Python params 模块,batch_size() 实例源码

我们从Python开源项目中,提取了以下10个代码示例,用于说明如何使用params.batch_size()

项目:pytorch-adda    作者:corenel    | 项目源码 | 文件源码
def get_mnist(train):
    """Get MNIST dataset loader."""
    # image pre-processing
    pre_process = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=params.dataset_mean,
                                          std=params.dataset_std)])

    # dataset and data loader
    mnist_dataset = datasets.MNIST(root=params.data_root,
                                   train=train,
                                   transform=pre_process,
                                   download=True)

    mnist_data_loader = torch.utils.data.DataLoader(
        dataset=mnist_dataset,
        batch_size=params.batch_size,
        shuffle=True)

    return mnist_data_loader
项目:pytorch-adda    作者:corenel    | 项目源码 | 文件源码
def get_usps(train):
    """Get USPS dataset loader."""
    # image pre-processing
    pre_process = transforms.Compose([transforms.ToTensor(),
                                      transforms.Normalize(
                                          mean=params.dataset_mean,
                                          std=params.dataset_std)])

    # dataset and data loader
    usps_dataset = USPS(root=params.data_root,
                        train=train,
                        transform=pre_process,
                        download=True)

    usps_data_loader = torch.utils.data.DataLoader(
        dataset=usps_dataset,
        batch_size=params.batch_size,
        shuffle=True)

    return usps_data_loader
项目:GAN-Zoo    作者:corenel    | 项目源码 | 文件源码
def calc_gradient_penalty(D, real_data, fake_data):
    """Calculatge gradient penalty for WGAN-GP."""
    alpha = torch.rand(params.batch_size, 1)
    alpha = alpha.expand(real_data.size())
    alpha = make_cuda(alpha)

    interpolates = make_variable(alpha * real_data + ((1 - alpha) * fake_data))
    interpolates.requires_grad = True

    disc_interpolates = D(interpolates)

    gradients = grad(outputs=disc_interpolates,
                     inputs=interpolates,
                     grad_outputs=make_cuda(
                         torch.ones(disc_interpolates.size())),
                     create_graph=True,
                     retain_graph=True,
                     only_inputs=True)[0]

    gradient_penalty = params.penalty_lambda * \
        ((gradients.norm(2, dim=1) - 1) ** 2).mean()

    return gradient_penalty
项目:Kaggle-Carvana-Image-Masking-Challenge    作者:petrosgk    | 项目源码 | 文件源码
def valid_generator():
    while True:
        for start in range(0, len(ids_valid_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_valid_split))
            ids_valid_batch = ids_valid_split[start:end]
            for id in ids_valid_batch.values:
                img = cv2.imread('input/train/{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch
项目:DeepRL-FlappyBird    作者:hashbangCoder    | 项目源码 | 文件源码
def get_targets(mini_batch,target_model):

    # mini_batch format : (input_state,action,reward,output_state,tState,epsilon)
    actions= np.argmax(np.asarray([item[1] for item in mini_batch]),axis=1).astype(int)
    state_inputs = np.concatenate(tuple([exp[3] for exp in mini_batch]),axis=0)
    train_inputs = np.concatenate(tuple([exp[0] for exp in mini_batch]),axis=0)
    est_values = (target_model.predict_on_batch(state_inputs)).max(axis=1)
    target = np.zeros(shape=(len(mini_batch),2))
    for item in range(len(mini_batch)):
        target[item,actions[item]] = mini_batch[item][2] + p.DISCOUNT*est_values[item]*int(not mini_batch[item][-2])
    #target = np.asarray([mini_batch[item][2] + p.DISCOUNT*est_values[item]  if not mini_batch[item][-2] else mini_batch[item][2] for item in range(len(mini_batch))])
    #assert(target.shape[0] == p.batch_size)

    return target, train_inputs
项目:DeepRL-FlappyBird    作者:hashbangCoder    | 项目源码 | 文件源码
def run_pretrained(input_state,model,action_states,gameState):
    print '\n\nLoading pretrained weights onto model...'
    model.load_weights(p.PRETRAINED_PATH)
    epsilon=1
    while True:
        print 'Running pretrained model (no exploration) with weights at ', p.PRETRAINED_PATH 

        nn_out = model.predict(input_state,batch_size=1,verbose=0)
        nn_action = [[0,1]] if np.argmax(nn_out) else [[1,0]]
        action,rand_flag = select_action(nn_action+action_states,prob=[epsilon,(1-epsilon)/2,(1-epsilon)/2])
        rgbDisplay, reward, tState = gameState.frame_step(action)
        #grayDisplay = (np.dot(imresize(rgbDisplay, (80,80), interp='bilinear')[:,:,:3], [0.299, 0.587, 0.114])).reshape((1,1,80,80))
        grayDisplay = (np.dot(np.fliplr(imrotate(imresize(rgbDisplay, (80,80), interp='bilinear'), -90))[:,:,:3], [0.299, 0.587, 0.114])).reshape((1,1,80,80))
        output_state = np.append(input_state[:,1:,:,:], grayDisplay,axis=1)



#############################################################################################################################################################################
项目:Kaggle-Carvana-Image-Masking-Challenge    作者:petrosgk    | 项目源码 | 文件源码
def data_loader(q, ):
    for start in tqdm(range(0, len(ids_test), batch_size)):
        x_batch = []
        end = min(start + batch_size, len(ids_test))
        ids_test_batch = ids_test[start:end]
        for id in ids_test_batch.values:
            img = cv2.imread('input/test/{}.jpg'.format(id))
            if input_size is not None:
                img = cv2.resize(img, (input_size, input_size))
            x_batch.append(img)
        x_batch = np.array(x_batch, np.float32) / 255
        q.put((ids_test_batch, x_batch))
    for g in gpus:
        q.put((None, None))
项目:Kaggle-Carvana-Image-Masking-Challenge    作者:petrosgk    | 项目源码 | 文件源码
def train_generator():
    while True:
        for start in range(0, len(ids_train_split), batch_size):
            x_batch = []
            y_batch = []
            end = min(start + batch_size, len(ids_train_split))
            ids_train_batch = ids_train_split[start:end]
            for id in ids_train_batch.values:
                img = cv2.imread('input/train/{}.jpg'.format(id))
                img = cv2.resize(img, (input_size, input_size))
                mask = cv2.imread('input/train_masks/{}_mask.png'.format(id), cv2.IMREAD_GRAYSCALE)
                mask = cv2.resize(mask, (input_size, input_size))
                img = randomHueSaturationValue(img,
                                               hue_shift_limit=(-50, 50),
                                               sat_shift_limit=(-5, 5),
                                               val_shift_limit=(-15, 15))
                img, mask = randomShiftScaleRotate(img, mask,
                                                   shift_limit=(-0.0625, 0.0625),
                                                   scale_limit=(-0.1, 0.1),
                                                   rotate_limit=(-0, 0))
                img, mask = randomHorizontalFlip(img, mask)
                mask = np.expand_dims(mask, axis=2)
                x_batch.append(img)
                y_batch.append(mask)
            x_batch = np.array(x_batch, np.float32) / 255
            y_batch = np.array(y_batch, np.float32) / 255
            yield x_batch, y_batch
项目:Kaggle-Carvana-Image-Masking-Challenge    作者:petrosgk    | 项目源码 | 文件源码
def data_loader(q, ):
    for start in range(0, len(ids_test), batch_size):
        x_batch = []
        end = min(start + batch_size, len(ids_test))
        ids_test_batch = ids_test[start:end]
        for id in ids_test_batch.values:
            img = cv2.imread('input/test/{}.jpg'.format(id))
            img = cv2.resize(img, (input_size, input_size))
            x_batch.append(img)
        x_batch = np.array(x_batch, np.float32) / 255
        q.put(x_batch)
项目:Kaggle-Carvana-Image-Masking-Challenge    作者:petrosgk    | 项目源码 | 文件源码
def predictor(q, ):
    for i in tqdm(range(0, len(ids_test), batch_size)):
        x_batch = q.get()
        with graph.as_default():
            preds = model.predict_on_batch(x_batch)
        preds = np.squeeze(preds, axis=3)
        for pred in preds:
            prob = cv2.resize(pred, (orig_width, orig_height))
            mask = prob > threshold
            rle = run_length_encode(mask)
            rles.append(rle)