Python pickle 模块,dump() 实例源码

我们从Python开源项目中,提取了以下50个代码示例,用于说明如何使用pickle.dump()

项目:astrobase    作者:waqasbhatti    | 项目源码 | 文件源码
def lcdict_to_pickle(lcdict, outfile=None):
    '''This just writes the lcdict to a pickle.

    If outfile is None, then will try to get the name from the
    lcdict['objectid'] and write to <objectid>-hptxtlc.pkl. If that fails, will
    write to a file named hptxtlc.pkl'.

    '''

    if not outfile and lcdict['objectid']:
        outfile = '%s-hplc.pkl' % lcdict['objectid']
    elif not outfile and not lcdict['objectid']:
        outfile = 'hplc.pkl'

    with open(outfile,'wb') as outfd:
        pickle.dump(lcdict, outfd, protocol=pickle.HIGHEST_PROTOCOL)

    if os.path.exists(outfile):
        LOGINFO('lcdict for object: %s -> %s OK' % (lcdict['objectid'],
                                                    outfile))
        return outfile
    else:
        LOGERROR('could not make a pickle for this lcdict!')
        return None
项目:flora    作者:Lamden    | 项目源码 | 文件源码
def register(name):
    # hit api to see if name is already registered
    if check_name(name)['status'] == 'error':
        print('{} already registered.'.format(name))
    else:
        # generate new keypair
        (pub, priv) = rsa.newkeys(512)

        if os.path.exists(KEY_LOCATION) == False:
            os.mkdir(KEY_LOCATION)

        # save to disk
        with open('{}/.key'.format(KEY_LOCATION), 'wb') as f:
            pickle.dump((pub, priv), f, pickle.HIGHEST_PROTOCOL)

        r = requests.post('{}/names'.format(API_LOCATION), data = {'name' : name, 'n' : pub.n, 'e' : pub.e})
        if r.json()['status'] == 'success':
            print('Successfully registered new name: {}'.format(name))
        else:
            print('Error registering name: {}'.format(name))
项目:DREAM    作者:LaceyChen17    | 项目源码 | 文件源码
def get_item_history(self, prior_or_train, reconstruct = False, none_idx = 49689):
        filepath = self.cache_dir + './item_history_' + prior_or_train + '.pkl'
        if (not reconstruct) and os.path.exists(filepath):
            with open(filepath, 'rb') as f:
                item_history = pickle.load(f)
        else:
            up = self.get_users_orders(prior_or_train).sort_values(['user_id', 'order_number', 'product_id'], ascending = True)
            item_history = up.groupby(['user_id', 'order_number'])['product_id'].apply(list).reset_index()
            item_history.loc[item_history.order_number == 1, 'product_id'] = item_history.loc[item_history.order_number == 1, 'product_id'] + [none_idx]
            item_history = item_history.sort_values(['user_id', 'order_number'], ascending = True)
            # accumulate 
            item_history['product_id'] = item_history.groupby(['user_id'])['product_id'].transform(pd.Series.cumsum)
            # get unique item list
            item_history['product_id'] = item_history['product_id'].apply(set).apply(list)
            item_history = item_history.sort_values(['user_id', 'order_number'], ascending = True)
            # shift each group to make it history
            item_history['product_id'] = item_history.groupby(['user_id'])['product_id'].shift(1)
            for row in item_history.loc[item_history.product_id.isnull(), 'product_id'].index:
                item_history.at[row, 'product_id'] = [none_idx]
            item_history = item_history.sort_values(['user_id', 'order_number'], ascending = True).groupby(['user_id'])['product_id'].apply(list).reset_index()
            item_history.columns = ['user_id', 'history_items']

            with open(filepath, 'wb') as f:
                pickle.dump(item_history, f, pickle.HIGHEST_PROTOCOL)
        return item_history
项目:xr-telemetry-m2m-web    作者:cisco    | 项目源码 | 文件源码
def render_POST(self, request):
        if 'disconnect' in request.args:
            self._request_disconnection(request)
        else:
            # Save all the _inputdata, so it's the same next time
            conn_params = {x: request.args[x][0] for x in request.args.keys()}
            if request.args['secret_type'][0] == 'key':
                conn_params['secret_key'] = 'checked'
                conn_params['secret_password'] = ''
            else:
                conn_params['secret_key'] = ''
                conn_params['secret_password'] = 'checked'

            # Save both locally and across restarts
            request.sdata.conn_params = conn_params
            try:
                with open(DEFAULT_PATH, 'wb') as f:
                    pickle.dump(conn_params, f)
            except Exception as e:
                print('### failed to save defaults: ' + str(e))

            # Do the request
            self._request_connection(request)
项目:zipline-chinese    作者:zhanghan1990    | 项目源码 | 文件源码
def write_state_to_disk(cls, state, emission_rate=None):
    state_dir = cls.__module__ + '.' + cls.__name__

    full_dir = base_state_dir + '/' + state_dir

    if not os.path.exists(full_dir):
        os.makedirs(full_dir)

    if emission_rate is not None:
        name = 'State_Version_' + emission_rate + \
            str(state['obj_state'][VERSION_LABEL])
    else:
        name = 'State_Version_' + str(state['obj_state'][VERSION_LABEL])

    full_path = full_dir + '/' + name

    f = open(full_path, 'w')

    pickle.dump(state, f)

    f.close()
项目:HandDetection    作者:YunqiuXu    | 项目源码 | 文件源码
def gt_roidb(self):
    """
    Return the database of ground-truth regions of interest.

    This function loads/saves from/to a cache file to speed up future calls.
    """
    cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl')
    if os.path.exists(cache_file):
      with open(cache_file, 'rb') as fid:
        try:
          roidb = pickle.load(fid)
        except:
          roidb = pickle.load(fid, encoding='bytes')
      print('{} gt roidb loaded from {}'.format(self.name, cache_file))
      return roidb

    gt_roidb = [self._load_pascal_annotation(index)
                for index in self.image_index]
    with open(cache_file, 'wb') as fid:
      pickle.dump(gt_roidb, fid, pickle.HIGHEST_PROTOCOL)
    print('wrote gt roidb to {}'.format(cache_file))

    return gt_roidb
项目:didi_competition    作者:Heipiao    | 项目源码 | 文件源码
def create_hash_district_map_dict():
    file = "cluster_map.csv"
    district_hash_map_path = os.path.join(DATA_DIR, CONCRETE_DIR, CLUSTER_MAP_SHEET_DIR, file)

    hash_data = pd.read_csv(district_hash_map_path)
    ## convert the dataframe into dict
    hash_map_rule = dict(zip(hash_data.district_hash, hash_data.district_map))

    # print(type(hash_map_rule))

    saved_file = "cluster_map.pickle"
    map_save_file = os.path.join(DATA_DIR, CONCRETE_DIR, CLUSTER_MAP_SHEET_DIR, saved_file)
    ## save into same dir as file
    with open(map_save_file, "wb") as f:
        pickle.dump(hash_map_rule, f)

    #print(hash_map_rule)

# map the district features in the input data_frame into value
项目:lung-cancer-detector    作者:YichenGong    | 项目源码 | 文件源码
def _pre_process_all(self):
        if self._pre_processed_exists():
            self._load_norm_parameters()
            print("Mean = ", self._mean, ", STD = ", self._std)
            return

        print("No pre-processed dataset found, pre-processing now...")
        if not(os.path.exists(self._target_directory)):
            os.makedirs(self._target_directory)

        size = len(self._all_series)
        for idx, patient in enumerate(self._all_series):
            print(patient[1], str(idx+1) + "/" + str(size))
            p.dump(self._pre_process(patient), open(os.path.join(self._target_directory, patient[1] + ".pick"), "wb"), protocol=2)

        print("Mean = ", self._mean, ", STD = ", self._std)
        p.dump((self._mean, self._std), open(os.path.join(self._target_directory, "norm_parameters.pick"), "wb"), protocol=2)

        print("Pre-processing Done!")
项目:bob    作者:BobBuildTool    | 项目源码 | 文件源码
def __save(self):
        if self.__asynchronous == 0:
            state = {
                "version" : _BobState.CUR_VERSION,
                "byNameDirs" : self.__byNameDirs,
                "results" : self.__results,
                "inputs" : self.__inputs,
                "jenkins" : self.__jenkins,
                "dirStates" : self.__dirStates,
                "buildState" : self.__buildState,
            }
            tmpFile = self.__path+".new"
            try:
                with open(tmpFile, "wb") as f:
                    pickle.dump(state, f)
                    f.flush()
                    os.fsync(f.fileno())
                os.replace(tmpFile, self.__path)
            except OSError as e:
                raise ParseError("Error saving workspace state: " + str(e))
            self.__dirty = False
        else:
            self.__dirty = True
项目:Gank-Alfred-Workflow    作者:hujiaweibujidao    | 项目源码 | 文件源码
def register(self, name, serializer):
        """Register ``serializer`` object under ``name``.

        Raises :class:`AttributeError` if ``serializer`` in invalid.

        .. note::

            ``name`` will be used as the file extension of the saved files.

        :param name: Name to register ``serializer`` under
        :type name: ``unicode`` or ``str``
        :param serializer: object with ``load()`` and ``dump()``
            methods

        """

        # Basic validation
        getattr(serializer, 'load')
        getattr(serializer, 'dump')

        self._serializers[name] = serializer
项目:Gank-Alfred-Workflow    作者:hujiaweibujidao    | 项目源码 | 文件源码
def dump(cls, obj, file_obj):
        """Serialize object ``obj`` to open pickle file.

        .. versionadded:: 1.8

        :param obj: Python object to serialize
        :type obj: Python object
        :param file_obj: file handle
        :type file_obj: ``file`` object

        """

        return pickle.dump(obj, file_obj, protocol=-1)


# Set up default manager and register built-in serializers
项目:Gank-Alfred-Workflow    作者:hujiaweibujidao    | 项目源码 | 文件源码
def register(self, name, serializer):
        """Register ``serializer`` object under ``name``.

        Raises :class:`AttributeError` if ``serializer`` in invalid.

        .. note::

            ``name`` will be used as the file extension of the saved files.

        :param name: Name to register ``serializer`` under
        :type name: ``unicode`` or ``str``
        :param serializer: object with ``load()`` and ``dump()``
            methods

        """

        # Basic validation
        getattr(serializer, 'load')
        getattr(serializer, 'dump')

        self._serializers[name] = serializer
项目:scientific-paper-summarisation    作者:EdCo95    | 项目源码 | 文件源码
def write_summary(location, summary_as_list, filename):
    """
    Writes a generated summary to the specified location, writing both a pickle file and a text file; the pickle file
    for easy program reading, and a text file for easy human and ROUGE reading.
    :param location: the location to write the summary
    :param summary_as_list: the summary to write, as a list of tuples with each tuple of the form
                            (sentence, sentence_index_into_paper)
    :param filename: the name of the file to write.
    """
    with open(location + "Pickles/" + filename + ".pkl", "wb") as f:
        pickle.dump(summary_as_list, f)

    raw_sentences = [x for x, _ in summary_as_list]

    with open(location + "Text/" + filename + ".txt", "wb") as f:
        for sentence in raw_sentences:
            f.write(sentence)
            f.write("\n")
项目:Flask_Blog    作者:sugarguo    | 项目源码 | 文件源码
def set(self, key, value, timeout=None):
        if timeout is None:
            timeout = int(time() + self.default_timeout)
        elif timeout != 0:
            timeout = int(time() + timeout)
        filename = self._get_filename(key)
        self._prune()
        try:
            fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix,
                                       dir=self._path)
            with os.fdopen(fd, 'wb') as f:
                pickle.dump(timeout, f, 1)
                pickle.dump(value, f, pickle.HIGHEST_PROTOCOL)
            rename(tmp, filename)
            os.chmod(filename, self._mode)
        except (IOError, OSError):
            return False
        else:
            return True
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def build_hash_to_coord(paths):
    if os.path.exists("comps/mobike/sol_carl/data/h2c.p") and os.path.exists("comps/mobike/sol_carl/data/c2h.p"):
        return
    h2c,c2h = {},{}
    for path in paths:
        for c,row in enumerate(csv.DictReader(open(path))):
            for tag in ["geohashed_end_loc","geohashed_start_loc"]:
                if tag not in row:
                    continue
                h = row[tag]
                if h not in h2c:
                    coord = str_coord(decode(h))
                    h2c[h] = coord
                    #lat,lon = int(lat+0.5),int(lon+0.5)
                    if coord not in c2h:
                        c2h[coord] = set()
                    c2h[coord].add(h)
            if c>0 and c%100000 == 0:
                print(path,c)
    print(len(h2c),len(c2h))
    pickle.dump(h2c,open("comps/mobike/sol_carl/data/h2c.p","wb"))
    pickle.dump(c2h,open("comps/mobike/sol_carl/data/c2h.p","wb"))
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def get_per_sample_tf(self, texts, field, silent=0):
        """
        Each sample is a document.
        Input:
            texts: ["train","text"]
        """
        if self.sample_tf is not None:
            return

        self.sample_tf = {}
        self.get_per_sample_words_count(texts, field, 1)

        for text in texts:
            name = "{}/{}_sample_tf_{}.p".format(self.flags.data_path,self.name,text)
            if os.path.exists(name):
                self.sample_tf[text] = pickle.load(open(name,'rb'))
            else:
                print("gen",name)
                tf_list = tf(self.sample_words_count[text],0)
                pickle.dump(tf_list,open(name,'wb'))
                self.sample_tf[text] = tf_list
            if silent==0:
                print("\n{} sample tf done".format(text))
项目:kaggle-review    作者:daxiongshu    | 项目源码 | 文件源码
def mean_target_rate(name,out,idcol,ycol):
    if os.path.exists(out):
        return pickle.load(open(out,'rb'))
    yc,cc = defaultdict(float),defaultdict(float)
    for c,row in enumerate(csv.DictReader(open(name))):
        y = float(row[ycol])
        for i in row:
            if i in [idcol,ycol]:
                continue
            v = "%s-%s"%(i,row[i])
            yc[v] += y
            cc[v] += 1.0

        if c>0 and c%100000 == 0:
            print("rows %d len_cc %d"%(c,len(cc)))
    for i in yc:
        yc[i] = yc[i]/cc[i]
    pickle.dump(yc,open(out,'wb'))
    return yc
项目:fluxpart    作者:usda-ars-ussl    | 项目源码 | 文件源码
def tutor_fpout():
    pklout = os.path.join(RESDIR, TUTORPKL)
    if os.path.exists(pklout):
        with open(pklout, 'rb') as f:
            fpout = pickle.load(f)
    else:
        print('re-creating fp results ... this could take a few minutes')
        zip_archive = os.path.join(DATADIR, ZIPFILE)
        with zipfile.ZipFile(zip_archive, 'r') as zfile:
            zfile.extractall(DATADIR)
        fpout = tutor_example()
        make_clean_dat()
        os.makedirs(RESDIR, exist_ok=True)
        with open(pklout, 'wb') as f:
            pickle.dump(fpout, f)
    return fpout
项目:code    作者:ActiveState    | 项目源码 | 文件源码
def sync(self):
        'Write dict to disk'
        if self.flag == 'r':
            return
        filename = self.filename
        tempname = filename + '.tmp'
        fileobj = open(tempname, 'wb' if self.format=='pickle' else 'w')
        try:
            self.dump(fileobj)
        except Exception:
            os.remove(tempname)
            raise
        finally:
            fileobj.close()
        shutil.move(tempname, self.filename)    # atomic commit
        if self.mode is not None:
            os.chmod(self.filename, self.mode)
项目:code    作者:ActiveState    | 项目源码 | 文件源码
def save_pickle(self, dumpfile=DUMPFILE):
        if not self.changed:
            self.note(0, "\nNo need to save checkpoint")
        elif not dumpfile:
            self.note(0, "No dumpfile, won't save checkpoint")
        else:
            self.note(0, "\nSaving checkpoint to %s ...", dumpfile)
            newfile = dumpfile + ".new"
            f = open(newfile, "wb")
            pickle.dump(self, f)
            f.close()
            try:
                os.unlink(dumpfile)
            except os.error:
                pass
            os.rename(newfile, dumpfile)
            self.note(0, "Done.")
            return 1
项目:tracer    作者:angr    | 项目源码 | 文件源码
def _dump_cache_data(self, simstate, dump_fp=None):

        if self.tracer.predecessors[-1] != None:
            state = self.tracer.predecessors[-1]
        else:
            state = None

        if dump_fp:
            proj = state.project
            state.project = None
            state.history.trim()
            try:
                pickle.dump((self.tracer.bb_cnt, self.tracer.cgc_flag_bytes, state, claripy.ast.base.var_counter), dump_fp, pickle.HIGHEST_PROTOCOL)
            except RuntimeError as e: # maximum recursion depth can be reached here
                l.error("unable to cache state, '%s' during pickling", e.message)
            finally:
                state.project = proj

        # unhook receive
        receive.cache_hook = None

        # add preconstraints to tracer
        self.tracer._preconstrain_state(simstate)
项目:mbin    作者:fanglab    | 项目源码 | 文件源码
def build_control_IPD_dict( self, motifs, bi_motifs ):
        """

        """
        control_ipds_fn   = glob.glob( "control_ipds.tmp" )
        control_ipds_N_fn = glob.glob( "control_ipdsN.tmp")
        control_kmers_fn  = glob.glob( "control_ipdskmers.tmp")

        if (len(control_ipds_fn)>1 or len(control_ipds_N_fn)>1 or len(control_kmers_fn)>1):
            raise Exception("*** Double check the control files. There should not be multiples for a file type.")

        control_means,not_found = self.chunk_control_matrices(control_ipds_fn[0], control_ipds_N_fn[0], control_kmers_fn[0])

        if not_found > 0:
            logging.info("")
            logging.warning("WARNING: could not find sufficient instances (>=%s) for %s motifs (out of %s total) in control data!" % (self.opts.min_motif_count, not_found, (len(motifs)+len(bi_motifs))))
            logging.warning("   * If this is alarming, try reducing --min_motif_count or increasing --N_reads, although you just might not have those motifs in your reference sequence.")

        logging.info("")
        logging.info("Writing control data to a pickled file: %s" % self.opts.control_pkl_name)
        pickle.dump( control_means, open( self.opts.control_pkl_name, "wb" ) )

        return control_means
项目:AutoSleepScorerDev    作者:skjerns    | 项目源码 | 文件源码
def feat_ann(c=0):
        batch_size =700
        feats_eeg = scipy.stats.zscore(tools.feat_eeg(data[:,:,0]))
        feats_emg = scipy.stats.zscore(tools.feat_emg(data[:,:,1]))

        feats_eog = scipy.stats.zscore(tools.feat_eog(data[:,:,2]))
        feats_all = np.hstack([feats_eeg, feats_emg, feats_eog])
        results = dict()
        r = cv(feats_eeg, target, groups, models.ann, name = 'eeg', stop_after=15,batch_size=batch_size, counter=c, plot=plot)
        results.update(r)
        r = cv(np.hstack([feats_eeg,feats_eog]), target, groups, models.ann, name = 'eeg+eog',batch_size=batch_size, stop_after=15, counter=c, plot=plot)  
        results.update(r)
        r = cv(np.hstack([feats_eeg,feats_emg]), target, groups, models.ann, name = 'eeg+emg',batch_size=batch_size, stop_after=15, counter=c, plot=plot) 
        results.update(r)
        r = cv(feats_all, target, groups, models.ann, name = 'all',batch_size=batch_size, stop_after=15, counter=c, plot=plot)
        results.update(r)
        with open('results_electrodes_feat.pkl', 'wb') as f:  pickle.dump(results, f)
项目:hSBM_Topicmodel    作者:martingerlach    | 项目源码 | 文件源码
def inference(self,g):
        """We load a graph-tool graph-object and fit an hsbm:
           - hierarchical
           - nonoverlapping
           - degree-corrected
           We get a state-object which is a 'NestedBlockState'.
           We save as 'state.pkl'
        """
        if self.args.state == None:
            state=gt.minimize_nested_blockmodel_dl(g,deg_corr=True,overlap=False)
            ## save state
            with open(os.path.join(self.out_path,'state.pkl'),'wb') as f:
                pickle.dump(state,f)
        ## if the state already exists, we just load
        else:
            with open(self.args.state,'rb') as f:
                state = pickle.load(f)
        return state
项目:TAC-GAN    作者:dashayushman    | 项目源码 | 文件源码
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--caption_file', type=str, default='Data/text.txt',
                       help='caption file')
    parser.add_argument('--data_dir', type=str, default='Data',
                       help='Data Directory')

    args = parser.parse_args()

    model = skipthoughts.load_model()
    encoded_captions = {}
    file_path = os.path.join(args.caption_file)
    dump_path = os.path.join(args.data_dir, 'enc_text.pkl')
    with open(file_path) as f:
        str_captions = f.read()
        captions = str_captions.split('\n')
        print(captions)
        encoded_captions['features'] = skipthoughts.encode(model, captions)

    pickle.dump(encoded_captions,
                open(dump_path, "wb"))
    print('Finished extracting Skip-Thought vectors of the given text '
          'descriptions')
项目:SnapStitch    作者:avikj    | 项目源码 | 文件源码
def get_clusters_for_project(project_id, video_names):
  embs = []
  filenames = []
  for video_name in video_names:
    filename_to_embedding = pickle.load(open(os.path.join('temp', project_id, video_name, 'filename_to_emb.pkl'))) # TODO: call get_inception_embeddings on frame dir, but for now just use the pickle
    for filename, embedding in filename_to_embedding.iteritems():
      embs.append(embedding)
      filenames.append(filename)
  labels = cluster(embs, eps=12, min_pts=3)
  d = {}
  for video_name in video_names:
    d[video_name] = {}
  for i in range(len(filenames)):
    video_name = video_name_from_filename(filenames[i])
    d[video_name][filenames[i]] = labels[i]
  with open(os.path.join('temp', project_id, 'filename_to_clust.pkl'), 'w') as pickle_file:
    pickle.dump(d, pickle_file)
  for video_name in d:
    for filename in d[video_name]:
      mkdir_p(os.path.join('temp', project_id, 'clusters', str(d[video_name][filename])))
      copy(filename, os.path.join('temp', project_id, 'clusters', str(d[video_name][filename]), os.path.basename(filename)))
  '''filenames = [filename[filename.rindex('/')+1:] for filename in filenames]
  embs = np.array(embs)
  candidates = [(11, 6)]
  candidates = [(eps, min_pts) for eps in range(7, 15) for min_pts in range(2, 10)]'''
项目:code-uai16    作者:thanhan    | 项目源码 | 文件源码
def main_sim_multi(cor = 0.75, rs = 0.5):
    """
    multitask simulated data
    """
    dic1, rel1, turk1, dic2, rel2, turk2 = simulate_multitask(cor)
    lc1 = crowd_model.labels_collection(turk1, rel1)
    lc2 = crowd_model.labels_collection(turk2, rel2)

    for rs in [0.1, 0.2, 0.3, 0.4, 0.5]:
        res = main_multitask([lc1, lc2], [dic1, dic2], rs) 
        import pickle
        f = open('simult_' + str(cor) + '.pkl', 'w')
        pickle.dump(res, f)
        f.close()




################################################
################################################
# multitask on simulated data
项目:PersonalizedMultitaskLearning    作者:mitmedialab    | 项目源码 | 文件源码
def getWellbeingTaskListFromDataset(datafile, data_path=PATH_TO_DATASETS, subdivide_phys=True):
    df = pd.DataFrame.from_csv(data_path + datafile)
    wanted_labels = [x for x in df.columns.values if '_Label' in x and 'tomorrow_' in x and 'Evening' in x and 'Alertness' not in x and 'Energy' not in x]
    wanted_feats = [x for x in df.columns.values if x != 'user_id' and x != 'timestamp' and x!= 'dataset' and x!='Cluster' and '_Label' not in x]

    core_name = getDatasetCoreName(datafile)

    modality_dict = getModalityDict(wanted_feats, subdivide_phys=subdivide_phys)

    for dataset in ['Train','Val','Test']:
        task_dict_list = []
        for target_label in wanted_labels: 
            mini_df = helper.normalizeAndFillDataDf(df, wanted_feats, [target_label], suppress_output=True)
            mini_df.reindex(np.random.permutation(mini_df.index))

            X,y = helper.getTensorFlowMatrixData(mini_df, wanted_feats, [target_label], dataset=dataset, single_output=True)
            task_dict = dict()
            task_dict['X'] = X
            task_dict['Y'] = y
            task_dict['Name'] = target_label
            task_dict['ModalityDict'] = modality_dict
            task_dict_list.append(task_dict)
        pickle.dump(task_dict_list, open(data_path + "datasetTaskList-" + core_name + "_" + dataset + ".p","wb"))
项目:swjtu-pyscraper    作者:Desgard    | 项目源码 | 文件源码
def set(self, key, value, timeout=None):
        if timeout is None:
            timeout = int(time() + self.default_timeout)
        elif timeout != 0:
            timeout = int(time() + timeout)
        filename = self._get_filename(key)
        self._prune()
        try:
            fd, tmp = tempfile.mkstemp(suffix=self._fs_transaction_suffix,
                                       dir=self._path)
            with os.fdopen(fd, 'wb') as f:
                pickle.dump(timeout, f, 1)
                pickle.dump(value, f, pickle.HIGHEST_PROTOCOL)
            rename(tmp, filename)
            os.chmod(filename, self._mode)
        except (IOError, OSError):
            return False
        else:
            return True
项目:ScraXBRL    作者:tooksoi    | 项目源码 | 文件源码
def add_scrape_data(symbol, scrape_data, complete):
    """Add data regarding scrape to scrape log."""

    if complete:
        complete_key = 'complete'
    else:
        complete_key = 'incomplete'
    data_log = pickle.load(open(settings.SCRAPE_LOG_FILE_PATH, "rb"))
    try:
        data_log[symbol]
        data_log[symbol][complete_key] = scrape_data
    except KeyError:
        data_log[symbol] = {}
        data_log[symbol]['complete'] = None
        data_log[symbol]['incomplete'] = None
        data_log[symbol][complete_key] = scrape_data
    pickle.dump(data_log, open(settings.SCRAPE_LOG_FILE_PATH, "wb"))
项目:ScraXBRL    作者:tooksoi    | 项目源码 | 文件源码
def add_extract_data(symbol, extract_data, complete):
    """Add data regarding scrape or extract to master log."""

    if complete:
        complete_key = 'complete'
    else:
        complete_key = 'incomplete'
    data_log = pickle.load(open(settings.EXTRACT_LOG_FILE_PATH, "rb"))
    try:
        data_log[symbol]
        data_log[symbol][complete_key].append(extract_data)
    except KeyError:
        data_log[symbol] = {}
        data_log[symbol]['complete'] = []
        data_log[symbol]['incomplete'] = []
        data_log[symbol][complete_key].append(extract_data)
    pickle.dump(data_log, open(settings.EXTRACT_LOG_FILE_PATH, "wb"))
项目:deeppavlov    作者:deepmipt    | 项目源码 | 文件源码
def save(self, fname=None):
        """Save the parameters of the agent to a file."""
        fname = self.opt.get('model_file', None) if fname is None else fname

        if fname:
            if self.model_type == 'nn':
                print("[ saving model: " + fname + " ]")
                self.model.save_weights(fname + '.h5')
                self.embedding_dict.save_items(fname)

            if self.model_type == 'ngrams':
                print("[ saving model: " + fname + " ]")
                with open(fname + '_cls.pkl', 'wb') as model_file:
                    pickle.dump(self.model, model_file)

            with open(fname + '_opt.json', 'w') as opt_file:
                json.dump(self.opt, opt_file)
项目:flora    作者:Lamden    | 项目源码 | 文件源码
def generate(location):
    # cli wizard for creating a new contract from a template
    if directory_has_smart_contract(location):
        example_payload = json.load(open(glob.glob(os.path.join(location, '*.json'))[0]))
        print(example_payload)
        for k, v in example_payload.items():
            value = input(k + ':')
            if value != '':
                example_payload[k] = value
        print(example_payload)

        code_path = glob.glob(os.path.join(location, '*.tsol'))
        tsol.compile(open(code_path[0]), example_payload)
        print('Code compiles with new payload.')
        selection = ''
        while True:
            selection = input('(G)enerate Solidity contract or (E)xport implementation:')
            if selection.lower() == 'g':
                output_name = input('Name your contract file without an extension:')
                code = tsol.generate_code(open(code_path[0]).read(), example_payload)
                open(os.path.join(location, '{}.sol'.format(output_name)), 'w').write(code)
                break

            if selection.lower() == 'e':
                output_name = input('Name your implementation file without an extension:')
                json.dump(example_payload, open(os.path.join(location, '{}.json'.format(output_name)), 'w'))
                break
    else:
        print('Provided directory does not contain a *.tsol and *.json or does not compile.')
项目:alfred-mpd    作者:deanishe    | 项目源码 | 文件源码
def register(self, name, serializer):
        """Register ``serializer`` object under ``name``.

        Raises :class:`AttributeError` if ``serializer`` in invalid.

        .. note::

            ``name`` will be used as the file extension of the saved files.

        :param name: Name to register ``serializer`` under
        :type name: ``unicode`` or ``str``
        :param serializer: object with ``load()`` and ``dump()``
            methods

        """
        # Basic validation
        getattr(serializer, 'load')
        getattr(serializer, 'dump')

        self._serializers[name] = serializer
项目:alfred-mpd    作者:deanishe    | 项目源码 | 文件源码
def dump(cls, obj, file_obj):
        """Serialize object ``obj`` to open JSON file.

        .. versionadded:: 1.8

        :param obj: Python object to serialize
        :type obj: JSON-serializable data structure
        :param file_obj: file handle
        :type file_obj: ``file`` object

        """
        return json.dump(obj, file_obj, indent=2, encoding='utf-8')
项目:alfred-mpd    作者:deanishe    | 项目源码 | 文件源码
def dump(cls, obj, file_obj):
        """Serialize object ``obj`` to open pickle file.

        .. versionadded:: 1.8

        :param obj: Python object to serialize
        :type obj: Python object
        :param file_obj: file handle
        :type file_obj: ``file`` object

        """
        return cPickle.dump(obj, file_obj, protocol=-1)
项目:alfred-mpd    作者:deanishe    | 项目源码 | 文件源码
def dump(cls, obj, file_obj):
        """Serialize object ``obj`` to open pickle file.

        .. versionadded:: 1.8

        :param obj: Python object to serialize
        :type obj: Python object
        :param file_obj: file handle
        :type file_obj: ``file`` object

        """
        return pickle.dump(obj, file_obj, protocol=-1)


# Set up default manager and register built-in serializers
项目:alfred-mpd    作者:deanishe    | 项目源码 | 文件源码
def cache_data(self, name, data):
        """Save ``data`` to cache under ``name``.

        If ``data`` is ``None``, the corresponding cache file will be
        deleted.

        :param name: name of datastore
        :param data: data to store. This may be any object supported by
                the cache serializer

        """
        serializer = manager.serializer(self.cache_serializer)

        cache_path = self.cachefile('%s.%s' % (name, self.cache_serializer))

        if data is None:
            if os.path.exists(cache_path):
                os.unlink(cache_path)
                self.logger.debug('Deleted cache file : %s', cache_path)
            return

        with atomic_writer(cache_path, 'wb') as file_obj:
            serializer.dump(data, file_obj)

        self.logger.debug('Cached data saved at : %s', cache_path)
项目:subtitle-synchronization    作者:AlbertoSabater    | 项目源码 | 文件源码
def generateDatasets(train_files, cut_data, len_mfcc, step_mfcc, hop_len, freq):

    X, Y = [], []

    for tf in train_files:

        train_data, labels = generateSingleDataset(tf, cut_data, len_mfcc, step_mfcc, hop_len, freq)

        X.append(train_data)
        Y.append(labels)

    X = np.concatenate(X)
    Y = np.concatenate(Y)

    if cut_data:
        filename = STORE_DIR + 'dataset_CUT_' + str(freq) + '_' + str(hop_len) + '_' + str(len_mfcc) + '_' + str(step_mfcc) + '_' + str(X.shape[0]) + '_' + str(X.shape[1]) + '_' + str(X.shape[2]) + '.pickle'
    else:
        filename = STORE_DIR + 'dataset_' + str(freq) + '_' + str(hop_len) + '_' + str(len_mfcc) + '_' + str(step_mfcc) + '_' + str(X.shape[0]) + '_' + str(X.shape[1]) + '_' + str(X.shape[2]) + '.pickle'
    print filename
    with open(filename, 'w') as f:
        pickle.dump([X, Y], f)

    return X, Y


# Generate a dataset from all available files
项目:subtitle-synchronization    作者:AlbertoSabater    | 项目源码 | 文件源码
def sotreResults(results, v):
# %%
    import pickle

    with open('test_results_'+v+'.pickle', 'w') as f:
        pickle.dump(results, f)


# %% 

# Plot stored training statistics. Look for the best model
项目:DeepAnomaly    作者:adiyoss    | 项目源码 | 文件源码
def store_prediction_and_ground_truth(model):
    input_size = 1
    maxlen = 140
    batch_size = 32

    db = read_data('../data/ECG5000_TEST_PHASE_1_CONTINUOUS_SIGNAL_1.pkl')
    X = create_sequences(db[:-140], win_size=maxlen, step=maxlen)
    X = np.reshape(X, (X.shape[0], X.shape[1], input_size))
    Y = create_sequences(db[140:], win_size=maxlen, step=maxlen).flatten()

    prediction = model.predict(X, batch_size, verbose=1)
    prediction = prediction.flatten()
    with open('../data/ECG5000_TRAIN_PHASE_2_CONTINUOUS_SIGNAL_1.pkl', 'wb') as f:
        pickle.dump(np.stack((Y, prediction)), f)
项目:DeepAnomaly    作者:adiyoss    | 项目源码 | 文件源码
def prepare_data():
    test_data = read_data("../data/ECG5000_TEST_CONTINUOUS_SIGNAL_1.pkl")
    test_data_half_len = int(len(test_data) / 2)

    with open("../data/ECG5000_TEST_PHASE_1_CONTINUOUS_SIGNAL_1.pkl", "wb") as f:
        pickle.dump(test_data[:test_data_half_len], f)

    with open("../data/ECG5000_TEST_PHASE_2_CONTINUOUS_SIGNAL_1.pkl", "wb") as f:
        pickle.dump(test_data[test_data_half_len:], f)
项目:robot-arena    作者:kenganong    | 项目源码 | 文件源码
def log_results(state):
  if config.print_results:
    print('Final Results!')
    for brain in sorted(state.brains, key = lambda x: x.placement):
      print('{}. {}  with {} flags (scored: {})  surviving {} iterations ({} robots left)'.format(brain.placement,
            brain.name, brain.max_flag, brain.total_flags, brain.iterations_survived, brain.robots_alive))
  if config.save_replay:
    filename = 'roborally/replays/{}.pickle'.format(replay['name'])
    os.makedirs(os.path.dirname(filename), exist_ok=True)
    with open(filename, 'wb') as replay_file:
      pickle.dump(replay, replay_file)
项目:onto-lstm    作者:pdasigi    | 项目源码 | 文件源码
def save_model(self, epoch):
        '''
        Saves the current model using the epoch id to identify the file.
        '''
        self.model.save("%s_%d.model" % (self.model_name_prefix, epoch))
        pickle.dump(self.data_processor, open("%s.dataproc" % self.model_name_prefix, "wb"))
项目:onto-lstm    作者:pdasigi    | 项目源码 | 文件源码
def save_model(self, epoch):
        pickle.dump(self.label_map, open("%s.label_map" % self.model_name_prefix, "wb"))
        super(PPRelationModel, self).save_model(epoch)
项目:onto-lstm    作者:pdasigi    | 项目源码 | 文件源码
def save_model(self, epoch):
        '''
        Saves the current model using the epoch id to identify the file.
        '''
        self.model.save("%s_%d.model" % (self.model_name_prefix, epoch))
        pickle.dump(self.data_processor, open("%s.dataproc" % self.model_name_prefix, "wb"))
        pickle.dump(self.label_map, open("%s.labelmap" % self.model_name_prefix, "wb"))
项目:DREAM    作者:LaceyChen17    | 项目源码 | 文件源码
def get_users_orders(self, prior_or_train):
        '''
            get users' prior detailed orders
        '''
        if os.path.exists(self.cache_dir + 'users_orders.pkl'):
            with open(self.cache_dir + 'users_orders.pkl', 'rb') as f:
                users_orders = pickle.load(f)
        else:
            orders = self.get_orders()
            order_products_prior = self.get_orders_items(prior_or_train)
            users_orders = pd.merge(order_products_prior, orders[['user_id', 'order_id', 'order_number', 'days_up_to_last']], 
                        on = ['order_id'], how = 'left')
            with open(self.cache_dir + 'users_orders.pkl', 'wb') as f:
                pickle.dump(users_orders, f, pickle.HIGHEST_PROTOCOL)
        return users_orders
项目:DREAM    作者:LaceyChen17    | 项目源码 | 文件源码
def get_users_products(self, prior_or_train):
        '''
            get users' all purchased products
        '''
        if os.path.exists(self.cache_dir + 'users_products.pkl'):
            with open(self.cache_dir + 'users_products.pkl', 'rb') as f:
                users_products = pickle.load(f)
        else:
            users_products = self.get_users_orders(prior_or_train)[['user_id', 'product_id']].drop_duplicates()
            users_products['product_id'] = users_products.product_id.astype(int)
            users_products['user_id'] = users_products.user_id.astype(int)
            users_products = users_products.groupby(['user_id'])['product_id'].apply(list).reset_index()
            with open(self.cache_dir + 'users_products.pkl', 'wb') as f:
                pickle.dump(users_products, f, pickle.HIGHEST_PROTOCOL)
        return users_products
项目:DREAM    作者:LaceyChen17    | 项目源码 | 文件源码
def get_baskets(self, prior_or_train, reconstruct = False, reordered = False, none_idx = 49689):
        '''
            get users' baskets
        '''
        if reordered:
            filepath = self.cache_dir + './reorder_basket_' + prior_or_train + '.pkl'
        else:
            filepath = self.cache_dir + './basket_' + prior_or_train + '.pkl'

        if (not reconstruct) and os.path.exists(filepath):
            with open(filepath, 'rb') as f:
                up_basket = pickle.load(f)
        else:          
            up = self.get_users_orders(prior_or_train).sort_values(['user_id', 'order_number', 'product_id'], ascending = True)
            uid_oid = up[['user_id', 'order_number']].drop_duplicates()
            up = up[up.reordered == 1][['user_id', 'order_number', 'product_id']] if reordered else up[['user_id', 'order_number', 'product_id']]
            up_basket = up.groupby(['user_id', 'order_number'])['product_id'].apply(list).reset_index()
            up_basket = pd.merge(uid_oid, up_basket, on = ['user_id', 'order_number'], how = 'left')
            for row in up_basket.loc[up_basket.product_id.isnull(), 'product_id'].index:
                up_basket.at[row, 'product_id'] = [none_idx]
            up_basket = up_basket.sort_values(['user_id', 'order_number'], ascending = True).groupby(['user_id'])['product_id'].apply(list).reset_index()
            up_basket.columns = ['user_id', 'reorder_basket'] if reordered else ['user_id', 'basket']
            #pdb.set_trace()
            with open(filepath, 'wb') as f:
                pickle.dump(up_basket, f, pickle.HIGHEST_PROTOCOL)
        return up_basket
项目:SuperPACs    作者:SpencerNorris    | 项目源码 | 文件源码
def donations(filename='donationdata.pickle'):

    try:
        print("donation data pickled already. Grabbing data from donationdata.picke")
        with open(filename, 'rb') as handle:
            donations = pickle.load(handle)
        return donations
    except EOFError:
        print("donation data not pickled, grabbing directly from FEC and ProPublica APIs")
        donations = donations_helper()

        with open(filename, 'wb') as handle:
            pickle.dump(donations, handle, protocol=pickle.HIGHEST_PROTOCOL)

        return donations