Python pandas 模块,Panel() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pandas.Panel()

项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def aggregate_ohlcv_panel(self,
                              fields,
                              ohlcv_panel,
                              items=None,
                              minor_axis=None):
        """
        Convert an OHLCV Panel into a DataFrame by aggregating each field's
        frame into a Series.
        """
        vals = ohlcv_panel
        if isinstance(ohlcv_panel, pd.Panel):
            vals = ohlcv_panel.values
            items = ohlcv_panel.items
            minor_axis = ohlcv_panel.minor_axis

        data = [
            self.frame_to_series(
                field,
                vals[items.get_loc(field)],
                minor_axis
            )
            for field in fields
        ]
        return np.array(data)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_nan_filter_panel(self):
        dates = pd.date_range('1/1/2000', periods=2, freq='B', tz='UTC')
        df = pd.Panel(np.random.randn(2, 2, 2),
                      major_axis=dates,
                      items=[4, 5],
                      minor_axis=['price', 'volume'])
        # should be filtered
        df.loc[4, dates[0], 'price'] = np.nan
        # should not be filtered, should have been ffilled
        df.loc[5, dates[1], 'price'] = np.nan
        source = DataPanelSource(df)
        event = next(source)
        self.assertEqual(5, event.sid)
        event = next(source)
        self.assertEqual(4, event.sid)
        self.assertRaises(StopIteration, next, source)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def setUp(self):
        self.env = TradingEnvironment()
        self.days = self.env.trading_days[:5]
        self.panel = pd.Panel({1: pd.DataFrame({
            'price': [1, 1, 2, 4, 8], 'volume': [1e9, 1e9, 1e9, 1e9, 0],
            'type': [DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.CLOSE_POSITION]},
            index=self.days)
        })
        self.no_close_panel = pd.Panel({1: pd.DataFrame({
            'price': [1, 1, 2, 4, 8], 'volume': [1e9, 1e9, 1e9, 1e9, 1e9],
            'type': [DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE]},
            index=self.days)
        })
项目:Odin    作者:JamesBrofos    | 项目源码 | 文件源码
def request_prices(self, current_date, symbols):
        """Implementation of abstract base class method."""
        # Reset the bar object for the latest assets requested.
        self.bar = pd.Panel(
            items=[PriceFields.current_price.value], major_axis=[current_date],
            minor_axis=symbols
        )
        # Issue requests to Interactive Brokers for the latest price data of
        # each asset in the list of bars.
        for i, s in enumerate(symbols):
            c = self.create_contract(s)
            self.conn.reqMktData(i, c, "", True)

        # Wait a moment.
        sleep(0.5)

        return self.bar
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def init_class_fixtures(cls):
        super(WithPanelBarReader, cls).init_class_fixtures()

        finder = cls.asset_finder
        trading_calendar = get_calendar('NYSE')

        items = finder.retrieve_all(finder.sids)
        major_axis = (
            trading_calendar.sessions_in_range if cls.FREQUENCY == 'daily'
            else trading_calendar.minutes_for_sessions_in_range
        )(cls.START_DATE, cls.END_DATE)
        minor_axis = ['open', 'high', 'low', 'close', 'volume']

        shape = tuple(map(len, [items, major_axis, minor_axis]))
        raw_data = np.arange(shape[0] * shape[1] * shape[2]).reshape(shape)

        cls.panel = pd.Panel(
            raw_data,
            items=items,
            major_axis=major_axis,
            minor_axis=minor_axis,
        )

        cls.reader = PanelBarReader(trading_calendar, cls.panel, cls.FREQUENCY)
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def test_duplicate_values(self):
        UNIMPORTANT_VALUE = 57

        panel = pd.Panel(
            UNIMPORTANT_VALUE,
            items=['a', 'b', 'b', 'a'],
            major_axis=['c'],
            minor_axis=['d'],
        )
        unused = ExplodingObject()

        axis_names = ['items', 'major_axis', 'minor_axis']

        for axis_order in permutations((0, 1, 2)):
            transposed = panel.transpose(*axis_order)
            with self.assertRaises(ValueError) as e:
                PanelBarReader(unused, transposed, 'daily')

            expected = (
                "Duplicate entries in Panel.{name}: ['a', 'b'].".format(
                    name=axis_names[axis_order.index(0)],
                )
            )
            self.assertEqual(str(e.exception), expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def swaplevel(self, i, j, axis=0):
        """
        Swap levels i and j in a MultiIndex on a particular axis

        Parameters
        ----------
        i, j : int, string (can be mixed)
            Level of index to be swapped. Can pass level name as string.

        Returns
        -------
        swapped : type of caller (new object)
        """
        axis = self._get_axis_number(axis)
        result = self.copy()
        labels = result._data.axes[axis]
        result._data.set_axis(axis, labels.swaplevel(i, j))
        return result

    # ----------------------------------------------------------------------
    # Rename

    # TODO: define separate funcs for DataFrame, Series and Panel so you can
    # get completion on keyword arguments.
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def get(self, key, default=None):
        """
        Get item from object for given key (DataFrame column, Panel slice,
        etc.). Returns default value if not found.

        Parameters
        ----------
        key : object

        Returns
        -------
        value : type of items contained in object
        """
        try:
            return self[key]
        except (KeyError, ValueError, IndexError):
            return default
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_resample_panel(self):
        rng = date_range('1/1/2000', '6/30/2000')
        n = len(rng)

        panel = Panel(np.random.randn(3, n, 5),
                      items=['one', 'two', 'three'],
                      major_axis=rng,
                      minor_axis=['a', 'b', 'c', 'd', 'e'])

        result = panel.resample('M', axis=1).mean()

        def p_apply(panel, f):
            result = {}
            for item in panel.items:
                result[item] = f(panel[item])
            return Panel(result, items=panel.items)

        expected = p_apply(panel, lambda x: x.resample('M').mean())
        tm.assert_panel_equal(result, expected)

        panel2 = panel.swapaxes(1, 2)
        result = panel2.resample('M', axis=2).mean()
        expected = p_apply(panel2, lambda x: x.resample('M', axis=1).mean())
        tm.assert_panel_equal(result, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_resample_panel_numpy(self):
        rng = date_range('1/1/2000', '6/30/2000')
        n = len(rng)

        panel = Panel(np.random.randn(3, n, 5),
                      items=['one', 'two', 'three'],
                      major_axis=rng,
                      minor_axis=['a', 'b', 'c', 'd', 'e'])

        result = panel.resample('M', axis=1).apply(lambda x: x.mean(1))
        expected = panel.resample('M', axis=1).mean()
        tm.assert_panel_equal(result, expected)

        panel = panel.swapaxes(1, 2)
        result = panel.resample('M', axis=2).apply(lambda x: x.mean(2))
        expected = panel.resample('M', axis=2).mean()
        tm.assert_panel_equal(result, expected)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_panel_aggregation(self):
        ind = pd.date_range('1/1/2000', periods=100)
        data = np.random.randn(2, len(ind), 4)
        wp = pd.Panel(data, items=['Item1', 'Item2'], major_axis=ind,
                      minor_axis=['A', 'B', 'C', 'D'])

        tg = TimeGrouper('M', axis=1)
        _, grouper, _ = tg._get_grouper(wp)
        bingrouped = wp.groupby(grouper)
        binagg = bingrouped.mean()

        def f(x):
            assert (isinstance(x, Panel))
            return x.mean(1)

        result = bingrouped.agg(f)
        tm.assert_panel_equal(result, binagg)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_binary_ops_docs(self):
        from pandas import DataFrame, Panel
        op_map = {'add': '+',
                  'sub': '-',
                  'mul': '*',
                  'mod': '%',
                  'pow': '**',
                  'truediv': '/',
                  'floordiv': '//'}
        for op_name in ['add', 'sub', 'mul', 'mod', 'pow', 'truediv',
                        'floordiv']:
            for klass in [Series, DataFrame, Panel]:
                operand1 = klass.__name__.lower()
                operand2 = 'other'
                op = op_map[op_name]
                expected_str = ' '.join([operand1, op, operand2])
                self.assertTrue(expected_str in getattr(klass,
                                                        op_name).__doc__)

                # reverse version of the binary ops
                expected_str = ' '.join([operand2, op, operand1])
                self.assertTrue(expected_str in getattr(klass, 'r' +
                                                        op_name).__doc__)
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def test_to_panel_expanddim(self):
        # GH 9762

        class SubclassedFrame(DataFrame):

            @property
            def _constructor_expanddim(self):
                return SubclassedPanel

        class SubclassedPanel(Panel):
            pass

        index = MultiIndex.from_tuples([(0, 0), (0, 1), (0, 2)])
        df = SubclassedFrame({'X': [1, 2, 3], 'Y': [4, 5, 6]}, index=index)
        result = df.to_panel()
        self.assertTrue(isinstance(result, SubclassedPanel))
        expected = SubclassedPanel([[[1, 2, 3]], [[4, 5, 6]]],
                                   items=['X', 'Y'], major_axis=[0],
                                   minor_axis=[0, 1, 2],
                                   dtype='int64')
        tm.assert_panel_equal(result, expected)
项目:efficientmc    作者:latour-a    | 项目源码 | 文件源码
def getmtm(cf, alpha=0.95):
    """
    Calcule la MtM (i.e. : les cash-flows moyens réalisés et un intervalle
    de confiance) de chaque actif listé dans `cf`.

    Paramètres
    ----------
    cf : pandas.Panel
        Cash-flows réalisés pour chaque simulation (`items`), chaque
        actif (`major_axis`) et chaque date (`minor_axis`).
    alpha : double compris entre 0. et 1.
        Quantile à utiliser pour le calcul des intervalles de confiances.
    """
    nsims = cf.shape[0]
    cumvalues = cf.sum(axis=2)
    mean = cumvalues.mean(axis=1)
    std = cumvalues.std(axis=1)
    res = {}
    for key, val in mean.items():
        res[key] = mkmcresults(val, std[key], nsims)
    return res
项目:marketcrush    作者:basaks    | 项目源码 | 文件源码
def backtest(config_file, day_trade):
    cfg = config.Config(config_file)
    cfg.day_trade = day_trade
    dfs = load_data(config_file)
    trender = strategies[cfg.strategy](**cfg.strategy_parameters)
    res = []
    for df in dfs:
        res.append(trender.backtest(data_frame=df))
    final_panel = pd.Panel({os.path.basename(p['path']): df for p, df in
                            zip(cfg.data_path, res)})
    profit_series = final_panel.sum(axis=0)['total_profit'].cumsum()
    final_panel.to_excel(cfg.output_file)

    if cfg.show:
        profit_series.plot()
        plt.xlabel('Time')
        plt.ylabel('Profit')
        plt.legend('Profit')
        plt.show()
项目:bigfishtrader    作者:xingetouzi    | 项目源码 | 文件源码
def trade_summary_all(self):
        dct = OrderedDict()
        panel = pd.Panel(self.trade_summary).swapaxes(0, 1)
        for field in panel.keys():
            if field.startswith(u"?"):
                dct[field] = panel[field].apply(np.sum, axis=0)
        for field in [u"??????", u"??????"]:
            dct[field] = panel[field].apply(np.max, axis=0)
        dct[u"??????"] = dct[u"???"] / dct[u"?????"]
        dct[u"??????"] = dct[u"???"] / dct[u"?????"]
        dct[u"????????"] = dct[u"?????"] / dct[u"?????"]
        dct[u"????????"] = dct[u"?????"] / dct[u"?????"]
        dct[u"??????"] = (dct[u"?????"] / dct[u"?????"]).astype(str)
        dct[u"?????"] = dct[u"?????"].astype(str)
        dct[u"??"] = dct[u"?????"] / dct[u"?????"]
        orders = self.order_details
        start = orders["??????"].iloc[0]
        end = orders["??????"].iloc[-1]
        dct[u"????"] = [_workdays(start, end), np.nan, np.nan]
        result = pd.DataFrame(data=dct).T
        return result
项目:bigfishtrader    作者:xingetouzi    | 项目源码 | 文件源码
def history(self, symbol=None, frequency=None, fields=None, start=None, end=None, length=None, db=None):
        if frequency is None:
            frequency = self.frequency
        try:
            if symbol is None:
                symbol = list(self._panels[frequency].items)
            result = self._read_panel(symbol, frequency, fields, start, end, length)
            if self.match(result, symbol, length):
                return result
            else:
                raise KeyError()
        except KeyError:
            if symbol is None:
                symbol = list(self._panels[self.frequency].items())
            if end is None:
                end = self.time
            result = self._read_db(symbol, frequency, fields, start, end, length, db if db else self._db)
            if isinstance(result, pd.Panel) and len(result.minor_axis) == 1:
                return result.iloc[:, :, 0]
            else:
                return result
项目:bigfishtrader    作者:xingetouzi    | 项目源码 | 文件源码
def match(result, items, length):
        if length:
            if isinstance(result, (pd.DataFrame, pd.Series)):
                if len(result) == length:
                    return True
                else:
                    return False
            elif isinstance(result, pd.Panel):
                if (len(items) == len(result.items)) and (len(result.major_axis) == length):
                    return True
                else:
                    return False
            else:
                return False
        else:
            return True
项目:bigfishtrader    作者:xingetouzi    | 项目源码 | 文件源码
def __init__(self, panel, context=None, side="L", frequency='D'):
        """
        Create a PannelDataSupport with a pandas.Panel object.
        Panel's inner data can be accessed using method history() and current()
        context is a optional parameters, to

        Args:
            panel(pandas.Panel): Panel where real data stored in
            context: default end bar number refer to context.real_bar_num
            side(str): "L" or "R", "L" means bar's datetime refer to it's start time
                "R" means bar's datetime refer to it's end time
        """
        super(PanelDataSupport, self).__init__()
        self._panel = panel
        self._frequency = frequency
        self._others = {}
        self._date_index = self._panel.iloc[0].index
        self._side = side
        self._context = context
项目:bigfishtrader    作者:xingetouzi    | 项目源码 | 文件源码
def reshape(data):
    if isinstance(data, pd.DataFrame):
        if len(data) == 1:
            return data.iloc[0]
        elif len(data.columns) == 1:
            return data.iloc[:, 0]
        else:
            return data
    elif isinstance(data, pd.Panel):
        if len(data.major_axis) == 1:
            return data.iloc[:, 0, :]
        elif len(data.minor_axis) == 1:
            return data.iloc[:, :, 0]
        else:
            return data
    else:
        return data
项目:autoxd    作者:nessessary    | 项目源码 | 文件源码
def getHisdatPanl(codes, days):
        """k?????????
        codes: [list]
        days: [turple]
        return: [pandas.panel]"""
        def gen():
            start_day , end_day = days
            d = {}
            for code in codes:
                df = getHisdatDf(code, start_day, end_day)
                d[code] = df
            panel = pd.Panel(d)
            return panel
        panel = agl.SerialMgr.serialAuto(gen)
        if panel is None:
            panel = gen()
        return panel
项目:panel_reg    作者:metjush    | 项目源码 | 文件源码
def save_panel(self):
        """
        Take all supplied data and create the final pandas Panel
        :return: pandas Panel
        """

        assert 0 not in self.dimensions
        assert self.data_dict != {}

        if self.dict_key == 'time':
            assert len(self.data_dict) == self.dimensions[1]
            panel = pd.Panel(self.data_dict, index=self.time_series, major_axis=self.entities, minor_axis=self.variables).transpose(1,0,2) # put entities into items
        elif self.dict_key == 'entity':
            assert len(self.data_dict) == self.dimensions[0]
            panel = pd.Panel(self.data_dict, major_axis=self.time_series, index=self.entities, minor_axis=self.variables)
        else:
            # not a dict, but a 3D np array
            panel = pd.Panel(self.data_dict, major_axis=self.time_series, index=self.entities, minor_axis=self.variables)

        print(panel)
        self.panel = panel
        return panel
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def test_numpy_3d():
    n, t, k = 11, 7, 3
    x = np.random.random((k, t, n))
    dh = PanelData(x)
    assert_equal(x, dh.values3d)
    assert dh.nentity == n
    assert dh.nobs == t
    assert dh.nvar == k
    assert_equal(np.reshape(x.T, (n * t, k)), dh.values2d)
    items = ['entity.{0}'.format(i) for i in range(n)]
    obs = [i for i in range(t)]
    var_names = ['x.{0}'.format(i) for i in range(k)]
    expected = pd.Panel(np.reshape(x, (k, t, n)), items=var_names,
                        major_axis=obs, minor_axis=items)
    expected_frame = expected.swapaxes(1, 2).to_frame()
    expected_frame.index.levels[0].name = 'entity'
    expected_frame.index.levels[1].name = 'time'
    assert_frame_equal(dh.dataframe, expected_frame)
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def test_categorical_conversion():
    t, n = 3, 1000
    string = np.random.choice(['a', 'b', 'c'], (t, n))
    num = np.random.randn(t, n)
    p = pd.Panel({'a': string, 'b': num})
    p = p[['a', 'b']]
    panel = PanelData(p, convert_dummies=False)
    df = panel.dataframe.copy()
    df['a'] = pd.Categorical(df['a'])
    panel = PanelData(df, convert_dummies=True)

    df = panel.dataframe
    assert df.shape == (3000, 3)
    s = string.T.ravel()
    a_locs = np.where(s == 'a')
    b_locs = np.where(s == 'b')
    c_locs = np.where(s == 'c')
    assert np.all(df.loc[:, 'a.b'].values[a_locs] == 0.0)
    assert np.all(df.loc[:, 'a.b'].values[b_locs] == 1.0)
    assert np.all(df.loc[:, 'a.b'].values[c_locs] == 0.0)

    assert np.all(df.loc[:, 'a.c'].values[a_locs] == 0.0)
    assert np.all(df.loc[:, 'a.c'].values[b_locs] == 0.0)
    assert np.all(df.loc[:, 'a.c'].values[c_locs] == 1.0)
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def test_string_conversion():
    t, n = 3, 1000
    string = np.random.choice(['a', 'b', 'c'], (t, n))
    num = np.random.randn(t, n)
    p = pd.Panel({'a': string, 'b': num})
    p = p[['a', 'b']]
    panel = PanelData(p, var_name='OtherEffect')
    df = panel.dataframe
    assert df.shape == (3000, 3)
    s = string.T.ravel()
    a_locs = np.where(s == 'a')
    b_locs = np.where(s == 'b')
    c_locs = np.where(s == 'c')
    assert np.all(df.loc[:, 'a.b'].values[a_locs] == 0.0)
    assert np.all(df.loc[:, 'a.b'].values[b_locs] == 1.0)
    assert np.all(df.loc[:, 'a.b'].values[c_locs] == 0.0)

    assert np.all(df.loc[:, 'a.c'].values[a_locs] == 0.0)
    assert np.all(df.loc[:, 'a.c'].values[b_locs] == 0.0)
    assert np.all(df.loc[:, 'a.c'].values[c_locs] == 1.0)
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def test_incorrect_time_axis():
    x = np.random.randn(3, 3, 1000)
    entities = ['entity.{0}'.format(i) for i in range(1000)]
    time = ['time.{0}'.format(i) for i in range(3)]
    var_names = ['var.{0}'.format(i) for i in range(3)]
    p = pd.Panel(x, items=var_names, major_axis=time, minor_axis=entities)
    with pytest.raises(ValueError):
        PanelData(p)
    df = p.swapaxes(1, 2).swapaxes(0, 1).to_frame()
    with pytest.raises(ValueError):
        PanelData(df)

    time = [1, pd.datetime(1960, 1, 1), 'a']
    var_names = ['var.{0}'.format(i) for i in range(3)]
    p = pd.Panel(x, items=var_names, major_axis=time, minor_axis=entities)
    with pytest.raises(ValueError):
        PanelData(p)
    df = p.swapaxes(1, 2).swapaxes(0, 1).to_frame()
    with pytest.raises(ValueError):
        PanelData(df)
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def test_first_difference_errors(data):
    if isinstance(data.x, pd.Panel):
        x = data.x.iloc[:, [0], :]
        y = data.y.iloc[[0], :]
    else:
        x = data.x[:, [0], :]
        y = data.y[[0], :]
    with pytest.raises(ValueError):
        FirstDifferenceOLS(y, x)

    if not isinstance(data.x, pd.Panel):
        return
    x = data.x.copy()
    x['Intercept'] = 1.0
    with pytest.raises(ValueError):
        FirstDifferenceOLS(data.y, x)
项目:linearmodels    作者:bashtage    | 项目源码 | 文件源码
def first_difference(self):
        """
        Compute first differences of variables

        Returns
        -------
        diffs : PanelData
            Differenced values
        """
        diffs = self.panel.values
        diffs = diffs[:, 1:] - diffs[:, :-1]
        diffs = Panel(diffs, items=self.panel.items,
                      major_axis=self.panel.major_axis[1:],
                      minor_axis=self.panel.minor_axis)
        diffs = diffs.swapaxes(1, 2).to_frame(filter_observations=False)
        diffs = diffs.reindex(self._frame.index).dropna(how='any')
        return PanelData(diffs)
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def mass_contaminant_consumed(node_results):
    """ Mass of contaminant consumed, equation from [1].

    Parameters
    ----------
    node_results : pd.Panel
        A pandas Panel containing node results. 
        Items axis = attributes, Major axis = times, Minor axis = node names
        Mass of contaminant consumed uses 'demand' and quality' attrbutes.

     References
    ----------
    [1] EPA, U. S. (2015). Water security toolkit user manual version 1.3. 
    Technical report, U.S. Environmental Protection Agency
    """
    maskD = np.greater(node_results['demand'], 0) # positive demand
    deltaT = node_results['quality'].index[1] # this assumes constant timedelta
    MC = node_results['demand']*deltaT*node_results['quality']*maskD # m3/s * s * kg/m3 - > kg

    return MC
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def volume_contaminant_consumed(node_results, detection_limit):
    """ Volume of contaminant consumed, equation from [1].

    Parameters
    ----------
    node_results : pd.Panel
        A pandas Panel containing node results. 
        Items axis = attributes, Major axis = times, Minor axis = node names
        Volume of contaminant consumed uses 'demand' and quality' attrbutes.

    detection_limit : float
        Contaminant detection limit

     References
    ----------
    [1] EPA, U. S. (2015). Water security toolkit user manual version 1.3. 
    Technical report, U.S. Environmental Protection Agency
    """
    maskQ = np.greater(node_results['quality'], detection_limit)
    maskD = np.greater(node_results['demand'], 0) # positive demand
    deltaT = node_results['quality'].index[1] # this assumes constant timedelta
    VC = node_results['demand']*deltaT*maskQ*maskD # m3/s * s * bool - > m3

    return VC
项目:WNTR    作者:USEPA    | 项目源码 | 文件源码
def setup_ep_results(self, times, nodes, links, result_types=None):
        """Set up the results object (or file, etc.) for save_ep_line() calls to use.

        The basic implementation sets up a dictionary of pandas DataFrames with the keys
        being member names of the ResultsType class. If the items parameter is left blank,
        the function will use the items that were specified during object creation.
        If this too, was blank, then all results parameters will be saved.

        """
        if result_types is None:
            result_types = self.items
        link_items = [ member.name for member in result_types if member.is_link ]
        node_items = [ member.name for member in result_types if member.is_node ]
        self.results.node = pd.Panel(items=node_items, major_axis=times, minor_axis=nodes)
        self.results.link = pd.Panel(items=link_items, major_axis=times, minor_axis=links)
        self.results.time = times
        self.results.network_name = self.inp_file
项目:soundDB    作者:gjoseph92    | 项目源码 | 文件源码
def parse(self, entry):

        data = pd.read_csv(str(entry),
                            engine= "c",
                            sep= "\t",
                            index_col= 0,
                            parse_dates= True,
                            infer_datetime_format= True)

        if data.index.name is not None: data.index.name = data.index.name.lower()
        data.columns = list(range(24)) * 3

        paneldata = pd.Panel({
                                "above": data.iloc[:, 0:24],
                                "all": data.iloc[:, 24:48],
                                "percent": data.iloc[:, 48:72]
                            })

        paneldata.minor_axis.name = "hour"

        return paneldata
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def digest_bars(self, history_spec, do_ffill):
        """
        Get the last (history_spec.bar_count - 1) bars from self.digest_panel
        for the requested HistorySpec.
        """
        bar_count = history_spec.bar_count
        if bar_count == 1:
            # slicing with [1 - bar_count:] doesn't work when bar_count == 1,
            # so special-casing this.
            res = pd.DataFrame(index=[], columns=self.sids, dtype=float)
            return res.values, res.index

        field = history_spec.field
        # Panel axes are (field, dates, sids).  We want just the entries for
        # the requested field, the last (bar_count - 1) data points, and all
        # sids.
        digest_panel = self.digest_panels[history_spec.frequency]
        frame = digest_panel.get_current(field, raw=True)
        if do_ffill:
            # Do forward-filling *before* truncating down to the requested
            # number of bars.  This protects us from losing data if an illiquid
            # stock has a gap in its price history.
            filled = ffill_digest_frame_from_prior_values(
                history_spec.frequency,
                history_spec.field,
                frame,
                self.last_known_prior_values,
                raw=True
                # Truncate only after we've forward-filled
            )
            indexer = slice(1 - bar_count, None)
            return filled[indexer], digest_panel.current_dates()[indexer]
        else:
            indexer = slice(1 - bar_count, None)
            return frame[indexer, :], digest_panel.current_dates()[indexer]
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def buffer_panel_minutes(self,
                             buffer_panel,
                             earliest_minute=None,
                             latest_minute=None,
                             raw=False):
        """
        Get the minutes in @buffer_panel between @earliest_minute and
        @latest_minute, inclusive.

        @buffer_panel can be a RollingPanel or a plain Panel.  If a
        RollingPanel is supplied, we call `get_current` to extract a Panel
        object.

        If no value is specified for @earliest_minute, use all the minutes we
        have up until @latest minute.

        If no value for @latest_minute is specified, use all values up until
        the latest minute.
        """
        if isinstance(buffer_panel, RollingPanel):
            buffer_panel = buffer_panel.get_current(start=earliest_minute,
                                                    end=latest_minute,
                                                    raw=raw)
            return buffer_panel
        # Using .ix here rather than .loc because loc requires that the keys
        # are actually in the index, whereas .ix returns all the values between
        # earliest_minute and latest_minute, which is what we want.
        return buffer_panel.ix[:, earliest_minute:latest_minute, :]
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def _create_buffer(self):
        panel = pd.Panel(
            items=self.items,
            minor_axis=self.minor_axis,
            major_axis=range(self.cap),
            dtype=self.dtype,
        )
        return panel
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def _create_buffer(self):
        panel = pd.Panel(
            items=self.items,
            minor_axis=self.minor_axis,
            major_axis=range(self.cap),
            dtype=self.dtype,
        )
        return panel
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def get_current(self):
        """
        Get a Panel that is the current data in view. It is not safe to persist
        these objects because internal data might change
        """

        where = slice(self._oldest_frame_idx(), self._pos)
        major_axis = pd.DatetimeIndex(deepcopy(self.date_buf[where]), tz='utc')
        return pd.Panel(self.buffer.values[:, where, :], self.items,
                        major_axis, self.minor_axis, dtype=self.dtype)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def make_trade_panel_for_asset_info(dates,
                                    asset_info,
                                    price_start,
                                    price_step_by_date,
                                    price_step_by_sid,
                                    volume_start,
                                    volume_step_by_date,
                                    volume_step_by_sid):
    """

    locations where assets did not exist.
    """
    sids = list(asset_info.index)

    price_sid_deltas = np.arange(len(sids), dtype=float) * price_step_by_sid
    price_date_deltas = np.arange(len(dates), dtype=float) * price_step_by_date
    prices = (price_sid_deltas + price_date_deltas[:, None]) + price_start

    volume_sid_deltas = np.arange(len(sids)) * volume_step_by_sid
    volume_date_deltas = np.arange(len(dates)) * volume_step_by_date
    volumes = (volume_sid_deltas + volume_date_deltas[:, None]) + volume_start

    for j, sid in enumerate(sids):
        start_date, end_date = asset_info.loc[sid, ['start_date', 'end_date']]
        # Normalize here so the we still generate non-NaN values on the minutes
        # for an asset's last trading day.
        for i, date in enumerate(dates.normalize()):
            if not (start_date <= date <= end_date):
                prices[i, j] = np.nan
                volumes[i, j] = 0

    # Legacy panel sources use a flipped convention from what we return
    # elsewhere.
    return pd.Panel(
        {
            'price': prices,
            'volume': volumes,
        },
        major_axis=dates,
        minor_axis=sids,
    ).transpose(2, 1, 0)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_basics(self, window=10):
        items = ['bar', 'baz', 'foo']
        minor = ['A', 'B', 'C', 'D']

        rp = MutableIndexRollingPanel(window, items, minor, cap_multiple=2)

        dates = pd.date_range('2000-01-01', periods=30, tz='utc')

        major_deque = deque(maxlen=window)

        frames = {}

        for i, date in enumerate(dates):
            frame = pd.DataFrame(np.random.randn(3, 4), index=items,
                                 columns=minor)

            rp.add_frame(date, frame)

            frames[date] = frame
            major_deque.append(date)

            result = rp.get_current()
            expected = pd.Panel(frames, items=list(major_deque),
                                major_axis=items, minor_axis=minor)

            tm.assert_panel_equal(result, expected.swapaxes(0, 1))
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def test_close_position_event(self):
        pt = perf.PositionTracker(asset_finder=self.env.asset_finder)
        dt = pd.Timestamp("1984/03/06 3:00PM")
        pos1 = perf.Position(1, amount=np.float64(120.0),
                             last_sale_date=dt, last_sale_price=3.4)
        pos2 = perf.Position(2, amount=np.float64(-100.0),
                             last_sale_date=dt, last_sale_price=3.4)
        pt.update_positions({1: pos1, 2: pos2})

        event_type = DATASOURCE_TYPE.CLOSE_POSITION
        index = [dt + timedelta(days=1)]
        pan = pd.Panel({1: pd.DataFrame({'price': 1, 'volume': 0,
                                         'type': event_type}, index=index),
                        2: pd.DataFrame({'price': 1, 'volume': 0,
                                         'type': event_type}, index=index),
                        3: pd.DataFrame({'price': 1, 'volume': 0,
                                         'type': event_type}, index=index)})

        source = DataPanelSource(pan)
        for i, event in enumerate(source):
            txn = pt.maybe_create_close_position_transaction(event)
            if event.sid == 1:
                # Test owned long
                self.assertEqual(-120, txn.amount)
            elif event.sid == 2:
                # Test owned short
                self.assertEqual(100, txn.amount)
            elif event.sid == 3:
                # Test not-owned SID
                self.assertIsNone(txn)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def setUp(self):
        self.env = TradingEnvironment()
        self.days = self.env.trading_days[:4]
        self.panel = pd.Panel({1: pd.DataFrame({
            'price': [1, 1, 2, 4], 'volume': [1e9, 1e9, 1e9, 0],
            'type': [DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.TRADE,
                     DATASOURCE_TYPE.CLOSE_POSITION]},
            index=self.days)
        })
项目:scikit-dataaccess    作者:MITHaystack    | 项目源码 | 文件源码
def readGraceData(filename, lat_name, lon_name, data_name, time=None):
    ''' 
    This function reads in netcdf data provided by GRACE Tellus

    @param filename: Name of file to read in
    @param lat_name: Name of latitude data
    @param lon_name: Name of longitude data
    @param data_name: Name of data product
    @param time: Name of time data
    '''

    nc = Dataset(filename, 'r')

    lat_index = nc[lat_name][:]
    lon_index = nc[lon_name][:]
    data = nc[data_name][:]

    if time != None:
        time = nc.variables[time]
        date_index = pd.to_datetime(num2date(time[:],units=time.units,calendar=time.calendar))
        return pd.Panel(data=data, items=date_index,major_axis=lat_index, minor_axis=lon_index)

    else:

        return pd.DataFrame(data = data, columns=lon_index, index=lat_index)
项目:Odin    作者:JamesBrofos    | 项目源码 | 文件源码
def __init__(self):
        """Initialize parameters of the Interactive Brokers price handler
        object.
        """
        super(InteractiveBrokersPriceHandler, self).__init__()
        self.conn = ibConnection(
            clientId=IB.data_handler_id.value, port=IB.port.value
        )
        self.conn.register(self.__tick_price_handler, message.tickPrice)
        if not self.conn.connect():
            raise ValueError(
                "Odin was unable to connect to the Trader Workstation."
            )

        # Set the target field to download data from.
        today = dt.datetime.today()
        open_t, close_t = dt.time(9, 30), dt.time(16)
        cur_t = today.time()
        # If today is a weekday and the timing is correct, then we use the most
        # recently observed price. Otherwise we use the close price.
        if today.weekday() < 5 and cur_t >= open_t and cur_t <= close_t:
            self.field = TickType.LAST
        else:
            self.field = TickType.CLOSE

        # Initialize a pandas panel to store the price data.
        self.bar = pd.Panel(items=[PriceFields.current_price.value])
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def verify_indices_all_unique(obj):
    """
    Check that all axes of a pandas object are unique.

    Parameters
    ----------
    obj : pd.Series / pd.DataFrame / pd.Panel
        The object to validate.

    Returns
    -------
    obj : pd.Series / pd.DataFrame / pd.Panel
        The validated object, unchanged.

    Raises
    ------
    ValueError
        If any axis has duplicate entries.
    """
    axis_names = [
        ('index',),                            # Series
        ('index', 'columns'),                  # DataFrame
        ('items', 'major_axis', 'minor_axis')  # Panel
    ][obj.ndim - 1]  # ndim = 1 should go to entry 0,

    for axis_name, index in zip(axis_names, obj.axes):
        if index.is_unique:
            continue

        raise ValueError(
            "Duplicate entries in {type}.{axis}: {dupes}.".format(
                type=type(obj).__name__,
                axis=axis_name,
                dupes=sorted(index[index.duplicated()]),
            )
        )
    return obj
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def _create_buffer(self):
        panel = pd.Panel(
            items=self.items,
            minor_axis=self.minor_axis,
            major_axis=range(self.cap),
            dtype=self.dtype,
        )
        return panel
项目:catalyst    作者:enigmampc    | 项目源码 | 文件源码
def _create_buffer(self):
        panel = pd.Panel(
            items=self.items,
            minor_axis=self.minor_axis,
            major_axis=range(self.cap),
            dtype=self.dtype,
        )
        return panel
项目:radwatch-analysis    作者:bearing    | 项目源码 | 文件源码
def get_peak_info_panel(self):
        pn = pd.Panel(OrderedDict([
            ('Peak Size ({})'.format(self.get_peak_size_units()), self.get_peak_size()),
            ('Peak Center ({})'.format(self.x_units), self.get_peak_center()),
            ('FWHM ({})'.format(self.x_units), self.get_peak_fwhm_absolute()),
            ('FWHM (ratio)', self.get_peak_fwhm_relative()),
        ]))
        pn = pn.swapaxes('items', 'major')
        return pn
项目:algotrading    作者:alifanov    | 项目源码 | 文件源码
def stderrs(self):
        """The standard errors of the parameter estimates."""
        return DataFrame(self._get('bse'), index=self._result_idx,
                         columns=self.exog.columns)

    # 3d data (return type is a MultiIndex pd.DataFrame)
    # Note that pd.Panel was deprecated in 0.20.1
    # For models with >1 exogenous variable, these properties consist of an
    #   nxm vector for each rolling period.
    # The "outer" index will be _result_idx (period-ending basis), with the
    #   inner indices being the individual periods within each outer period.
    # --------------------------------------------------------------------------
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def keys(self):
        """Get the 'info axis' (see Indexing for more)

        This is index for Series, columns for DataFrame and major_axis for
        Panel.
        """
        return self._info_axis
项目:PyDataLondon29-EmbarrassinglyParallelDAWithAWSLambda    作者:SignalMedia    | 项目源码 | 文件源码
def iteritems(self):
        """Iterate over (label, values) on info axis

        This is index for Series, columns for DataFrame, major_axis for Panel,
        and so on.
        """
        for h in self._info_axis:
            yield h, self[h]

    # originally used to get around 2to3's changes to iteritems.
    # Now unnecessary. Sidenote: don't want to deprecate this for a while,
    # otherwise libraries that use 2to3 will have issues.