.isnull(val) and pd.isnull(refval)):
stop = self.ndifferences(values, ref_values, i)
summary_vals = self.sample_format(values, i, stop, precision)
summary_ref_vals = self.sample_format(ref_values, i, stop,
precision)
return 'From row %d: [%s] != [%s]' % (i+1,
summary_vals,
summary_ref_vals)
if values.dtype != ref_values.dtype:
return 'Different types'
else:
return 'But mysteriously appear to be identical!'
def pandas_tdda_type(x):
dt = getattr(x, 'dtype', None)
if type(x) == str or dt == np.dtype('O'):
return 'string'
dts = str(dt)
if type(x) == bool or 'bool' in dts:
return 'bool'
if type(x) in (int, long) or 'int' in dts:
return 'int'
if type(x) == float or 'float' in dts:
return 'real'
if (type(x) == datetime.datetime or 'datetime' in dts
or type(x) == pandas_Timestamp):
return 'date'
if x is None or (not isinstance(x, pd.core.series.Series)
and pd.isnull(x)):
return 'null'
# Everything else is other, for now, including compound types,
# unicode in Python2, bytes in Python3 etc.
return 'other'
def _predict(self, treenode, X):
"""
predict a single sample
note that X is a tupe(index,pandas.core.series.Series) from df.iterrows()
"""
if treenode.is_leaf:
return treenode.leaf_score
elif pd.isnull(X[1][treenode.feature]):
if treenode.nan_direction == 0:
return self._predict(treenode.left_child, X)
else:
return self._predict(treenode.right_child, X)
elif X[1][treenode.feature] < treenode.threshold:
return self._predict(treenode.left_child, X)
else:
return self._predict(treenode.right_child, X)
def ffill_buffer_from_prior_values(freq,
field,
buffer_frame,
digest_frame,
pv_frame,
raw=False):
"""
Forward-fill a buffer frame, falling back to the end-of-period values of a
digest frame if the buffer frame has leading NaNs.
"""
# convert to ndarray if necessary
digest_values = digest_frame
if raw and isinstance(digest_frame, pd.DataFrame):
digest_values = digest_frame.values
buffer_values = buffer_frame
if raw and isinstance(buffer_frame, pd.DataFrame):
buffer_values = buffer_frame.values
nan_sids = pd.isnull(buffer_values[0])
if np.any(nan_sids) and len(digest_values):
# If we have any leading nans in the buffer and we have a non-empty
# digest frame, use the oldest digest values as the initial buffer
# values.
buffer_values[0, nan_sids] = digest_values[-1, nan_sids]
nan_sids = pd.isnull(buffer_values[0])
if np.any(nan_sids):
# If we still have leading nans, fall back to the last known values
# from before the digest.
key_loc = pv_frame.index.get_loc((freq.freq_str, field))
filler = pv_frame.values[key_loc, nan_sids]
buffer_values[0, nan_sids] = filler
if raw:
filled = ffill(buffer_values)
return filled
return buffer_frame.ffill()
def ffill_digest_frame_from_prior_values(freq,
field,
digest_frame,
pv_frame,
raw=False):
"""
Forward-fill a digest frame, falling back to the last known prior values if
necessary.
"""
# convert to ndarray if necessary
values = digest_frame
if raw and isinstance(digest_frame, pd.DataFrame):
values = digest_frame.values
nan_sids = pd.isnull(values[0])
if np.any(nan_sids):
# If we have any leading nans in the frame, use values from pv_frame to
# seed values for those sids.
key_loc = pv_frame.index.get_loc((freq.freq_str, field))
filler = pv_frame.values[key_loc, nan_sids]
values[0, nan_sids] = filler
if raw:
filled = ffill(values)
return filled
return digest_frame.ffill()
def combine_water_heights(in_data):
'''
Combine median and average water heights
Create a column of water heights in input data frame using Median
Water Depth by default, but fills in missing data using average
values
@param in_data: Input water heights data
'''
if 'Mean Water Depth' in in_data.columns and 'Median Water Depth' in in_data.columns:
# replacing all null median data with mean data
median_null_index = pd.isnull(in_data.loc[:,'Median Water Depth'])
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Median Water Depth']
# Check if there is any replacement data available
if (~pd.isnull(in_data.loc[median_null_index, 'Mean Water Depth'])).sum() > 0:
in_data.loc[median_null_index, 'Combined Water Depth'] = in_data.loc[median_null_index, 'Mean Water Depth']
elif 'Mean Water Depth' in in_data.columns and 'Median Water Depth' not in in_data.columns:
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Mean Water Depth']
elif 'Mean Water Depth' not in in_data.columns and 'Median Water Depth' in in_data.columns:
in_data.loc[:,'Combined Water Depth'] = in_data.loc[:,'Median Water Depth']
else:
raise ValueError("in_data needs either 'Mean Water Depth' or 'Median Water Depth' or both")
def CONV(self, param):
df = pd.DataFrame(index = param[0].index)
df['X'] = param[0]
df['W'] = param[1]
class Convolution:
def __init__(self, N):
self.N = N
self.q = deque([], self.N)
self.tq = deque([], self.N)
self.s = 0
self.t = 0
def handleInput(self, row):
if len(self.q) < self.N:
if pd.isnull(row['W']) or pd.isnull(row['X']):
return np.NaN
self.q.append(row['W'] * row['X'])
self.tq.append(row['W'])
self.s += row['W'] * row['X']
self.t += row['W']
return np.NaN
ret = self.s / self.t
self.s -= self.q[0]
self.t -= self.tq[0]
delta_s = row['W'] * row['X']
delta_t = row['W']
self.s += delta_s
self.t += delta_t
self.q.append(delta_s)
self.tq.append(delta_t)
return ret
conv = Convolution(param[2])
result = df.apply(conv.handleInput, axis = 1, reduce = True)
return result
#??????
def build_strain_specific_models(self, save_models=False):
"""Using the orthologous genes matrix, create and modify the strain specific models based on if orthologous
genes exist.
Also store the sequences directly in the reference GEM-PRO protein sequence attribute for the strains.
"""
if len(self.df_orthology_matrix) == 0:
raise RuntimeError('Empty orthology matrix')
# Create an emptied copy of the reference GEM-PRO
for strain_gempro in tqdm(self.strains):
log.debug('{}: building strain specific model'.format(strain_gempro.id))
# For each genome, load the metabolic model or genes from the reference GEM-PRO
logging.disable(logging.WARNING)
if self._empty_reference_gempro.model:
strain_gempro.load_cobra_model(self._empty_reference_gempro.model)
elif self._empty_reference_gempro.genes:
strain_gempro.genes = [x.id for x in self._empty_reference_gempro.genes]
logging.disable(logging.NOTSET)
# Get a list of genes which do not have orthology in the strain
not_in_strain = self.df_orthology_matrix[pd.isnull(self.df_orthology_matrix[strain_gempro.id])][strain_gempro.id].index.tolist()
# Mark genes non-functional
self._pare_down_model(strain_gempro=strain_gempro, genes_to_remove=not_in_strain)
# Load sequences into the base and strain models
self._load_strain_sequences(strain_gempro=strain_gempro)
if save_models:
cobra.io.save_json_model(model=strain_gempro.model,
filename=op.join(self.model_dir, '{}.json'.format(strain_gempro.id)))
strain_gempro.save_pickle(op.join(self.model_dir, '{}_gp.pckl'.format(strain_gempro.id)))
log.info('Created {} new strain-specific models and loaded in sequences'.format(len(self.strains)))
def __ApplyOHE(cls, data, d_feat):
""""""
n = len(data)
result = np.zeros((n, len(d_feat)), dtype='int8')
##
d_stat = {}
for i in range(n):
for col in cls.CategoryCols:
v = data.ix[i, col]
if(col not in d_stat):
d_stat[col] = {}
if(pd.isnull(v)):
result[i, d_feat['%s:missing' % col]] = 1
if('missing' in d_stat[col]):
d_stat[col]['missing'] += 1
else:
d_stat[col]['missing'] = 1
elif('%s:%s' % (col, v) in d_feat):
result[i, d_feat['%s:%s' % (col, v)]] = 1
if('hit' in d_stat[col]):
d_stat[col]['hit'] += 1
else:
d_stat[col]['hit'] = 1
else:
result[i, d_feat['%s:less' % col]] = 1
if('less' in d_stat[col]):
d_stat[col]['less'] += 1
else:
d_stat[col]['less'] = 1
## check
for col in d_stat:
if(np.sum(list(d_stat[col].values())) != n):
print('Encoding for column %s error, %d : %d. ' % (col, np.sum(list(d_stat[col].values())),n))
return result