Python pandas 模块,series() 实例源码

我们从Python开源项目中,提取了以下15个代码示例,用于说明如何使用pandas.series()

项目:PySAT    作者:USGS-Astrogeology    | 项目源码 | 文件源码
def regression(nx, ny):
    """
    Parameters
    ==========
    specturm : pd.series
               Pandas Series object

    nodes : list
            of nodes to be used for the continuum

    Returns
    =======
    corrected : array
                Continuum corrected array

    continuum : array
                The continuum used to correct the data

    x : array
        The potentially truncated x values
    """

    m, b, r_value, p_value, stderr = ss.linregress(nx, ny)
    c = m * nx + b
    return c
项目:SPOT    作者:Amossys-team    | 项目源码 | 文件源码
def fit(self,init_data,data):
        """
        Import data to SPOT object

        Parameters
        ----------
        init_data : list, numpy.array or pandas.Series
            initial batch to calibrate the algorithm

        data : numpy.array
            data for the run (list, np.array or pd.series)

        """
        if isinstance(data,list):
            self.data = np.array(data)
        elif isinstance(data,np.ndarray):
            self.data = data
        elif isinstance(data,pd.Series):
            self.data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        if isinstance(init_data,list):
            self.init_data = np.array(init_data)
        elif isinstance(init_data,np.ndarray):
            self.init_data = init_data
        elif isinstance(init_data,pd.Series):
            self.init_data = init_data.values
        elif isinstance(init_data,int):
            self.init_data = self.data[:init_data]
            self.data = self.data[init_data:]
        elif isinstance(init_data,float) & (init_data<1) & (init_data>0):
            r = int(init_data*data.size)
            self.init_data = self.data[:r]
            self.data = self.data[r:]
        else:
            print('The initial data cannot be set')
            return
项目:SPOT    作者:Amossys-team    | 项目源码 | 文件源码
def fit(self,init_data,data):
        """
        Import data to biSPOT object

        Parameters
        ----------
        init_data : list, numpy.array or pandas.Series
            initial batch to calibrate the algorithm ()

        data : numpy.array
            data for the run (list, np.array or pd.series)

        """
        if isinstance(data,list):
            self.data = np.array(data)
        elif isinstance(data,np.ndarray):
            self.data = data
        elif isinstance(data,pd.Series):
            self.data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        if isinstance(init_data,list):
            self.init_data = np.array(init_data)
        elif isinstance(init_data,np.ndarray):
            self.init_data = init_data
        elif isinstance(init_data,pd.Series):
            self.init_data = init_data.values
        elif isinstance(init_data,int):
            self.init_data = self.data[:init_data]
            self.data = self.data[init_data:]
        elif isinstance(init_data,float) & (init_data<1) & (init_data>0):
            r = int(init_data*data.size)
            self.init_data = self.data[:r]
            self.data = self.data[r:]
        else:
            print('The initial data cannot be set')
            return
项目:SPOT    作者:Amossys-team    | 项目源码 | 文件源码
def fit(self,init_data,data):
        """
        Import data to DSPOT object

        Parameters
        ----------
        init_data : list, numpy.array or pandas.Series
            initial batch to calibrate the algorithm

        data : numpy.array
            data for the run (list, np.array or pd.series)

        """
        if isinstance(data,list):
            self.data = np.array(data)
        elif isinstance(data,np.ndarray):
            self.data = data
        elif isinstance(data,pd.Series):
            self.data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        if isinstance(init_data,list):
            self.init_data = np.array(init_data)
        elif isinstance(init_data,np.ndarray):
            self.init_data = init_data
        elif isinstance(init_data,pd.Series):
            self.init_data = init_data.values
        elif isinstance(init_data,int):
            self.init_data = self.data[:init_data]
            self.data = self.data[init_data:]
        elif isinstance(init_data,float) & (init_data<1) & (init_data>0):
            r = int(init_data*data.size)
            self.init_data = self.data[:r]
            self.data = self.data[r:]
        else:
            print('The initial data cannot be set')
            return
项目:SPOT    作者:Amossys-team    | 项目源码 | 文件源码
def fit(self,init_data,data):
        """
        Import data to biDSPOT object

        Parameters
        ----------
        init_data : list, numpy.array or pandas.Series
            initial batch to calibrate the algorithm

        data : numpy.array
            data for the run (list, np.array or pd.series)

        """
        if isinstance(data,list):
            self.data = np.array(data)
        elif isinstance(data,np.ndarray):
            self.data = data
        elif isinstance(data,pd.Series):
            self.data = data.values
        else:
            print('This data format (%s) is not supported' % type(data))
            return

        if isinstance(init_data,list):
            self.init_data = np.array(init_data)
        elif isinstance(init_data,np.ndarray):
            self.init_data = init_data
        elif isinstance(init_data,pd.Series):
            self.init_data = init_data.values
        elif isinstance(init_data,int):
            self.init_data = self.data[:init_data]
            self.data = self.data[init_data:]
        elif isinstance(init_data,float) & (init_data<1) & (init_data>0):
            r = int(init_data*data.size)
            self.init_data = self.data[:r]
            self.data = self.data[r:]
        else:
            print('The initial data cannot be set')
            return
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def train(self, x):
        """
        Train scale

        Parameters
        ----------
        x: pd.series | np.array
            a column of data to train over
        """
        raise NotImplementedError('Not Implemented')
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def transform(self, x):
        """
        Transform array|series x
        """
        raise NotImplementedError('Not Implemented')
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def inverse(self, x):
        """
        Inverse transform array|series x
        """
        raise NotImplementedError('Not Implemented')
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def train(self, x, drop=None):
        """
        Train scale

        Parameters
        ----------
        x: pd.series| np.array
            a column of data to train over

        A discrete range is stored in a list
        """
        if not len(x):
            return

        self.range.train(x, drop)
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def transform(self, x):
        """
        Transform array|series x
        """
        # Discrete scales do not do transformations
        return x
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def transform(self, x):
        """
        Transform array|series x
        """
        try:
            return self.trans.transform(x)
        except TypeError:
            return np.array([self.trans.transform(val) for val in x])
项目:plotnine    作者:has2k1    | 项目源码 | 文件源码
def inverse(self, x):
        """
        Inverse transform array|series x
        """
        try:
            return self.trans.inverse(x)
        except TypeError:
            return np.array([self.trans.inverse(val) for val in x])
项目:quickdraw_prediction_model    作者:keisukeirie    | 项目源码 | 文件源码
def image_identification_datasetup(df1,df2,sample=30000):
    '''
    Function:
    - takes two dataframe (dataframe should be the output dataframe
      from "feature_engineering_CNN" of feature_engineering_func.py) and
      convine two dataframe into one.
    - it also creates label pd.series for CNN image recognition

    filter applied:
    - "sample" value determines number of sample extract from each dataframe.
       for instance if sample = 30000,
       30000 rows are randomly chosen from df1,df2,df3 and df4.
    - it also takeout countrycode and word columns

    inputs:
    2 dataframe
    sample = number of rows you want to extract frim each dataframe
    outputs:
    dataframe and a label

    '''
    random_index1 = np.random.choice(list(df1.index), sample, replace=False)
    random_index2 = np.random.choice(list(df2.index), sample, replace=False)
    df1 = df1.loc[list(random_index1)]
    df2 = df2.loc[list(random_index2)]

    df_test = pd.concat([df1,df2],axis = 0)
    df_test = df_test.drop(['countrycode','word'], axis=1)
    label = [1]*sample+[0]*sample
    # 1= df1, 0 = df2
    label = np.array(label)
    label = pd.Series(label)
    label.index = df_test.index
    return df_test,label
项目:Eskapade    作者:KaveIO    | 项目源码 | 文件源码
def construct_empty_hist(self, columns):
        """Create an (empty) histogram of right type

        Create a multi-dim histogram by iterating through the columns in
        reverse order and passing a single-dim hist as input to the next
        column.

        :param list columns: histogram columns
        :returns: created histogram
        :rtype: histogrammar.Count
        """

        hist = hg.Count()

        # create a multi-dim histogram by iterating through the columns in reverse order
        # and passing a single-dim hist as input to the next column
        for col in reversed(columns):
            # histogram type depends on the data type
            dt = np.dtype(self.var_dtype[col])

            # processing function, e.g. only accept boolians during filling
            f = self.quantity[col] if col in self.quantity else hf.QUANTITY[dt.type]
            if len(columns) == 1:
                # df[col] is a pd.series
                quant = lambda x, fnc=f: fnc(x)
            else:
                # df[columns] is a pd.Dataframe
                # fix column to col
                quant = lambda x, fnc=f, clm=col: fnc(x[clm])

            is_number = isinstance(dt.type(), np.number)
            is_timestamp = isinstance(dt.type(), np.datetime64)

            if is_number or is_timestamp:
                # numbers and timestamps are put in a sparse binned histogram
                bs = self.bin_specs.get(col, self._unit_bin_specs if is_number else self._unit_timestamp_specs)
                hist = hg.SparselyBin(binWidth=bs['bin_width'], origin=bs['bin_offset'], quantity=quant, value=hist)
            else:
                # string and boolians are treated as categories
                hist = hg.Categorize(quantity=quant, value=hist)

        # FIXME stick data types and number of dimension to histogram
        dta = [self.var_dtype[col] for col in columns]
        hist.datatype = dta[0] if len(columns) == 1 else dta
        hist.n_dim = len(columns)

        @property
        def n_bins(self):
            if hasattr(self, 'num'):
                return self.num
            elif hasattr(self, 'size'):
                return self.size
            else:
                raise RuntimeError('Cannot retrieve number of bins from hgr hist')
        hist.n_bins = n_bins

        return hist
项目:PySAT    作者:USGS-Astrogeology    | 项目源码 | 文件源码
def continuum_correct(spectrum, nodes=None, method='linear'):
    """
    Apply a continuum correction to a given spectrum

    Parameters
    ==========
    spectrum : pd.Series
               A pandas series or Spectrum object

    nodes: list
           A list of the nodes between which piecewise continuum
           will be fit

    method : {'linear', 'regresison', 'cubic'}
             The type of regression to be fit, where 'linear' is a piecewise
             linear fit, 'regression' is an Ordinary Least Squares fit, and 
             'cubic' is a 2nd order polynomial fit.

    Returns
    =======
     : pd.Series
       The continuum corrected Spectrum

     : pd.Series
       The continuum line
    """

    x = spectrum.index
    y = spectrum
    if not nodes:
        nodes = [x[0], x[-1]]

    return_length = len(y)
    corrected = np.empty(return_length)
    continuum = np.empty(return_length)

    start = 0
    nlist = list(zip(nodes, nodes[1:]))
    for i, n in enumerate(nlist):
        # Define indices into sub-series
        ny = y[n[0]:n[1]]
        nx = ny.index
        if i == 0:
            stop = start + len(y[:n[1]])
            c = correction_methods[method](nx, ny, ex=y[:n[1]].index.values)
            ey = y[:n[1]]
        elif i == len(nlist) - 1:
            stop = start + len(y[n[0]:])
            c = correction_methods[method](nx, ny, ex=y[n[0]:].index.values)
            ey = y[n[0]:]
        else:
            stop = start + len(ny)
            c = correction_methods[method](nx, ny)
            ey = ny

        continuum[start:stop] = c
        corrected[start:stop] = ey / c

        start = stop

    return pd.Series(corrected, index=x), pd.Series(continuum, index=x)