Python pandas 模块,read_json() 实例源码

我们从Python开源项目中,提取了以下49个代码示例,用于说明如何使用pandas.read_json()

项目:crema    作者:bmcfee    | 项目源码 | 文件源码
def evaluate(input_path, n_jobs):

    aud, ann = zip(*crema.utils.get_ann_audio(input_path))

    test_idx = set(pd.read_json('index_test.json')['id'])

    # drop anything not in the test set
    ann = [ann_i for ann_i in ann if crema.utils.base(ann_i) in test_idx]
    aud = [aud_i for aud_i in aud if crema.utils.base(aud_i) in test_idx]

    stream = tqdm(zip(ann, aud), desc='Evaluating test set', total=len(ann))

    results = Parallel(n_jobs=n_jobs)(delayed(track_eval)(ann_i, aud_i)
                                      for ann_i, aud_i in stream)
    df = pd.DataFrame.from_dict(dict(results), orient='index')

    print('Results')
    print('-------')
    print(df.describe())

    df.to_json(os.path.join(OUTPUT_PATH, 'test_scores.json'))
项目:sequana    作者:sequana    | 项目源码 | 文件源码
def get_stats(self):
        import pandas as pd
        filenames, mode = self._get_files("*.json")
        if mode == "pe":
            df1 = pd.read_json(filenames[0])
            df2 = pd.read_json(filenames[1])
            df  = pd.concat([df1, df2])
            # Should have been sorted !
            df.index = ['R1', 'R2']
        else:
            df = pd.read_json(filenames[0])
            df.index = ['R1']
        df = df[["A", "C", "G", "T", "N", "n_reads", "mean quality", "GC content",
                "average read length", "total bases"]]
        for this in "ACGTN":
            df[this] /= df["total bases"] 
            df[this] *= 100
        return df
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def fetch_raw_metadata_frame(self, api_key, page_number):
        if page_number > 1:
            return pd.DataFrame([])

        raw = pd.read_json(
            self._format_metadata_url(
              api_key,
              page_number,
            ),
            orient='index',
        )

        raw = raw.sort_index().reset_index()
        raw.rename(
            columns={'index': 'symbol'},
            inplace=True,
        )

        raw = raw[raw['isFrozen'] == 0]
        return raw
项目:Medium-crawler-with-data-analyzer    作者:lifei96    | 项目源码 | 文件源码
def read_stories_without_tags():
    stories = list()
    current_date = START_DATE
    while current_date <= END_DATE:
        file_in = open("./TopStories/%s.json" % current_date.isoformat(), 'r')
        raw_data = json.loads(str(file_in.read()))
        file_in.close()
        for raw_story in raw_data['stories']:
            story = dict()
            story['top_date'] = current_date.isoformat()
            story['story_id'] = raw_story['story_id']
            story['author'] = raw_story['author']
            story['published_date'] = raw_story['published_date']
            story['recommends'] = raw_story['recommends']
            story['responses'] = raw_story['responses']
            story['tags_count'] = len(raw_story['tags'])
            stories.append(story)
        print(current_date.isoformat())
        current_date = current_date + datetime.timedelta(days=1)
    return pd.read_json(json.dumps(stories))
项目:Medium-crawler-with-data-analyzer    作者:lifei96    | 项目源码 | 文件源码
def read_stories_by_tags():
    tags = list()
    current_date = START_DATE
    while current_date <= END_DATE:
        file_in = open("./TopStories/%s.json" % current_date.isoformat(), 'r')
        raw_data = json.loads(str(file_in.read()))
        file_in.close()
        for raw_story in raw_data['stories']:
            for raw_tag in raw_story['tags']:
                tag = dict()
                tag['top_date'] = current_date.isoformat()
                tag['story_id'] = raw_story['story_id']
                tag['author'] = raw_story['author']
                tag['published_date'] = raw_story['published_date']
                tag['recommends'] = raw_story['recommends']
                tag['responses'] = raw_story['responses']
                tag['name'] = raw_tag['name']
                tag['post_count'] = raw_tag['postCount']
                tag['follower_count'] = raw_tag['metadata']['followerCount']
                tags.append(tag)
        print(current_date.isoformat())
        current_date = current_date + datetime.timedelta(days=1)
    return pd.read_json(json.dumps(tags))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_from_json_bad_data(self):
        self.assertRaises(ValueError, read_json, StringIO('{"key":b:a:d}'))

        # too few indices
        json = StringIO('{"columns":["A","B"],'
                        '"index":["2","3"],'
                        '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
        self.assertRaises(ValueError, read_json, json,
                          orient="split")

        # too many columns
        json = StringIO('{"columns":["A","B","C"],'
                        '"index":["1","2","3"],'
                        '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
        self.assertRaises(AssertionError, read_json, json,
                          orient="split")

        # bad key
        json = StringIO('{"badkey":["A","B"],'
                        '"index":["2","3"],'
                        '"data":[[1.0,"1"],[2.0,"2"],[null,"3"]]}')
        with tm.assertRaisesRegexp(ValueError, r"unexpected key\(s\): badkey"):
            read_json(json, orient="split")
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_v12_compat(self):
        df = DataFrame(
            [[1.56808523, 0.65727391, 1.81021139, -0.17251653],
             [-0.2550111, -0.08072427, -0.03202878, -0.17581665],
             [1.51493992, 0.11805825, 1.629455, -1.31506612],
             [-0.02765498, 0.44679743, 0.33192641, -0.27885413],
             [0.05951614, -2.69652057, 1.28163262, 0.34703478]],
            columns=['A', 'B', 'C', 'D'],
            index=pd.date_range('2000-01-03', '2000-01-07'))
        df['date'] = pd.Timestamp('19920106 18:21:32.12')
        df.ix[3, 'date'] = pd.Timestamp('20130101')
        df['modified'] = df['date']
        df.ix[1, 'modified'] = pd.NaT

        v12_json = os.path.join(self.dirpath, 'tsframe_v012.json')
        df_unser = pd.read_json(v12_json)
        assert_frame_equal(df, df_unser)

        df_iso = df.drop(['modified'], axis=1)
        v12_iso_json = os.path.join(self.dirpath, 'tsframe_iso_v012.json')
        df_unser_iso = pd.read_json(v12_iso_json)
        assert_frame_equal(df_iso, df_unser_iso)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_date_format_frame(self):
        df = self.tsframe.copy()

        def test_w_date(date, date_unit=None):
            df['date'] = Timestamp(date)
            df.ix[1, 'date'] = pd.NaT
            df.ix[5, 'date'] = pd.NaT
            if date_unit:
                json = df.to_json(date_format='iso', date_unit=date_unit)
            else:
                json = df.to_json(date_format='iso')
            result = read_json(json)
            assert_frame_equal(result, df)

        test_w_date('20130101 20:43:42.123')
        test_w_date('20130101 20:43:42', date_unit='s')
        test_w_date('20130101 20:43:42.123', date_unit='ms')
        test_w_date('20130101 20:43:42.123456', date_unit='us')
        test_w_date('20130101 20:43:42.123456789', date_unit='ns')

        self.assertRaises(ValueError, df.to_json, date_format='iso',
                          date_unit='foo')
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_date_format_series(self):
        def test_w_date(date, date_unit=None):
            ts = Series(Timestamp(date), index=self.ts.index)
            ts.ix[1] = pd.NaT
            ts.ix[5] = pd.NaT
            if date_unit:
                json = ts.to_json(date_format='iso', date_unit=date_unit)
            else:
                json = ts.to_json(date_format='iso')
            result = read_json(json, typ='series')
            assert_series_equal(result, ts)

        test_w_date('20130101 20:43:42.123')
        test_w_date('20130101 20:43:42', date_unit='s')
        test_w_date('20130101 20:43:42.123', date_unit='ms')
        test_w_date('20130101 20:43:42.123456', date_unit='us')
        test_w_date('20130101 20:43:42.123456789', date_unit='ns')

        ts = Series(Timestamp('20130101 20:43:42.123'), index=self.ts.index)
        self.assertRaises(ValueError, ts.to_json, date_format='iso',
                          date_unit='foo')
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_date_unit(self):
        df = self.tsframe.copy()
        df['date'] = Timestamp('20130101 20:43:42')
        df.ix[1, 'date'] = Timestamp('19710101 20:43:42')
        df.ix[2, 'date'] = Timestamp('21460101 20:43:42')
        df.ix[4, 'date'] = pd.NaT

        for unit in ('s', 'ms', 'us', 'ns'):
            json = df.to_json(date_format='epoch', date_unit=unit)

            # force date unit
            result = read_json(json, date_unit=unit)
            assert_frame_equal(result, df)

            # detect date unit
            result = read_json(json, date_unit=None)
            assert_frame_equal(result, df)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_weird_nested_json(self):
        # this used to core dump the parser
        s = r'''{
        "status": "success",
        "data": {
        "posts": [
            {
            "id": 1,
            "title": "A blog post",
            "body": "Some useful content"
            },
            {
            "id": 2,
            "title": "Another blog post",
            "body": "More content"
            }
           ]
          }
        }'''

        read_json(s)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_misc_example(self):

        # parsing unordered input fails
        result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]', numpy=True)
        expected = DataFrame([[1, 2], [1, 2]], columns=['a', 'b'])

        error_msg = """DataFrame\\.index are different

DataFrame\\.index values are different \\(100\\.0 %\\)
\\[left\\]:  Index\\(\\[u?'a', u?'b'\\], dtype='object'\\)
\\[right\\]: RangeIndex\\(start=0, stop=2, step=1\\)"""
        with tm.assertRaisesRegexp(AssertionError, error_msg):
            assert_frame_equal(result, expected, check_index_type=False)

        result = read_json('[{"a": 1, "b": 2}, {"b":2, "a" :1}]')
        expected = DataFrame([[1, 2], [1, 2]], columns=['a', 'b'])
        assert_frame_equal(result, expected)
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def _getUserStrategy(self, downloadStrategyInterval=60):
    """??????????????
    downloadStrategyInterval: int default=60 ?
    return: df"""
    k = "SignForWebUser_preLoadTime"
    preLoadTime = myredis.get_obj(k)
    if preLoadTime is None:
        preLoadTime = datetime.datetime(2015, 10, 19, 15, 33, 47, 53000)    #????????
    #????
    if (agl.curTime() - preLoadTime).total_seconds() > downloadStrategyInterval:
        url = "http://stocksign.sinaapp.com/query?cmd=query_strategy"
        result = Http().get(url)
        df_source = pd.read_json(result)
        df_source.columns = ['id', 'user_id', 'title', 'code']
        preLoadTime = agl.curTime()
        myredis.set_obj(k, preLoadTime)
        myredis.set_obj('mysource', df_source)
    else:
        df_source = myredis.get_obj('mysource')
        if df_source is None:
        df_source = pd.DataFrame([])
    return df_source
项目:market-predictor    作者:bsmitty5000    | 项目源码 | 文件源码
def read_scraped_jason(filename):
    df = pd.read_json(filename)

    for column in df.columns:
        df[column] = df[column].apply(unlist)
    # gets only first 10 characters of date: year/month/day
    df['date'] = df['date'].apply(lambda x: x[:10])
    df['date'] = pd.to_datetime(df['date'])

    # if any removes duplicate posts
    df = df.drop_duplicates(subset = ['keywords'])
    # sorts dataframe by post date
    df = df.sort_values(by='date')

    df = df.drop('body', 1)
    df = df.drop('title', 1)

    df['keywords'].replace('', np.nan, inplace=True)
    df = df.dropna()

    return df
项目:StockPredictor    作者:wallsbreaker    | 项目源码 | 文件源码
def extract_features_from_json():
    input_path = '../../data/20_5_from_2008/'
    df_list = []
    for json_file in os.listdir(input_path):
        train_data = pd.read_json(os.path.join(input_path, json_file), orient='columns')
        train_data.dropna(inplace=True)
        train_data.sort_index(ascending=False, inplace=True)
        train_data.index = range(len(train_data))
        if len(train_data) > 0:
            data_norm(train_data)

        values = train_data['real_up_after_240'].tolist()
        codes = train_data['code'].tolist()
        train_data.drop(['datetime', 'code', 'real_up_after_240'], axis=1, inplace=True)
        features = train_data.values.tolist()

        with open('../../data/20_5_from_2008/data', 'a') as f:
            for ix in xrange(len(codes)):
                if np.inf not in features[ix] and -np.inf not in features[ix]:
                    f.write('%s;0 %s;1 %f\n' % (codes[ix][2:], ' '.join([str(x) for x in features[ix]]), values[ix]))
项目:fitbit-analyzer    作者:5agado    | 项目源码 | 文件源码
def loadStepsData(dumpDir):
    """
    Load steps data from dumping done using the official Fitbit API.
    Check README file for further info on the scraping process and saved format
    :param dumpDir: the folder where the date has been dumped
    :return: a list of dataframes, one for each day, containing the intraday steps data
    """
    def loadFun(jsonData):
        intradayData = jsonData['activities-steps-intraday']['dataset']
        date = jsonData['activities-steps'][0]['dateTime']
        if not intradayData:
            return None
        df = pd.read_json(json.dumps(intradayData))
        df['datetime'] = pd.to_datetime(date + ' ' + df['time'])
        df.drop('time', inplace=True, axis=1)
        return df

    return _loadData(dumpDir, 'steps', loadFun)
项目:bitrader    作者:jr-minnaar    | 项目源码 | 文件源码
def get_orders_frame(self, state=None, kind='auth'):
        q = self.get_orders(state, kind)
        tj = json.dumps(q['orders'])
        df = pd.read_json(tj, convert_dates=['creation_timestamp', 'expiration_timestamp'])
        df.index = df.creation_timestamp
        return df
项目:berlin-devfest-2016-backend    作者:giansegato    | 项目源码 | 文件源码
def processData(data):
    df = pd.DataFrame.transpose(pd.read_json(json.dumps(data)))
    df = df.dropna(subset = [key for key in df.keys() if "x_" in key])
    df = df[pd.notnull(df['y_observed'])]

    X = df[[key for key in df.keys() if "x_" in key]].values
    y = df["y_observed"].values

    return X, y

# 5th: initial model
项目:fabric8-analytics-license-analysis    作者:fabric8-analytics    | 项目源码 | 文件源码
def read_json_file_into_pandas_df(self, filename, index_col=False):
        json_string = self.read_json_file(filename=filename)
        return pd.read_json(json_string)
项目:OpenAPS    作者:medicinexlab    | 项目源码 | 文件源码
def get_bg_dataframe(id_str):
    """
    Function to convert the json file to a pandas dataframe.
    It takes in the string of the id and looks for the devicestatus.json file.
    All data should be stored such that in the directory where main.py lies,
    there is a directory called "data". Inside this directory,
    there is another directory with just the ID Number. Inside this data folder lies the
    devicestatus.json file, which contains the data. If the file is not in the path given,
    it raises an IOError. The path should look like the following example:

    ./data/12345678/devicestatus.json

    Input:      id_str                          ID number as a string
    Output:     bg_df                           Pandas dataframe of all of the data from ./data/[id_str]/devicestatus.json
    Usage:      bg_df = get_bg_dataframe("12345678")
    """

    try:
        file_location = "./data/" + id_str + "/devicestatus.json"
        bg_df = pd.read_json(file_location) #Opens the data file and reads in the data into a dataFrame
    except:
        raise IOError(file_location + " is not a valid file.")

    print
    print("{} total entries.".format(len(bg_df)))

    return bg_df


#Function to find the indices for the given start and end date strings
项目:geekbook    作者:mmagnus    | 项目源码 | 文件源码
def file_search(filename, verbose):
    """Search for filename. Returns dirname of the filename's path, and the full path.

    170107 add cache. If the db is not found, create an empty pandas df 
    and populate this df with append later. If the filename is not in the db
    run g/locate. Then, save the found path to the db (using pandas, via df, to json)"""

    # cache
    if os.path.isfile(JSON_DB):
        df = pd.read_json(JSON_DB, orient='records')
        #filename = 'x.pse'
        pathdf = df[df['fn'] == filename]['path']
        if not pathdf.empty:
            path = pathdf.to_string(index=False)
            logger.info('find file [from the db]:' + filename)
            return os.path.dirname(path), path
    else:
        df = pd.DataFrame()

    # if filename is not found in the db
    logger.info('find file:' + filename)

    if platform.system() == "Linux":
        out = commands.getoutput('locate ' + filename)
    if platform.system() == "Darwin":
        out = commands.getoutput('glocate ' + filename)
    first_hit = out.split('\n')[0]
    logger.info('# of hits ' + str(len(out.split('\n'))) + " " + out.replace('\n',', '))
    if not first_hit:
        logger.info('not found')
    else:
        logger.info('hit ' + first_hit)

    # update cache
    dffile = pd.DataFrame([[filename, first_hit],], columns=['fn', 'path'])
    df = df.append(dffile, ignore_index=True)
    # save to json
    df.to_json(JSON_DB, orient='records')
    ##
    return os.path.dirname(first_hit), first_hit
项目:slaveo    作者:lamter    | 项目源码 | 文件源码
def get_holiday_json(self):
        """
        ???????
        :return:
        """
        path = os.path.join(pwd, 'holiday.json')
        return pd.read_json(path, typ="series").sort_index()
项目:sci-pype    作者:jay-johnson    | 项目源码 | 文件源码
def pd_json_to_df(self, data_json, sorted_by_key="Date", in_ascending=True):
        import pandas as pd
        new_df  = pd.read_json(data_json).sort_values(by=sorted_by_key, ascending=in_ascending)
        return new_df
    # end of pd_json_to_df
项目:visualizations    作者:ContentMine    | 项目源码 | 文件源码
def get_raw(filename):
    with open(filename) as infile:
        raw = infile.read()
        # the next line needs rewriting as soon as the zenodo-dump conforms to 'records'-format
        # [{k:v}, {k:v},...]
        rawfacts = pd.read_json('[%s]' % ','.join(raw.splitlines()), orient='records')
    return rawfacts


### functions for ingesting from CProject



### functions for preprocessing
项目:quickdraw_prediction_model    作者:keisukeirie    | 项目源码 | 文件源码
def load_json(filename):
    '''
    Function:
        - opens json file and store information in a pandas dataframe
        - also prints out aggregated df with counts of picture by countrycode
    Input:
        1. filename/path ex: ./data/filename.json
    Output:
        1. new dataframe containing json info
    '''
    df = pd.read_json(filename, lines=True)
    test = df.groupby(df['countrycode']).count()
    print test.sort(columns='drawing',ascending=False).head(15)
    return df
项目:kaggle-cooking    作者:fpoli    | 项目源码 | 文件源码
def read_data(project_path):
    print "Reading data..."
    train = pd.read_json(project_path + "/data/train.json")
    test = pd.read_json(project_path + "/data/test.json")

    print "Train size:", len(train.id)
    print "Test size:", len(test.id)

    return train, test
项目:fabric8-analytics-stack-analysis    作者:fabric8-analytics    | 项目源码 | 文件源码
def read_json_file_into_pandas_df(self, filename):
        return pd.read_json(os.path.join(self.src_dir, filename), dtype=np.int8)
项目:fabric8-analytics-stack-analysis    作者:fabric8-analytics    | 项目源码 | 文件源码
def read_json_file_into_pandas_df(self, filename):
        json_string = self.read_json_file(filename=filename)
        return pd.read_json(json_string, dtype=np.int8)
项目:IntroPython2016    作者:UWPCE-PythonCert    | 项目源码 | 文件源码
def apiResults(locationInfo):
    query = ("https://data.seattle.gov/resource/pu5n-trf4.json?$limit={}&$where=within_circle(incident_location,{},{},{})"
        .format(locationInfo['limit'],
                locationInfo['latitude'],
                locationInfo['longitude'],
                locationInfo['radius']))
    return pd.read_json(query)
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def fetch_raw_symbol_frame(self,
                               api_key,
                               symbol,
                               calendar,
                               start_date,
                               end_date,
                               frequency):

        # TODO: replace this with direct exchange call
        # The end date and frequency should be used to
        # calculate the number of bars
        if(frequency == 'minute'):
            pc = PoloniexCurator()
            raw = pc.onemin_to_dataframe(symbol, start_date, end_date)

        else:
            raw = pd.read_json(
                self._format_data_url(
                    api_key,
                    symbol,
                    start_date,
                    end_date,
                    frequency,
                ),
                orient='records',
            )
            raw.set_index('date', inplace=True)

        # BcolzDailyBarReader introduces a 1/1000 factor in the way
        # pricing is stored on disk, which we compensate here to get
        # the right pricing amounts
        # ref: data/us_equity_pricing.py
        scale = 1
        raw.loc[:, 'open'] /= scale
        raw.loc[:, 'high'] /= scale
        raw.loc[:, 'low'] /= scale
        raw.loc[:, 'close'] /= scale
        raw.loc[:, 'volume'] *= scale

        return raw
项目:bigquery-bokeh-dashboard    作者:GoogleCloudPlatform    | 项目源码 | 文件源码
def run_query(query, cache_key, expire=3600, dialect='legacy'):
    memcached_client = memcached_discovery.get_client()
    if memcached_client is None:
        return _run(query, dialect=dialect)
    else:
        json = memcached_client.get(cache_key)
        if json is not None:
            df = pd.read_json(json, orient='records')
        else:
            df = _run(query, dialect=dialect)
            memcached_client.set(cache_key, df.to_json(orient='records'), expire=expire)
        return df
项目:Guess-Genre-By-Lyrics    作者:ormatt    | 项目源码 | 文件源码
def main():
    start_time = time.time()
    args = parse_args()
    logger.setLevel(getattr(logging, args.verbosity.upper()))
    logger.info("Started")

    build_constants()

    df = pd.read_json(path_or_buf=DATA_PATH, orient='records', encoding="UTF8")
    logger.debug("Loaded {} rows into df".format(len(df)))

    df = utils.get_data_subset.crop(df, None, None)
    df = utils.get_data_subset.filter_rows_by_string(df,
                                                     [TARGET_COL],
                                                     ['Rock',
                                                      'Hip Hop'])
    df = utils.clean_data.execute_cleaners(df)
    df = utils.normalize_data.normalize_genres(df, TARGET_COL)
    X, y = utils.get_data_subset.get_x_y(df, SAMPLE_COL, TARGET_COL)

    clf = model_pipeline.get_pipeline(SAMPLE_COL)

    utils.persistence.dump(DF_DUMP_NAME, df)
    utils.persistence.dump(CLF_DUMP_NAME, clf)

    if args.train:
        train_and_test.train_and_dump(X, y, clf)
    elif args.test:
        train_and_test.test_using_kfold(X, y, clf)

    logger.info("Finished in {0:.2f} seconds".format(time.time() - start_time))
项目:cjworkbench    作者:CJWorkbench    | 项目源码 | 文件源码
def handle_dotio_url(wf_module, url, split_url, num_rows):
    """
    Processes response for any request to enigma.io. Here, we assume that the API key is provided,
    because, at least at first glance (or two or three) there doesn't seem to be any provisions for
    accessing dataset endpoints sans API key.
    """

    if num_rows > 500:
        wf_module.set_error("You can request a maximum of 500 rows.")
        return

    if "/limit/" not in url:
        if url.endswith('/'):
            url += "limit/{}".format(num_rows)
        else:
            url += "/limit/{}".format(num_rows)

    response = requests.get(url)
    if response.status_code != 200:
        error = json.loads(response.text)
        if "message" in error:
            message = error["message"]
        else:
            message = error["info"]["message"]
            if "additional" in error["info"]:
               message += ": " + error["info"]["additional"]["message"]
        wf_module.set_error("Unable to retrieve data from Enigma. Received {} status, with message {}"
            .format(response.status_code, message))
        return
    try:
        json_text = json.loads(response.text)
        table = pd.read_json(json.dumps(json_text['result']))
        return table
    except Exception as ex: # Generic exceptions suck, but is it the most pragmatic/all-encompassing here?
        wf_module.set_error("Unable to process request: {}".format(str(ex)))
        return
项目:jupyter-handsontables    作者:techmuch    | 项目源码 | 文件源码
def _from_json(self, value, obj=None):
        if value is not None:
            df = pd.read_json(json.dumps(value), orient="split")
        else:
            df = pd.DataFrame()
        return df
项目:jupyter-handsontables    作者:techmuch    | 项目源码 | 文件源码
def _from_json(self, value, obj=None):
        if value is not None:
            df = pd.read_json(json.dumps(value), orient="split")
        else:
            df = pd.DataFrame()
        return df
项目:datanode    作者:jay-johnson    | 项目源码 | 文件源码
def pd_json_to_df(self, data_json, sorted_by_key="Date", in_ascending=True):
        import pandas as pd
        new_df  = pd.read_json(data_json).sort_values(by=sorted_by_key, ascending=in_ascending)
        return new_df
    # end of pd_json_to_df
项目:Medium-crawler-with-data-analyzer    作者:lifei96    | 项目源码 | 文件源码
def read_posts():
    posts = list()
    file_in = open('./post_list.txt', 'r')
    post_list = str(file_in.read()).split(' ')
    file_in.close()
    num = 0
    for post_id in post_list:
        if not post_id:
            continue
        if not os.path.exists('./data/Posts/%s.json' % post_id):
            continue
        try:
            file_in = open('./data/Posts/%s.json' % post_id, 'r')
            raw_data = json.loads(str(file_in.read()))
            file_in.close()
            post = dict()
            post['post_id'] = post_id
            post['published_date'] = raw_data['published_date']
            post['recommends'] = raw_data['recommends']
            post['responses'] = raw_data['responses']
            posts.append(post)
        except:
            continue
        num += 1
        print(post_id)
        print(num)
    return pd.read_json(json.dumps(posts))
项目:Medium-crawler-with-data-analyzer    作者:lifei96    | 项目源码 | 文件源码
def read_posts():
    posts = list()
    file_in = open('./post_list.txt', 'r')
    post_list = str(file_in.read()).split(' ')
    file_in.close()
    num = 0
    for post_id in post_list:
        if not post_id:
            continue
        if not os.path.exists('./data/Posts/%s.json' % post_id):
            continue
        try:
            file_in = open('./data/Posts/%s.json' % post_id, 'r')
            raw_data = json.loads(str(file_in.read()))
            file_in.close()
            for tag in raw_data['tags']:
                post = dict()
                post['post_id'] = post_id
                post['published_date'] = raw_data['published_date']
                post['recommends'] = raw_data['recommends']
                post['responses'] = raw_data['responses']
                post['tag'] = tag['name']
                posts.append(post)
                print(post)
        except:
            continue
        num += 1
        print(post_id)
        print(num)
    return pd.read_json(json.dumps(posts))
项目:Medium-crawler-with-data-analyzer    作者:lifei96    | 项目源码 | 文件源码
def read_users():
    users = list()
    file_in = open('./username_list.txt', 'r')
    username_list = str(file_in.read()).split(' ')
    file_in.close()
    num = 0
    for username in username_list:
        if not username:
            continue
        if not os.path.exists('./data/Users/%s.json' % username):
            continue
        try:
            file_in = open('./data/Users/%s.json' % username, 'r')
            raw_data = json.loads(str(file_in.read()))
            file_in.close()
            user = dict()
            user['username'] = username
            user['reg_date'] = datetime.date.fromtimestamp(raw_data['profile']['user']['createdAt']/1000.0).isoformat()
            if not raw_data['profile']['user']['lastPostCreatedAt']:
                raw_data['profile']['user']['lastPostCreatedAt'] = raw_data['profile']['user']['createdAt']
            user['last_post_date'] = datetime.date.fromtimestamp(raw_data['profile']['user']['lastPostCreatedAt']/1000.0).isoformat()
            user['posts_count'] = raw_data['profile']['numberOfPostsPublished']
            user['following_count'] = raw_data['profile']['user']['socialStats']['usersFollowedCount']
            user['followers_count'] = raw_data['profile']['user']['socialStats']['usersFollowedByCount']
            users.append(user)
        except:
            continue
        num += 1
        print(username)
        print(num)
    return pd.read_json(json.dumps(users))
项目:PythonTrading    作者:F2011B    | 项目源码 | 文件源码
def data_received(self, data):
        updateOZ_event.data=pd.read_json(data.decode())
        updateOZ_event.set()
项目:PythonTrading    作者:F2011B    | 项目源码 | 文件源码
def handle_OZServer(loop):
    reader, writer = yield from asyncio.open_connection('127.0.0.1', 2222,loop=loop)
    symbolList=list()
    while True:
        if updateOZ_event.is_set():
            print('In Server send')
            updateOZ_event.clear()
            for element in updateOZ_event.data :
                writer.write(('Add_'+ element+'_End').encode())
            writer.write('Send'.encode())

            outputbuffer = StringIO()
            condition = True
            while condition:
                data =  yield from reader.read(1024)
                message=data.decode()
                if message.find('!ENDMSG!') != -1:
                    message = message.replace('!ENDMSG!', '')
                    condition = False
                    print('End found')

                outputbuffer.write(message)

            outputbuffer.seek(0)
            DF=pd.read_json(outputbuffer)
            #print(DF)
            yield from updateOZ_queue.put(DF)
        yield None

    writer.close()
    reader.close()
项目:spotlight    作者:maciejkula    | 项目源码 | 文件源码
def _load_data(filename, columns=None):

    data = pd.read_json(filename, lines=True)
    data = data.sort_values('validation_mrr', ascending=False)

    mrr_cols = ['validation_mrr', 'test_mrr']

    if columns is None:
        columns = [x for x in data.columns if
                   (x not in mrr_cols and x != 'hash')]

    cols = data.columns
    cols = mrr_cols + columns

    return data[cols]
项目:spotlight    作者:maciejkula    | 项目源码 | 文件源码
def _load_data(filename, columns=None):

    data = pd.read_json(filename, lines=True)
    data = data.sort_values('validation_mrr', ascending=False)

    mrr_cols = ['validation_mrr', 'test_mrr']

    if columns is None:
        columns = [x for x in data.columns if
                   (x not in mrr_cols and x != 'hash')]

    cols = data.columns
    cols = mrr_cols + columns

    return data[cols]
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_double_encoded_labels(self):
        df = DataFrame([['a', 'b'], ['c', 'd']],
                       index=['index " 1', 'index / 2'],
                       columns=['a \\ b', 'y / z'])

        assert_frame_equal(df, read_json(df.to_json(orient='split'),
                                         orient='split'))
        assert_frame_equal(df, read_json(df.to_json(orient='columns'),
                                         orient='columns'))
        assert_frame_equal(df, read_json(df.to_json(orient='index'),
                                         orient='index'))
        df_unser = read_json(df.to_json(orient='records'), orient='records')
        assert_index_equal(df.columns, df_unser.columns)
        np.testing.assert_equal(df.values, df_unser.values)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_non_unique_index(self):
        df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 1],
                       columns=['x', 'y'])

        self.assertRaises(ValueError, df.to_json, orient='index')
        self.assertRaises(ValueError, df.to_json, orient='columns')

        assert_frame_equal(df, read_json(df.to_json(orient='split'),
                                         orient='split'))
        unser = read_json(df.to_json(orient='records'), orient='records')
        self.assertTrue(df.columns.equals(unser.columns))
        np.testing.assert_equal(df.values, unser.values)
        unser = read_json(df.to_json(orient='values'), orient='values')
        np.testing.assert_equal(df.values, unser.values)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_non_unique_columns(self):
        df = DataFrame([['a', 'b'], ['c', 'd']], index=[1, 2],
                       columns=['x', 'x'])

        self.assertRaises(ValueError, df.to_json, orient='index')
        self.assertRaises(ValueError, df.to_json, orient='columns')
        self.assertRaises(ValueError, df.to_json, orient='records')

        assert_frame_equal(df, read_json(df.to_json(orient='split'),
                                         orient='split', dtype=False))
        unser = read_json(df.to_json(orient='values'), orient='values')
        np.testing.assert_equal(df.values, unser.values)

        # GH4377; duplicate columns not processing correctly
        df = DataFrame([['a', 'b'], ['c', 'd']], index=[
                       1, 2], columns=['x', 'y'])
        result = read_json(df.to_json(orient='split'), orient='split')
        assert_frame_equal(result, df)

        def _check(df):
            result = read_json(df.to_json(orient='split'), orient='split',
                               convert_dates=['x'])
            assert_frame_equal(result, df)

        for o in [[['a', 'b'], ['c', 'd']],
                  [[1.5, 2.5], [3.5, 4.5]],
                  [[1, 2.5], [3, 4.5]],
                  [[Timestamp('20130101'), 3.5],
                   [Timestamp('20130102'), 4.5]]]:
            _check(DataFrame(o, index=[1, 2], columns=['x', 'x']))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_from_json_nones(self):
        df = DataFrame([[1, 2], [4, 5, 6]])
        unser = read_json(df.to_json())
        self.assertTrue(np.isnan(unser[2][0]))

        df = DataFrame([['1', '2'], ['4', '5', '6']])
        unser = read_json(df.to_json())
        self.assertTrue(np.isnan(unser[2][0]))
        unser = read_json(df.to_json(), dtype=False)
        self.assertTrue(unser[2][0] is None)
        unser = read_json(df.to_json(), convert_axes=False, dtype=False)
        self.assertTrue(unser['2']['0'] is None)

        unser = read_json(df.to_json(), numpy=False)
        self.assertTrue(np.isnan(unser[2][0]))
        unser = read_json(df.to_json(), numpy=False, dtype=False)
        self.assertTrue(unser[2][0] is None)
        unser = read_json(df.to_json(), numpy=False,
                          convert_axes=False, dtype=False)
        self.assertTrue(unser['2']['0'] is None)

        # infinities get mapped to nulls which get mapped to NaNs during
        # deserialisation
        df = DataFrame([[1, 2], [4, 5, 6]])
        df.loc[0, 2] = np.inf
        unser = read_json(df.to_json())
        self.assertTrue(np.isnan(unser[2][0]))
        unser = read_json(df.to_json(), dtype=False)
        self.assertTrue(np.isnan(unser[2][0]))

        df.loc[0, 2] = np.NINF
        unser = read_json(df.to_json())
        self.assertTrue(np.isnan(unser[2][0]))
        unser = read_json(df.to_json(), dtype=False)
        self.assertTrue(np.isnan(unser[2][0]))
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_empty_mixedtype(self):
        # mixed type
        df = DataFrame(columns=['jim', 'joe'])
        df['joe'] = df['joe'].astype('i8')
        self.assertTrue(df._is_mixed_type)
        assert_frame_equal(read_json(df.to_json(), dtype=dict(df.dtypes)), df,
                           check_index_type=False)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_frame_mixedtype_orient(self):  # GH10289
        vals = [[10, 1, 'foo', .1, .01],
                [20, 2, 'bar', .2, .02],
                [30, 3, 'baz', .3, .03],
                [40, 4, 'qux', .4, .04]]

        df = DataFrame(vals, index=list('abcd'),
                       columns=['1st', '2nd', '3rd', '4th', '5th'])

        self.assertTrue(df._is_mixed_type)
        right = df.copy()

        for orient in ['split', 'index', 'columns']:
            inp = df.to_json(orient=orient)
            left = read_json(inp, orient=orient, convert_axes=False)
            assert_frame_equal(left, right)

        right.index = np.arange(len(df))
        inp = df.to_json(orient='records')
        left = read_json(inp, orient='records', convert_axes=False)
        assert_frame_equal(left, right)

        right.columns = np.arange(df.shape[1])
        inp = df.to_json(orient='values')
        left = read_json(inp, orient='values', convert_axes=False)
        assert_frame_equal(left, right)